
GraCT: A Grammar-based Compressed Index
for Trajectory Data ?

Nieves R. Brisaboaa, Adrián Gómez-Brandóna,∗, Gonzalo Navarrob, José R. Paramáa

aUniversidade da Coruña, Facultade de Informática, CITIC, Campus de Elviña s/n, 15071 A
Coruña, Spain

bMillennium Institute for Foundational Research on Data (IMFD), Department of Computer Science,
University of Chile, Beauchef 851, Santiago, Chile

Abstract

We introduce a compressed data structure for the storage of free trajectories of mov-
ing objects (such as ships and planes) that efficiently supports various spatio-temporal
queries. Our structure, dubbed GraCT, stores the absolute positions of all the objects
at regular time intervals (snapshots) using a k2-tree, which is a space- and time-efficient
version of a region quadtree. Positions between snapshots are represented as logs of
relative movements and compressed using Re-Pair, a grammar-based compressor. The
nonterminals of this grammar are enhanced with MBR information to enable fast queries.

The GraCT structure of a dataset occupies less than the raw data compressed with a
powerful traditional compressor such as p7zip. Further, instead of requiring full decom-
pression to access the data like a traditional compressor, GraCT supports direct access
to object trajectories or to their position at specific time instants, as well as spatial range
and nearest-neighbor queries on time instants and/or time intervals.

Compared to traditional methods for storing and indexing spatio-temporal data,
GraCT requires two orders of magnitude less space, and is competitive in query times. In
particular, thanks to its compressed representation, the GraCT structure may reside in
main memory in situations where any classical uncompressed index must resort to disk,
thereby being one or two orders of magnitude faster.

Keywords: Compact data structures, moving objects databases.

1. Introduction

More than two decades after it emerged, the field of moving object databases is still
an active area of research. The data collected from the GPS positions of large sets of
cars, ships, planes, smartphones and wearable devices, has lead to a growing interest in
applications that exploit trajectory information, for example with data mining purposes.

?A shorter, preliminary version of this paper appeared in Proc. SPIRE 2016 [6].
∗Corresponding author. Tel. +34981167000 Fax. +34981167160.
Email addresses: brisaboa@udc.es (Nieves R. Brisaboa), adrian.gbrandon@udc.es (Adrián

Gómez-Brandón), gnavarro@dcc.uchile.cl (Gonzalo Navarro), jose.parama@udc.es (José R. Paramá)

Preprint submitted to Elsevier January 29, 2019

As these datasets grow in size and the applications managing moving objects become
more sophisticated, more space/time-efficient storage techniques are required.

A trajectory is the path followed by a moving object through space as a function of
time. Due to storage requirements and the limitations of the devices used to acquire the
object positions, the continuous movement of an object is usually approximated with
discrete samples of spatio-temporal location points. The more samples taken, the more
accurate the trajectory. High sampling rates, however, result in large amounts of data,
which increase storage, transmission and processing needs. Even when storage, network
and processing capacity grows rapidly, the collected data grows even faster, and thus it
is necessary to aim for reduced trajectory representations [49].

Traditional methods for compressing trajectories include line generalization (or sim-
plification) techniques, which keep only some of the trajectory points and discard the
rest. This approach results in some loss of information on the real trajectory. A lossless
strategy to obtain compression is the use of delta compression, where each new position
is stored as the difference with the previous one. This idea exploits the fact that con-
secutive positions are expected to be closer to each other, and that smaller numbers can
be stored using fewer bits. Extracting a whole trajectory with this arrangement is easy.
Efficiently accessing the position of an object at a given time, instead, requires sampling
some absolute positions at regular time intervals, which introduces a space/time tradeoff.

Another issue is how to index the trajectory data in order to answer queries other
than just retrieving a whole trajectory or finding the position of an object at a given time
instant. A number of indexes have been proposed since the 90’s to handle a rich set of
queries on trajectory data. Most indexes were modifications of the R-tree [13] augmented
with another dimension to deal with the time. None of those works, however, compress
the data. Rather, they are designed to work on disk, which is much slower than the main
memory.

With the increasing gap in the access time of main memory versus disk, compressing
the trajectories in order to query them in main memory is an attractive option. Some
recent proposals following this trend [9, 43] build on delta compression, coupled with
an encoding that favors small numbers. The optimal codes for delta compression can
be obtained with a statistical encoder that exploits frequency bias (typically, smaller
numbers are more frequent).

In this article we introduce a new way to compress trajectories and demonstrate that
it is much more effective than statistical compression on real-world data. Instead of
exploiting the higher frequency of smaller differences, we exploit the fact that, in many
applications, trajectories tend to be similar to others, wholly or piecewise. We resort
to grammar compression [17], which is a method from the family of dictionary-based
compression methods. Grammar compression generates a context-free grammar that
generates (only) a given input sequence. Our input sequence is the concatenation of
all the trajectories in differential form. Grammar compression exploits the similarities
between trajectories: if many trajectories are similar, then a small grammar can be found
that generates the whole dataset.

Our index, called Grammar-based Compressed Representation of Trajectories (GraCT),
is an in-memory representation that combines grammar compression of trajectories with
additional data structures to support efficient queries of various kinds on the dataset,
without the need of decompressing it. On one hand, snapshots of the positions of all
the objects at regular time intervals are created, and those positions are indexed in a

2

compressed quadtree representation called k2-tree [7]. Such spatial index allows us to
restrict the set of candidate objects when answering queries. The movements of the ob-
jects between two consecutive snapshots are represented in a sequence called the log of
movements, which is represented in differential form and compressed with Re-Pair, an
effective grammar compression method [19]. To avoid decompressing and sequentially
traversing the logs to answer queries, the nonterminals of the grammar are enhanced with
additional information, most notably the minimum bounding rectangle (MBR) of all the
(relative) positions represented by the nonterminal. MBRs allow us to skip whole nonter-
minal symbols without the need to decompress them, thereby speeding up the traversal
of logs. This arrangement enables GraCT to efficiently answer time-slice, time-interval
and k-nearest neighbor queries.

GraCT requires discretizing the data in order to obtain compression. When the data
must be used with full precision, GraCT can be used as an in-memory cached index using
a sufficient degree of discretization. The candidate set of answers delivered by GraCT
are then read from disk and verified.

We evaluate our techniques on three real-life datasets: ships at sea, commercial air-
crafts, and city taxis. We show that the grammar compression of GraCT is highly
effective, reducing the raw data to 4%–7% of its original size. This is even less than
the space achieved by p7zip, a powerful dictionary-based compressor that does not sup-
port direct access nor querying. It is also less than half the space used by a baseline
index we implement that replaces grammar compression by statistical symbolwise com-
pression. Compared to a traditional method for storing and indexing spatio-temporal
data (concretely, the MVR-tree [40]), the compressed representation of GraCT occupies
two orders of magnitude less space. In relation to query times, GraCT is up to 4 times
faster than the statistically compressed index, except for retrieving whole trajectories,
where it is slightly slower. GraCT is also faster than the MVR-tree running in main
memory (which, as explained, is feasible for small datasets only) for all queries except on
nearest-neighbor queries, on which it can be clearly slower. GraCT is one or two orders of
magnitude faster, however, when the MVR-tree cannot be maintained in main memory.
Finally, a simple combination with a relational storage of the full-precision trajectory
points shows that an in-memory cache based on GraCT is an order of magnitude faster
than the MVR-tree operating on disk for the basic time-slice queries.

The paper is structured as follows. Section 2 covers related work. Section 3 introduces
the GraCT structure and Section 4 explains in detail the compression of the logs. Sections
5 and 6 describe how the various supported queries are processed in GraCT. Section
7 presents the experimental results. Finally, Section 8 presents our conclusions and
directions for future research.

2. Related Work

This section describes the previous work on indexing and compressing trajectories.
Section 2.1 describes the related work on indexing trajectories, Section 2.2 on compressing
trajectories, and Section 2.3 on combining both. Readers willing to go directly to the
description of our new index may jump directly to Section 2.4, where the basic concepts
of compact data structures are covered.

3

2.1. Indexing trajectories

Indexes that handle free trajectories of points in the space are also called spatio-
temporal indexes. One type spatio-temporal index builds on a classic multidimensional
spatial index, in the form of a temporally augmented R-tree [13]. While the R-tree uses
two-dimensional Minimum Bounding Rectangles (MBRs) to enclose the spatial objects
stored in the database, the 3DR-tree [42] uses Minimum Bounding Boxes (MBBs), where
the third dimension is time, to enclose the segments of the trajectories. The problem
is that the three-dimensional space covered by an MBB can be large, even in small
segments, resulting in high levels of overlap and limited power of discrimination. The
STR-Tree [32] is an extension of the 3DR-tree designed to overcome this problem, by
modifying the insertion/split strategy that produces the MBBs. The same work also
proposes an index called TB-tree, where several segments of a trajectory are bundled
into partial trajectories that are inserted as MBBs of an R-tree.

A second kind of index is a versioned R-tree, which creates an R-tree for each times-
tamp and a B-tree to select the relevant R-trees. Creating an R-tree for each timestamp
requires large amounts of space. To overcome this, instead of storing the complete R-tree
for each timestamp, these techniques store only the part of the R-tree that is different
from the R-tree in the previous timestamp. Examples of indexes of this type are MR-tree
[46], HR-tree [27], HR+-tree [39] and MV3R-tree [40].

A third family of indexes, called grid-based indexes, partition the space and build a
temporal index for each of the spatial partitions. The Scalable and Efficient Trajectory
Index (SETI) [8] divides the spatial dimension into static, non-overlapping cells. Within
each cell, the trajectory segments are indexed by time using an R∗-tree. If a segment
crosses the boundary between two cells, it is clipped and stored twice in the R∗-trees of
both partitions. Other examples from this family include Multi Time Split B-Tree [50],
Compressed Start-End tree [44], and PIST [3]. More recently, GCOTraj [47] presented a
work along the same line, which also divides the space into cells, and all the subtrajec-
tories in a cell are stored in the same disk page. Pages are ordered on the disk following
a space filling curve to optimize I/O times.

PA-trees [29] use a completely different approach to avoid MBBs. The index is built
with linear and order-k polynomial approximations of the trajectories. Of course, the
approximation deviates from the real trajectory, thus the index also stores the maximum
deviation with respect to the actual trajectory to avoid false negatives.

A recent active research line is the management of trajectories in the distributed
computing framework. PRADASE [22] and CloST [38] are trajectory storage systems
built on top of Hadoop and extended with a spatio-temporal index. MD-HBase [31],
R-HBase [14], and GeoMesa [15] use distributed key/value stores. TrajSpark [48] is
an in-memory system based on Spark and equipped with a two-level spatio-temporal
index. While we do not address distributed computing in this article, we remark that,
in general, a compressed storage enables the distribution of spatiotemporal data across
fewer computers, thereby reducing the communication costs.

The closest predecessor of our GraCT index is SEST-Index [12, 45]. This was the first
structure considering snapshots and logs of events, but it did not consider compression
and was oriented to storing “events” (objects that appear in or disappear from an area).

4

2.2. Compressing trajectories

A simple way to reduce the size of a trajectory is to produce a new trajectory that
approximates the original one by selectively removing some of its points. This approach,
called trajectory simplification, is based on so-called line generalization techniques. This
strategy is typically used as a preprocessing step that is applied before the trajectories
are compressed or indexed [49]. Therefore, these methods are compatible with other
compression and indexing techniques.

The simplest trajectory simplification method is uniform sampling [33], which selects
points at regular intervals (e.g., 5th, 10th, 15th, etc.), and discards the rest. Though
simple to apply, the resulting trajectory may lose too much precision.

More evolved algorithms analyze the points in order to identify those containing more
information, while discarding more redundant surrounding points. One of the best-known
algorithms of this type is Douglas-Peucker [10]. Other methods in this family include
top-down time ratio [23], sliding window [16], SQUISH [24], and OPERB [21].

Trajectory compression techniques based on speed and direction include points in
the approximated trajectory provided they represent a significant change in the course
of the trajectory. Examples of methods from this family include dead reckoning [41],
threshold-guided sampling, and STTrace [33].

Finally, some methods use the knowledge of an underlying network to decide which
points are retained (e.g., those at bus stops or at street intersections) [35, 37].

Independently of whether and how trajectory simplification is applied, the resulting
trajectories can be compressed. The typical alternative is delta compression, which stores
the first point in the trajectory in absolute form and all the others as the difference with
the previous point. This applies to all three components (x, y, and timestamp).

Trajic [30] uses a strategy related to delta compression. It uses a predictor of the
next point of a trajectory and an encoder of the residuals, that is, the difference between
the prediction and the actual point. If the residual is small, the encoder uses few bits.

Finally, a somewhat related research line faces the compression of traffic data over
networks, mainly flow at intersections and average speed, using low-dimensional models
such as principal component analysis or low-rank approximation [20, 1]. Basically, these
techniques approximately represent a matrix as the product of smaller matrices. Similar
techniques are used in 3D animated video to compress the trajectories formed by the
positions of the vertices of animated synthetic figures [34], and could probably be applied
to compress GPS trajectories.

GraCT does not discard points, but discretizes the positions according to an under-
lying grid, whose size is parameterized by the needs of the applications (e.g., it makes
no sense to store ship positions with a precision of centimeters). It also uses a discrete
temporal scale, interpolating the measures so that each trajectory has a point at each
time instant. GraCT is unique in using grammar-based compression on the trajectories.

2.3. Trajectory compression and indexing

There are just a few systems that combine trajectory compression and indexing.
TrajStore [9] is similar to SETI [8], as it also slices the trajectories into subtrajectories

that fit in the cells into which the space was divided. The difference is that the data of
each cell is compressed and that the cells are adapted to the distribution of the data.
TrajStore uses delta compression and a cluster-based compression, which groups several

5

similar trajectories and stores only one of them; thus it is a lossy method. In addition,
the cells are spatially indexed by a global quadtree, and each cell has a temporal index
of the disk pages that make up the cell.

SharkDB [43] is an in-memory trajectory storage system that combines a column-
oriented data structure and compression. SharkDB divides the time into frames of a
given length (e.g., one minute) and stores one point for each trajectory within that frame.
All of the points within the frame are stored as a column of a column-oriented database
management system. To reduce data size, it also uses delta compression. SharkDB uses
multithreading to speed up query processing.

PRESS [36] is a system that stores compressed trajectories and supports queries, but
the trajectories must be paths in an underlying network (e.g., train stations, bus stops).
We only consider free trajectories in this article.

2.4. Compact data structures and compression methods

Compact data structures [28] are a new family of data structures that combine query
support with compressed data representation. They often use space close to that of a
plain compressed representation, while supporting queries on the data in time competitive
with classical data structures. Our index makes use of various compact data structures
and compression methods.

2.4.1. Rank and Select

The following two operations over bit sequences (or bitmaps) are basic components
of most compact data structures: rankb(B, p) counts the number of occurrences of bit
b in bitmap B up to position p, whereas selectb(B,n) returns the position in bitmap B
where the n-th occurrence of bit b is located.

Some data structures (see [25], for example) allow these operations to be solved in
constant time, using n + o(n) bits of total space (in practice, approximately 5% extra
space over the original bitmap).

2.4.2. k2-tree

The k2-tree is a compact data structure originally designed to represent Web graphs
within reduced space, allowing them to be navigated directly in compressed form [7]. In
general, a k2-tree can be used to represent the adjacency matrix of any graph, as well as
binary matrices.

Conceptually, the k2-tree is a k2-ary tree built from a binary matrix by recursively
subdividing the matrix into k2 submatrices of the same size. It starts by subdividing the
original n × n matrix into k2 submatrices of size n2/k2. The submatrices are ordered
from left to right and from top to bottom. Each submatrix generates a child of the
root node whose value is 1 if there is at least one 1 in the cells of that submatrix, and
0 otherwise. The subdivision proceeds recursively for each child with value 1 until it
reaches a submatrix full of 0s, or until it reaches the cells of the original matrix (i.e.,
submatrices of size 1× 1). Figure 1 shows an example.

Instead of using a pointer-based representation, the k2-tree is compactly stored using
bitmaps T and L (see Figure 1). T stores all the bits of the k2-tree, except those in
the last level. The bits are placed according to a level-wise traversal: first the k2 binary
values of the children of the root node, then the values of the second level, and so on. L
stores the last level of the tree, consisting of cell values of the original binary matrix.

6

1

1

1

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 10

1 0 0 0 1 01 1

10 00

1 0 0 0

10 00 10 00 10 00

1 0 00 10 00 10 00

T: 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1

L: 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

Figure 1: Example of a binary matrix (left), the associated k2-tree conceptual representation (top right),
and its compact representation (bottom right), for k = 2.

Figure 2: Example of Re-Pair compression.

Any cell, row, column, or region of the matrix can be obtained efficiently via rank
and select operations over bitmaps T and L. For example, assuming a value of 1 at
position p in T , its k2 children start at position pchildren = rank1(T, p) · k2 of T . If the
children of a node return a position pchildren > |T |, the actual values of the cells are
retrieved by accessing L[pchildren − |T |]. Similarly, the parent of position p in T : L is
q − (q mod k2), where q = select1(T, bp/k2c), and q mod k2 indicates the submatrix of
p within that of its parent.

2.4.3. Re-Pair

Re-Pair [19] is a grammar-based compression method. Given a sequence of integers I
(called terminals), the method proceeds as follows: (1) it obtains the most frequent pair
of integers ab in I; (2) it adds rule s → ab to a dictionary R, where s is a new symbol
not present in I (called a non-terminal); (3) every occurrence of ab in I is replaced by
s, and (4) steps 1-3 are repeated until all pairs in I appear only once (see Figure 2).
The resulting sequence after compressing I is called C. Every symbol in C represents a
phrase (a sequence of one or more of the integers in I). If the length of the represented
phrase is 1, then the phrase consists of an original (terminal) symbol; otherwise, the
phrase is represented by a new (non-terminal) symbol. Re-Pair can be implemented in
linear time and a phrase may be recursively expanded in optimal time (i.e., proportional
to its length).

7

2.4.4. DACs

Directly Addressable Codes (DACs) [4] are a variable-length encoding scheme for
sequences of integers, which support fast direct access to any given position in a sequence.
In other words, they allow the ith integer to be decoded without the need to decompress
the preceding integers. If the sequence of integers has many small numbers and few large
ones, then DACs obtain a very compact representation.

Given a sequence of integers X = x1, x2, . . . , xn, DACs take the binary representation
of that sequence and rearrange it into a level-shaped structure as follows: the first level,
B1, contains the first (least significant) n1 bits of the binary representation of each
integer. A bitmap C1 is added to indicate whether the binary representation of each
integer requires more than n1 bits (1) or not (0). In the second level, B2 stores the next
n2 bits of the integers with a value of 1 in B1. A bitmap C2 marks the integers that
need more than n1 + n2 bits, and so on. This process is repeated for as many levels as
needed. The number of levels ` and the number nl of bits at each level l, with 1 ≤ l ≤ `,
is calculated in order to maximize compression. Each value xi is then retrieved using less
than ` rank operations on the bitmaps Cl and extracting chunks from the arrays Bl.

2.4.5. Permutations

A permutation of the integers [1..n] = {1, . . . , n} is a reordering of the values {1, . . . , n}.
The two main operations over the reordered sequence are π(i) and π−1(j). The first yields
the number at position i ∈ [1..n] in the sequence, while the second identifies the position
in the sequence where j ∈ [1..n] appears.

The simplest way to store a permutation is an array P [1..n], where P [i] = π(i), so
that π(i) is answered in constant time. In order to answer π−1(j) efficiently, we can
double the space by storing a second array. We instead use an intermediate option that
uses (1 + ε)n instead of 2n cells and answers π−1(j) queries in time O(1/ε) [26].

3. The GraCT Index

3.1. Discretization

GraCT represents moving objects that follow free trajectories in space. The method
assumes that the positions of all the objects are synchronized and stored at regular time
instants (e.g., every minute). Since GPS devices may report the positions of objects at
times that do not match the required time instants, the positions in the desired time
instants are obtained from the raw timestamped positions using interpolation.

A raster model is used to represent the space, which is divided into cells of a fixed
size, and objects are assumed to fit in one cell. The size of the cells and the length of
the period between represented time instants are parameters that can be adapted to the
specific domain. The shorter the length of the period is and the smaller the size of the
cell is, the more accurate the trajectory data will be, though achieving less compression.
This is a tradeoff between space usage and precision in the storage.

Alternatively, we may regard this discretization as a way to obtain a more compact
in-memory index, while the full data is maintained on disk and accessed only to filter out
false-positives from a usually small set of candidate answers. We will also experiment
with this variant of the index, showing that this is better than directly operating on the
full data on disk.

8

3.2. Snapshots

Every d time instants, GraCT uses a data structure based on k2-trees to represent
the absolute positions of all the objects. These data structures are called snapshots. The
distance d between snapshots is another parameter of the system, which trades space for
query time. Between two consecutive snapshots, the trajectory of each moving object is
represented as a log, which is an array of movements represented in differential form.

Let Sh denote the snapshot representing the position of all the objects at time instant
k. The components of Sh are:

• The time instant represented by the snapshot.

• A k2-tree storing the positions in the space (i.e., the cells of the raster) where there
are objects.

• An array of integers perm storing the identifiers of the objects at each cell in the
space where there are objects.

• A bitmap Q, which is an auxiliary data structure of perm that is used to determine
the correspondence between positions in the space and the positions of perm.

The k2-tree represents a binary matrix where a cell set to 1 indicates that the cell
contains one or more objects. However, we need to know what objects are in the cell
set to 1. Each 1 in the binary matrix corresponds to a bit set to 1 in bitmap L of the
k2-tree. The list of object identifiers corresponding to each of those bits set to 1 is stored
in perm, where the object identifiers are sorted according to their order of appearance in
L. This array turns out to be a permutation of all the object identifiers. Bitmap Q is
aligned with perm; a 0 at a given position of Q means that the object identifier aligned
in perm is the last object in the cell, while a 1 signals that the next object identifier in
perm is in the same cell.

Figure 3 shows an example. The left side shows the matrix representing the space
and the objects placed in the cells (these cells are the same containing a 1 in Figure 1).
The four arrays on the right are the actual data structures that represent the snapshot
information. Arrays T and L are the same as those in Figure 1 and mark the positions
having objects. The objects in those positions are stored in arrays Q and perm. For
instance, the object identifiers corresponding to the second 1 in L (which is at position
5 in L and corresponds to the cell at position (9,5)) are stored starting at position 3 in
perm, since the first 0 (signaling the end of the entries corresponding to the first 1 in L)
is at position 2. In order to find out how many objects there are in the corresponding
cell, we access Q starting at position 3 and search for the first 0 after that position, which
is at position 4; this shows that there are two objects in the inspected cell. By accessing
positions 3 and 4 in perm, we obtain the object identifiers 4 and 5. The object identifiers
corresponding to the third 1 in L start at position 5 in perm, and so on.

With these structures used to represent the absolute positions of all moving objects
at the snapshots, we can answer two types of queries in time O(logk s + output), where
s× s is the grid size and output is the size of the query output:

• Find the objects in a given cell : First, we traverse the tree from the root until we
reach position n in L corresponding to that cell. Next, we count the number of 1s

9

2

1

45

63

110 1 2 3 4 5 6 7 8 9 10 12 13 14 15

11

0

1

2

3

4

5

6

7

8

9

10

12

13

14

15 T 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

L 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q

perm

1 2 3 4 5 6

3 6 4 5 2 1

1 0 1 0 0 0

1 2 3 4 5 6

Figure 3: Position of objects in the space (left) and the arrays (right) that make up a snapshot repre-
senting that situation.

in the array of leaves L until position n; this gives us the number of leaves with
objects up to the n-th leaf, x = rank1(L, n). Then we calculate the position of the
(x−1)-th 0 in Q, which indicates the last bit of the previous leaf with objects, and
we add 1 to obtain the first position in our leaf. That is, p = select0(Q, x− 1) + 1
is the position in perm of the first object identifier corresponding to the searched
position. From p, we read all the object identifiers aligned with 1s in Q until we
reach a 0, which signals the last object identifier in that leaf.

• Find the position of a given object in the space. First, by using the π−1 operation
(see Section 2.4.5), we obtain the position k in perm of the searched object. Next,
we have to find the leaf in L corresponding to the k-th position of perm. For this, we
calculate the number of leaves with objects before the object in position k of perm;
that is, we count the number of 0s until the position before k, y = rank0(Q, k− 1).
We then find in L the position of the (y + 1)-th 1; that is, select1(L, y + 1). With
that position in L, we can traverse the k2-tree upwards in order to obtain the
position in the space of that cell, and thus the position of the object.

3.3. Log of relative movements

The movements of objects between two consecutive snapshots are recorded in se-
quences of consecutive object positions called logs, with one separate sequence per object.
Logs actually represent the positions in relative form with respect to the previous one,
where the first absolute position can be obtained from the preceding snapshot. There-
fore, logs can be thought of as the sequences of consecutive movements of the objects
along time. As we will see soon, this model must be extended to consider cases where
objects appear and disappear.

Objects change their positions along the two Cartesian axes, so every movement in
the log can be described with two integers. In order to save space, our method encodes
the two values using a single positive integer. The cells around the actual position of an
object are enumerated following a spiral in which the origin is the initial position of the
object, as shown in Figure 4 (left). As an example, assume that an object moves one

10

Figure 4: Encoding movements.

cell to the East and one cell to the North with respect to the previous known position.
Instead of encoding the movement as the pair (1,1), it is encoded as an 8. Figure 4
(right) shows the trajectory of an object starting at cell (0,2). Each number indicates a
movement between two consecutive time instants. Since most relative movements involve
short distances, this technique usually produces a sequence of small numbers.

Between two consecutive snapshots Sh and Sh+d, each object is represented by a log,
Lh,h+d(id), where id is the identifier of the object.

Figure 5 presents a situation in which there is a snapshot every eight time instants.
Time instants t0 and t8 are represented with snapshots, while the time instants in the
intervals [t1, t8] and [t9, t16] are represented with logs. Note that, although t8 is repre-
sented with a snapshot, it is also included in the preceding logs. This duplicity allows
us to traverse the logs in both directions, which accelerates certain queries, as seen later.
The meaning of the other components of the figure is also explained in the sequel.

3.3.1. Managing appearances and disappearances

Because the model does not explicitly store the time instant of each recorded position,
a mechanism is required to signal which objects are active at each time instant and to
determine to which time instant each log entry corresponds.

For this purpose, the log manages three events: when an object starts emitting its
positions, when it stops, and when it stops emitting signals for periods of time. In fact,
the three cases are homogeneously managed by the following events, each identified in
the log with a special codeword:

• Disappearances (D). The occurrence of codeword D in Lh,h+d(id) means that
object id stopped emitting its position at the corresponding time instant of that
portion of the log, and that id did not restart emitting (at least) until the time
instant of the next snapshot (Sh+d).

To enable backward traversal of the logs, each disappearance must store the time
instant and the absolute coordinates of the object at the moment where it disap-
pears.

11

2

1

45

63
L0,8(1):

D

D

2

1

4

RNM

RM

AA

D

Dis: []; App:[]

Dis: [3, 5, 6]; App:[3, 5, 6, 7]

110 1 2 3 4 5 6 7 8 9 10 12 13 14 15

11

0

1

2

3

4

5

6

7

8

9

10

12

13

14

15

11

0

1

2

3

4

5

6

7

8

9

10

12

13

14

15

110 1 2 3 4 5 6 7 8 9 10 12 13 14 15

t0

t1 t2 t3 t4 t5 t6

t9 t10t11t12t13t14

t8

 5 6

3 4 4 4

2 1 3

0 4 5 5 4 5

4 3 RM 3 5

1 7 6

7 7 6

5 7 8 7 6 6 7 6

6 7 4 6

5 7 8

8

4 4 3 4

t7 t8

7RM RNM

RM 6 5

RNM

7 6

t15t16

8 7

7AA

AA

 : S0

: S8

L0,8(2):

L0,8(3):

L0,8(4):

L0,8(5):

L0,8(6):

L8,16(1):

L8,16(2):

L8,16(3):

L8,16(4):

L8,16(5):

L8,16(6):

D

1 2 0AAL8,16(7):

3 2 45

3 39

2

18 2

3

12 (4,8)

3 39

9 (7,2)

12 (3,6)

D0,8(1):

D0,8(2):

D0,8(4):

D0,8(5):

D8,16(1):

D8,16(3):

D8,16(4):

D8,16(5):

D8,16(6):

P0,8(1):

P0,8(2):

P0,8(5):

P8,16(3):

P8,16(4):

P8,16(5):

P8,16(6):

D0,8(3): 5 (7,9)P0,8(3):

7 (5,2)

D0,8(6): 4 (10,15)P0,8(6):

11 (8,4)

13 (5,4)D8,16(7): P8,16(7):

0 1

0

0

0

0 1

0

0

0

0

0

0 1

0

0

0

0 1 0 1

0 0

0 0

0

0

Figure 5: Snapshots and logs.

• Absolute appearance (AA). The occurrence of codeword AA in Lh,h+d(id) means
that id started to emit its position in the corresponding time instant of that portion
of the log, and that id had not emitted its positions (at least) since the previous
snapshot (Sh). AA may signal the first appearance of an object or its reappearance
after having disappeared in a preceding log.

To enable forward traversal of the logs, an absolute appearance stores the time
instant and the absolute coordinates where the object appears. Note that, even if
the object is reappearing, it might do so far away from the position where it had
disappeared in a previous log.

• Relative disappearance. The occurrence of a codeword indicating a relative disap-
pearance in Lh,h+d(id) in an entry corresponding to time instant ti means that id
stopped emitting positions at that time instant, and that id restarted emitting its
positions in a time instant between ti and the time instant of the next snapshot
(Sh+d). In other words, a relative disappearance occurs when the object disappears
and reappears within the same log.

12

A relative disappearance must store the number of time instants in which id was
not emitting its positions and, depending of the type of relative disappearance, also
a movement:

– Relative disappearance with movement (RM) means that id appears in a dif-
ferent position with respect to its last known position. This requires the log to
store the relative movement (using the spiral encoding) with respect to that
last known position.

– Relative disappearance without movement (RNM) means that id appears in
the same position where the signal was lost, therefore there is no need to store
a movement.

The extra information is stored in two auxiliary arrays associated with each log
Lh,h+d(id):

• Array Dh,h+d(id) stores:

– in the case of relative disappearances, the time the disappearance lasted;

– in the case of an absolute appearance or a disappearance, the absolute time
instant of that event.

• Array Ph,h+d(id) stores:

– in the case of relative disappearances with movement, the relative movement
with respect to the last known position;

– in the case of an absolute appearance or a disappearance, the absolute position
of that event.

Figure 5 shows two snapshots; S0 is the snapshot of Figure 3. The right-hand side
shows the logs representing the movements of objects in the time instants after those
snapshots, thus representing the positions of objects between time instants t0 and t16.
Object 1 disappears at t2 and then reappears at t5 (see L0,8(1)). Since the time instants
occur between the same pair of snapshots, this is a relative disappearance. The number
of time instants that the disappearance lasts is stored in array D0,8(1). In the first
position of D0,8(1) there is a 3, which means that the first disappearance of L0,8(1)
lasted three time instants. In the same portion of the log, there is another relative
disappearance between time instants t6 and t7, therefore in the second entry of array
D0,8(1) there is a 2, indicating that the disappearance lasted two time instants. The
relative disappearance that starts at t2 is of type RM , so the log must store the position
where object 1 reappears. Array P0,8(1) stores this position using spiral encoding with
respect to the last known position. In the example, a 45 means that object 1 reappeared
three cells to the North.

In the entry in L0,8(3) corresponding to time instant t5, codeword D means that ob-
ject 3 disappears at that time instant and does not reappear in L0,8(3). Therefore, D0,8(3)
stores a 5 in its first position (there are no prior relative reappearances), indicating that
the object disappeared at t5, and in P0,8(3), the only entry stores the coordinates (7,9),
which denote that the object was in that position when it disappeared. Object 3 reap-
pears in L9,16(3), in the entry corresponding to t12. This reappearance is signaled with

13

2
9

2
9

8

7

9
8

7

9

0 1 2 3 4 65 7 8 109 11 12 13

0

1

2

3

4

5

6

7

8

9

10

Y

X 9

9

14 2120 22 23 241615 17 18 19

2
9

2
9

Y

9

Z

Z

X

R:

W→2, 9, 2, (3,0), (0,-1,3,0)
X→9, 9, 2, (4,2), (0,0,4,2)
Y→8, 7, 2, (1,2), (0,0,1,2)
Z→W, W, 4, (6,0), (0,-1,6,0)

Figure 6: Movements of C array in Figure 2, MBRs of the rules, and enriched rules.

codeword AA aligned with time instant t12, but this is only to improve the readability
of the figure. In fact, codeword AA is the first entry in L9,16(3), so, in order to find out
to which time instant codeword AA corresponds, D9,16(3) stores a 12. Additionally, in
order to find out the position of object 3 at t12, P9,16(3) stores the absolute coordinates
of the object at the time instant of reappearance, which in our example are (4, 8).

Finally, to help manage disappearances and appearances during queries, two addi-
tional arrays are stored with each snapshot Sh:

• Dis, a list of the objects that were active in the previous snapshot and stopped
emitting before the time instant represented by Sh.

• App, a list of objects that are not present in Sh and appear (or reappear) before
the next snapshot.

Figure 5 shows that S8.Dis contains objects 3, 5 and 6, meaning that they were active
in their portions of the log immediately before S8, but are missing at time instant t8.
Similarly, S8.App contains objects 3, 5, 6 and 7, indicating that they are missing at t8,
but appear in the portion of the log immediately following t8.

4. Compressing the Log

In many applications, objects spend most of their time either stopped or moving
along a specific course at a fixed speed. This generates long sections of the log with
numbers representing the same or contiguous values of the spiral. For example, the
moving object in Figure 6 follows a NE trajectory, moving one or two cells in the time
elapsed between two consecutive time instants. Its log represents the series of relative
movements 2,9,2,9,8,7,9,8,7,9,9,2,9,2,9,9,9 (see array I in Figure 2). These series of similar
movements are compressed very efficiently using a grammar compressor.

In order to query trajectories without completely decompressing them, the grammar
rules in GraCT not only include the symbols to be replaced, but are also enriched with
additional information. Specifically, each rule in R will have the following information:
s→ a, b,#t, x, y,MBR, where:

14

• s→ ab is the normal rule of Re-Pair,

• #t is the number of time instants covered by the rule,

• (x, y) are the relative coordinates of the final position of the object after the appli-
cation of the rule (that is, the total displacement in both coordinates), and

• MBR is the minimum bounding rectangle enclosing the movements of the rule.
MBR is represented as (x1, y1, x2, y2), where (x1, y1) corresponds to the bottom-
left corner and (x2, y2) to the top-right corner.

For example, the rules in Figure 2 are enriched as follows. The first rule of R is
W → 2, 9, 2, (3, 0), (0,−1, 3, 0): 2 and 9 are the substituted symbols; the next 2
indicates that the rule represents a sequence of two movements; (3, 0) indicates the
position of the object after the application of the rule if we start at (0, 0), and the last
four values are two corners (bottom-left and top-right) defining a rectangle that encloses
all the movements encoded by the rule.

With this additional information, most of the non-terminal symbols of a compressed
log file L do not need to be decompressed in order to obtain the position of an object
at a given time instant between two snapshots. Consider, for example, the compressed
log L = Z, Y, 9, Y,X,Z,X of Figure 6 (this is the array C of Figure 2). Assume that we
want to find the position of the object at the 5th time instant, that is, (7, 2). From the
preceding snapshot we obtain that the absolute position of the object at the beginning
of the log is (0,1). Next, we inspect the log L from the beginning. The first value is a Z.
The enriched rule indicates that this symbol represents four time instants, after which
the object is displaced six columns to the East while remaining in the same row. Since it
started at (0, 1) the object will be at position (6, 1) at t4. Since our target time instant
is t5 > t4, we can skip the whole nonterminal Z. The next symbol is Y , which lasts
two time instants. This would take us to t6, which surpasses our target time instant.
Therefore, and only in the last step of the search, we have to decompress the rule and
process its components: Y → 8 7. The 8 is a terminal symbol that lasts one time instant,
and thus it is enough to reach our target time instant. An 8 moves one column to the
East and one to the North, which applied to the current position (6, 1), takes us to the
correct position (7, 2).

The MBR component also helps speed up other queries, as seen later.
These additional elements that enrich the rules are compressed with DACs. To obtain

better compression, the times of all of the rules are compressed using one DAC, separately
from the three pairs of coordinates of all of the rules, which are compressed using a
separate DAC. Figure 7 shows the resulting data structures that make up the GraCT
index for our running example in Figure 5.

Figure 8 shows a flow chart that summarizes the whole process to create a GraCT
data structure.

5. Query Preliminaries

This section presents a series of definitions for later use.

15

L0,8(1):

D

D

RM

AA

D

Dis: []; App:[]

Dis: [3, 5, 6]; App:[3, 5, 6,7]

 5 6

X Y

2 1 3

0 Z 5 Z

4 3 RM 3 5

1 V

7 V

5 W V 6 V

6 7 4 6

5 W

Y X

7RM RNM

RM 6 5

8 7

W

AA

AA

S0

S8

L0,8(2):

L0,8(3):

L0,8(4):

L0,8(5):

L0,8(6):

L8,16(1):

L8,16(2):

L8,16(3):

L8,16(4):

L8,16(5):

L8,16(6):

D

T: 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1
L: 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

Q: 1 0 1 0 0 0

perm: 3 6 4 5 2 1

T: 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0
L: 1 0 0 0 0 1 0 0 1 0 0 0

Q: 0 0 0

perm: 4 1 2

R V 7, 6, 2, (-1,2),(-1,0,0,2)
 W 7, 8, 2, (1,2), (0,0,1,2)
 X 3, 4, 2, (-1,-2), (-1,-2,0,0)
 Y 4, 4, 2, (-2,-2),(-2,-2,0,0)
 Z 4, 5, 2, (-2,-1),(-2,-1,0,0)

RNM

RNM

3 2 45

3 39

2

18 2

3

12 (4,8)

3 39

9 (7,2)

12 (3,6)

D0,8(1):

D0,8(2):

D0,8(4):

D0,8(5):

D8,16(1):

D8,16(3):

D8,16(4):

D8,16(5):

D8,16(6):

P0,8(1):

P0,8(2):

P0,8(5):

P8,16(3):

P8,16(4):

P8,16(5):

P8,16(6):

D0,8(3): 5 (7,9)P0,8(3):

7 (5,2)

D0,8(6): 4 (10,15)P0,8(6):

11 (8,4)

1 2 0 13 (5,4)AAL8,16(7): D8,16(7): P8,16(7):

V

0 1 2 3 4

0 1 2 3 4 5

0 1 2

0 1 2 3 4

0 1 2 3 4 5

0 1 2

0 1

0

0

0

0 1

0

0

0

0

0

0 1

0 1 2 3

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2

0 1 2

0 1 2 3

0

0

0

0 1 0 1

0 0

0 0

0

0

Figure 7: GraCT structures.

Definition 5.1. Let tb and te be two time instants where tb ≤ te. Then CTO(tb, te) =
(m1,m2, ...,mj) represents the compressed trajectory (that is, the movements) of object
O between time instants tb and te. Each mi can be:

• S(x,y), an absolute position (x, y) obtained from a snapshot.

• NT/T, a grammar symbol encoding the movements of O, where NT denotes a non-
terminal and T denotes a terminal.

• Dt,(x,y), a disappearance code, where t is the time instant of the disappearance and
(x, y) is the object position at that time instant.

• RNM#, a reappearance without movement code, where # is the duration of the
disappearance.

• RM#,value, a reappearance with movement code, where # is the duration of the
disappearance and value is the spiral code representing the movement.

• AAt,(x,y), an absolute appearance code, where t is the time instant of the appearance
and (x, y) is the object position at that time instant.

If object O is missing at tb, then m1 will refer to the first time instant after tb
containing information about the position of O. In the same way, if the object is missing

16

Phase 2: Data preprocessing
- Data clean (GPS errors)
- Obtain object positions at the same

time instants (possibly interpolating)

Phase 1: Parameter setting
- Size of the cells of the raster
- Time period between snapshots
- Time period between time instants
- Maximum speed of dataset

Phase 3: Create initial Snapshots
- Create k2-tree (Bitmaps T and L)
- Create arrays Q and Perm

Phase 4: Create logs
- Encode object positions with spiral matrix
- Compute the appearances and disappearances
- Add appearances/disappearances information

to Snapshots (Arrays App and Dis)

Phase 5: Compress logs
- Run Re-pair on the set of all trajectories
- Enrich the Re-pair rules

Figure 8: Flow chart of the process to create a GraCT index.

at te, then mj will be the movement of O corresponding to the closest time instant with
information about the position of O prior to te.

The sequence CTO(tb, te) is obtained by extracting the portions of the logs and the
positions at the snapshots of O covering the time interval [tb, te].

For example, in our running example in Figures 5 and 7, for object O6, the compressed
trajectory between 0 and 13 is CTO6(0, 13) = (S(10,13), 1, V,D4,(10,15), AA12,(3,6), Y).
Note that the last code (Y) covers time instants 13 and 14, since it is a non-terminal sym-
bol. In contrast, in CTO5

(11, 15) = (AA11,(7,2),W,D13,(8,4)). The last code (D13,(8,4))
corresponds to time instant 13, since there are no positions after that time instant in the
requested time interval.

Definition 5.2. If mi is an element of CTO(tb, te), pc is the absolute position of object
O at time instant tc, and tb ≤ tc ≤ te, then operation moveJ(pc, tc, te,mi) returns either:

• 〈tnc, pnc〉, where pnc is the position resulting from the application of the movements
encoded in mi to pc, and tnc ≤ te is the time instant of that position, or

• 〈te, pe〉, where pe is the position at te, if mi encodes movements surpassing te.

The name moveJ is the abbreviation of “move jump”. If mi is a non-terminal code,
it uses mi.(x, y), the relative coordinates of the enriched information included in the
definition of the non-terminal symbol mi, which, when applied to the previous position,
gives the new position of the object after the application of all the movements encoded
by mi. For example, moveJ((9, 5), t1, t3, Z) uses the relative (x, y) coordinates of the
definition of Z → 4, 5, 2, (−2,−1), (−2,−1, 0, 0), that is (−2,−1), which, when applied
to (9, 5), obtain the new position (7, 4). Note that the process never obtains the position
at t2 but jumps from 〈t1, (9, 5)〉 to 〈t3, (7, 4)〉.

Note also that if we issue moveJ((9, 5), t1, t2, Z), where the application of Z would
produce the position at t3 > t2 = te, the operation has to decompress Z into its compo-
nents (4 and 5) and apply them one by one until it reaches te. In this case, therefore,
only code 4 is applied, to move the object to (8, 4). The decompression of non-terminal
codes in moveJ only occurs in this situation.

In this example we fully decompress the nonterminal that exceeds te, but in general
we continue advancing recursively on the terminals and nonterminals of the right-hand

17

CTO(tb, te) compressed trajectory of O between time instants tb and te
moveJ(pc, tc, te,mi) returns the pair 〈tnc, pnc〉 resulting from applying the movements in mi to

position pc, but if that application produces a position surpassing te, then the
operation returns 〈te, pe〉.

RmoveJ(pc, tb, tc,mi) returns the pair 〈tnc, pnc〉 resulting from undoing the movements in mi to
position pc, but if that application produces a position previous to tb, then
the operation returns 〈tb, pb〉.

moveS(pc, tc, te,mi) returns (〈(tc+1, pc+1〉, . . . , 〈th, ph〉), the list of time instants/positions result-
ing from applying mi to pc, except if mi encodes movements that surpass te,
in which case h = e.

ERr(tb, te) expansion of region r from tb to te using the maximum speed
ERO(tb, te) expanded region of object O from tb to te using the maximum speed
pipj distance in cells of the shortest trajectory from point pi to point pj

pr distance in cells of the shortest trajectory from point p to region r

Table 1: Summary of definitions.

side of its rule. That is, if the application of the next nonterminal Z would exceed te,
and the rule associated with Z is Z → Z1Z2, then we replace Z by Z1Z2 and try again.
This means that, if applying Z1 also exceeds te we will continue recursively with Z1, and
otherwise we will process the whole Z1 in constant time and continue recursively with
Z2. Therefore, if we are indexing t time instants in total and use a balanced grammar
(i.e., of height O(log t)), then moveJ can be implemented in time O(1) if mi does not
exceed te and O(log t) if it does.

Definition 5.3. If mi is an element of CTO(tb, te), pc is the absolute position of object
O at time instant tc, and tb ≤ tc ≤ te, then RmoveJ(pc, tb, tc,mi) returns either:

• 〈tnc, pnc〉, where pnc is the position resulting from undoing the movements encoded
in mi to pc, and tnc is the time instant of that position, or

• 〈tb, pb〉, where pb is the position at tb, if mi encodes movements that obtain a time
instant earlier than tb.

This is a reverse version of moveJ , and can be implemented within the same time
complexity.

Definition 5.4. If mi is an element of CTO(tb, te), pc is the absolute position of object
O at time instant tc, and tb ≤ tc ≤ te, then moveS(pc, tc, te,mi) returns the list of
pairs (〈tc+1, pc+1〉, . . . , 〈th, ph〉) where th ≤ te, which is the list of time instants/positions
resulting from applying mi to pc. If mi encodes movements that surpass te, however, the
decompression ends at te.

The name moveS is the abbreviation of “move step by step”. Unlike moveJ , if mi

is a non-terminal code, moveS decompresses the symbol until it obtains terminal codes,
then applies those terminal symbols to pc and returns the positions of each symbol.

For example, moveS((9, 5), t1, t3, Z) decompresses Z to obtain the terminal codes 4
and 5, and thus returns 〈t2, (8, 4)〉, 〈t3, (7, 4)〉. In contrast to moveJ , moveS does obtain
the position at t2. This operation can be implemented in time O(h − c + log t) on a
balanced grammar.

Definition 5.5. Let r = [x1, y1]× [x2, y2] be a rectangular region in the two-dimensional
space. Let tb and te be two time instants, where tb < te, and let Msp be the maximum
speed of the dataset. Then ERr(tb, te) denotes the expanded region of r from tb to te
using Msp: ERr(tb, te) = [x1 − δ, y1 − δ]× [x2 + δ, y2 + δ], where δ = Msp · (te − tb).

18

The maximum speed of the dataset is the maximum speed of any object during
the period of time covered by the dataset. ERr(tb, te) is the rectangle resulting from
expanding r in all directions (North, South, West and East) so that any object within r
at tb is bound to be within ERr(tb, te) at te. In other words, to obtain ERr(tb, te), r is
enlarged by Msp · (te − tb) cells in all four directions.

Definition 5.6. Let tb < te be two time instants, and let Msp be the maximum speed
of the dataset. Then ERO(tb, te) denotes the expanded region of object O from tb to
te using the maximum speed Msp. That is, if O is at cell (x, y), then ERO(tb, te) =
ERr(x,y)

(tb, te), where r(x,y) = [x, y]× [x, y].

That is, ERO(tb, te) delimits the area where object O is bounded to belong at te even
if running at maximum speed Msp in any direction, starting at time instant tb.

Definition 5.7. Given a point pi and a point pj, the distance between pi and pj (pipj)
is the length of the shortest trajectory (in number of cells) from pi to pj, using Euclidean
distance.

Definition 5.8. Given a point p and a region r, the distance between r and p (pr) is
the length of the shortest trajectory (in number of cells) between r = [x1, x2] × [y1, y2]
and p = (x, y). This is zero if x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2. Otherwise, it is
min(|x − x1|, |x − x2|) if y1 ≤ y ≤ y2 and min(|y − y1|, |y − y2|) if x1 ≤ x ≤ x2.
Otherwise, it is the minimum Euclidean distance from p to the four corners of r.

Table 1 summarizes these definitions.

6. Supporting Queries

We now describe how each of the supported queries are answered using the structures
of GraCT.

6.1. Obtain the position of an object in a given time instant

Algorithm 1 shows the pseudocode to answer this query. The algorithm first identifies
a time instant close to tq where the position of the object is represented in absolute
form and, from that time instant, applies the relative movements in order to obtain the
absolute position of the object at time instant tq.

The first option to find that time instant is the snapshot Sh that is nearest to the
queried time instant (line 1 of the algorithm). If tq coincides with the time instant of Sh,
then the position of the object in the snapshot is returned (line 28; the position could
be null if the object is not present in Sh). The other possible cases are handled in lines
4-15 (when tq follows the snapshot) and 16-27 (when tq precedes the snapshot).

In the first case, tc stores the time instant and pc the absolute position at any step
of the log traversal. In line 4, tc and pc store the information of the object at Sh. If the
object is missing at Sh (i.e., pc = null), line 6 checks if Oid appears in the immediate next
portion of the log (Lh,h+d(Oid)), as signaled by the presence of Oid in Sh.App. In line
7, the algorithm obtains the time instant of the appearance of Oid from the first entry
of Dh,h+d(Oid). If the appearance is prior to or occurs exactly at tq, then the algorithm

19

Algorithm 1: SearchObject(Oid, tq)

1 Sh ← nearestSnapshot(tq);
2 pc ← Sh.findObject(Oid); // Finds position Oid in the closest snapshot

3 tc ← Sh.time;
4 if tc < tq then // Move forward from preceding snapshot

5 if pc = null then // Oid is not in the snapshot

6 if Oid ∈ Sh.App then // Appears in Lh,h+d(Oid)
7 tc ← Dh,h+d(Oid)[0]; // Obtain the time of appearance

8 if tc ≤ tq then
9 pc ← Ph,h+d(Oid)[0]; // Obtain the location of appearance

10 else return null ;

11 else return null ;

12 T ← CTOid
(tc+1, tq); // The trajectory, as a stack (first on top)

13 while T is not empty do
14 m← T.pop;
15 〈tc, pc〉 ← moveJ(pc, tc, tq ,m);

16 else if tc > tq then // Move backward from following snapshot

17 if pc = null then // Oid is not in the snapshot

18 if Oid ∈ Sh.Dis then // Disappears in Lh−d,h(Oid)
19 tc ← Dh−d,h(Oid)[last]; // Obtain the time of disappearance

20 if tc ≥ tq then
21 pc ← Ph−d,h(Oid)[last]; // Obtain the location of disappearance

22 else return null ;

23 else return null ;

24 T ← CTOid
(tq , tc−1); // The trajectory, as a stack (last on top)

25 while T is not empty do
26 m← T.pop;
27 〈tc, pc〉 ← RmoveJ(pc, tq , tc,m);

28 if tc = tq then return pc;
29 else return null;

obtains the absolute position from Ph,h+d(Oid). Otherwise, the object does not have a
position at tq and the algorithm returns null.

Once we have the absolute position of the object, lines 12-15 traverse the compressed
trajectory using moveJ operations from time instant tc (either the closest snapshot or an
absolute appearance) to tq. If the algorithm is able to reach tq, the position is returned.

Lines 16-27 perform the same process as lines 4-15 but in reverse, for the case where
tq occurs before the snapshot.

If there are t time instants, n objects, the grid is of size s × s, k is the arity of our
k2-tree, d is the number of time instants between two snapshots, and our grammar is
balanced, then this query takes time O(d+ log t+ logk s+ log n).

6.2. Obtain the trajectory of an object between two time instants

Algorithm 2 shows the pseudocode to answer this query. It first obtains a time
instant preceding tb with an absolute position of the object, and then it simply follows
the trajectory until it reaches te. Lines 1-12 are responsible for finding a close preceding
time instant with an absolute value, lines 13-17 then advance until reaching tb, and finally
lines 18-26 collect the trajectory from tb to te.

Line 1 obtains the preceding snapshot closest to tb (Sh). If the snapshot has informa-
tion about the position of the object, pc stores that position and tc is the time instant

20

Algorithm 2: Search Trajectory(Oid, tb, te)

1 Sh ← nearestPreviousSnapshot(tb); // The closest snapshot preceding tb
2 pc ← Sh.findObject(Oid); // The position in the preceding snapshot

3 tc ← Sh.time;
4 while pc = null and tc ≤ te do
5 if Oid ∈ Sh.App then // Appears before next snapshot

6 tc ← Dh,h+d(Oid)[0];
7 if tc ≤ te then pc ← Ph,h+d(Oid)[0] ;

8 else // Move to next snapshot

9 Sh ← Sh.nextSnapshot();
10 pc ← Sh.findObject(Oid);
11 tc ← Sh.time;

12 if tc > te then return null; // Does not appear before te
13 if tc < tb then // Skip until reaching tb
14 T ← CTOid

(tc, tb−1); // The trajectory, as a stack (first on top)

15 while |T | > 1 do
16 m← T.pop;
17 〈tc, pc〉 ← moveJ(pc, tc, tb−1,m);

18 Answer ← 〈〉;
19 T ← CTOid

(tc+1, te); // The trajectory, as a stack (first on top)

20 while T is not empty do
21 m← T.pop;
22 foreach 〈tj , pj〉 in moveS(pc, tc, te,m) do
23 if tj ≥ tb then Answer.add(〈tj , pj〉);
24 tc ← tj ;
25 pc ← pj ;

26 return Answer

of the snapshot. In lines 4-12, the algorithm deals with the case in which the object is
not in Sh. If the object appears in the next portion of the log (Oid ∈ Sh.App), then the
algorithm obtains from Dh,h+d(Oid)[0] the time instant of that appearance (tc); if that
time instant does not exceed te, it also obtains the absolute position, which is stored
in pc. Otherwise, the algorithm moves to the next snapshot, until finding an absolute
position or exceeding the time instant te.

If the flow reaches line 13, the algorithm has found a suitable timestamp tc ≤ tb
for which the absolute position of the object (pc) is known. If tc < tb, lines 13-17 skip
entries of the log(s) until tc = tb and pc is the position of the object at tb. Finally, lines
18-26 traverse from instants tb to te, this time collecting all the positions in a sequence
Answer, which is finally returned.

Compared to the complexity of Algorithm 1, we have an additional cost of O((te −
tb + 1)(1 + (log n+ logk s)/d)), which can be made the optimal O(te− tb + 1) by choosing
a sufficiently large d = Ω(log n+ logk s). This is, however, a worst-case complexity that
ignores the fact that the log is compressed: on average, the term O((log n+ logk s)(te −
tb + 1)/d)) must be multiplied by the compression ratio.

6.3. Time slice query

Given a time instant tq and a window rectangle r = [x1, x2] × [y1, y2] of the space,
this query returns the objects lying within r at time tq, and their positions. Algorithm
3 shows the pseudocode.

21

The process starts by obtaining the snapshot nearest to tq, Sh. The algorithm con-
siders three cases. Firstly, if tq is the time instant of Sh, the algorithm just needs to
access the snapshot in order to obtain the objects within r. The second case occurs when
tq is between the snapshots Sh and Sh+d. In this case, the algorithm has to follow the
trajectory of the objects from Sh until time tq, to see if they end up within r. Instead
of following all of the objects in the snapshot, the algorithm tracks only those within
ERr(Sh.time, tq), ignoring objects that have no chance of being in the answer. The
algorithm must also include in the tracked objects those that are not present in Sh but
appear at a later time instant, not exceeding tq, and are capable of reaching r at tq.

Once this list of candidates has been obtained, the algorithm follows the log to ob-
tain the trajectory of the tracked objects. However, the algorithm prunes the tracking
further as it processes the log: a candidate object may follow a direction that takes it
away from region r, so the algorithm rechecks the condition after applying each code of
the compressed trajectory, discarding the objects as soon as they become incapable of
reaching r at time tq.

The third case is analogous, and occurs when tq is between Sh−d and Sh.
To illustrate the idea using the running example shown in Figures 5 and 7, Figure 9

outlines the process of a time slice query where tq = t10 and r = [7, 10]× [3, 4]. Since the
target time instant is t10, the closest snapshot is S8. Figure 9(a) shows the target region
r and the extended region ERr(t8, t10) superimposed. In this example, Msp = 1 (that
is, an object can only move one position per time instant), so ERr(t8, t10) is r enlarged
by two cells in all directions.

Line 1 obtains the snapshot closest to t10 (S8). Since tq is not the time instant of
the snapshot, the algorithm retrieves in line 4 all the objects in the extended region
ERr(Sh.time, tq) = [5, 12] × [1, 6], which are stored in the variable Candidates; in our
example, these are the objects O2 and O1. Next, in lines 7-11, for each object in Sh.App,
the algorithm obtains the time and position of its appearance (tc and pc); if that time
is tq or earlier, and that position is within ERr(tc, t10), then the object is added to
the candidates to be tracked. In our example, objects O3, O6 and O7 appear after t10,
therefore they are discarded. Instead, O5 appears at t9, so it is added to the list of
candidates, because it is also within ERr(t9, t10) (see Figure 9(b)). The resulting list of
candidates in our example comprises O1, O2 and O5.

In lines 12-20, the algorithm follows the movements of each candidate object using
the log, until it reaches tq or until the object can be discarded. There are two ways to
preempt the log traversal of an object. One is that we reach a nonterminal that already
covers tq while its MBR is disjoint with r; this is discarded in lines 16-17. If this does
not happen, the log entry is processed in line 18 and we consider the second condition:
at this point, we can ensure that the object will not reach the region r. This is verified
in line 19. Finally, line 20 includes the object in the result if we reach tq and the pc is in
r. Lines 22-35 process the logs backwards from the following snapshot.

Assuming we first processO1, Step 1 of Table 2 shows the initial state of the algorithm.
The algorithm traverses the trajectory of O1 and checks if it can reach r at tq after
applying each mi of CTO1

(t9, t10) = 〈7, V 〉. The state after applying the first code (7) is
shown in Step 2. The algorithm checks if the new position, (9, 6), lies inside the extended
region corresponding to tc = t9. As shown in Figure 9(b), O1 is outside the region, so
the object is discarded.

The algorithm now processes O2. Its initial position, pc = (10, 3), and its time instant,
22

Algorithm 3: Time Slice(r, tq)

1 Sh ← nearestSnapshot(tq);
2 tc ← Sh.time;
3 if tc = tq then return Sh.findObjectsInRegion(r) ;
4 Candidates← Sh.findObjectsInRegion(ERr(tc, tq));
5 Answer ← 〈〉;
6 if tc < tq then
7 foreach Oj ∈ Sh.App do
8 tc ← Dh,h+d(Oj)[0];
9 pc ← Ph,h+d(Oj)[0];

10 if tc ≤ tq and pc ∈ ERr(tc, tq) then
11 Candidates.add(〈Oj , tc, pc〉)
12 foreach 〈Oj , tc, pc〉 ∈ Candidates do
13 T ← CTOj

(tc+1, tq); // The trajectory, as a stack (first on top)

14 while T is not empty do
15 m← T.pop;
16 if m = NTvalue and tc + value.#t ≥ tq and (pc + value.MBR) ∩ r = ∅ then
17 break // The nonterminal is disjoint with r, skip to next object

18 〈tc, pc〉 ← moveJ(pc, tc, tq ,m);
19 if pc 6∈ ERr(tc, tq) then break; // Oj cannot reach r, skip to next object;
20 if pc ∈ r and tc = tq then Answer.add(〈Oj , pc〉);
21 else // tc > tq
22 foreach Oj ∈ Sh.Dis do
23 tc ← Dh−d,h(Oj)[last];
24 pc ← Ph−d,h(Oj)[last];
25 if tc ≥ tq and pc ∈ ERr(tq , tc) then
26 Candidates.add(〈Oj , tc, pc〉)
27 foreach 〈Oj , tc, pc〉 ∈ Candidates do
28 T ← CTOj

(tq , tc−1); // The reversed trajectory, as a stack (last on top)

29 while T is not empty do
30 m← T.pop;
31 if m = NTvalue and tc − value.#t ≤ tq and (pc − value.MBR) ∩ r = ∅ then
32 break // The nonterminal is disjoint with r, skip to next object

33 〈tc, pc〉 ← RmoveJ(pc, tc, tq ,m);
34 if pc 6∈ ERr(tq , tc) then break; // Oj cannot reach r, skip to next object;
35 if pc ∈ r and tc = tq then Answer.add(〈Oj , pc〉);
36 return Answer;

tc = t8, are obtained from the candidate list; this state is shown in Step 3. The state
of Step 4 is obtained by applying the first code of CTO2

(t9, t10) = 〈5,W 〉. Since (9, 3)
is within ERr(t9, t10), as shown by Figure 9(b), the algorithm applies the second code
of the trajectory: mi = W (a non-terminal symbol). The algorithm checks that the
application of the non-terminal symbol reaches or exceeds tq (tc + value.#t ≥ tq). In
our example, tc = t9 and W.#t = 2, so the rule would lead us to t11. The MBR of W ,
however, is [0, 1]× [1, 2], which added to the current position (9, 3) is [9, 10]× [4, 5]. This
is not disjoint with r, so O2 cannot be discarded. The algorithm then has to decompress
W , to determine if the object is within r after applying the part of W that spans exactly
up to tq. Since moveJ((9, 3), t9, t10,W) yields that the position of O2 at t10 is (9, 4), as
shown in Step 5, the object O2 is reported.

Finally, Step 6 shows that we start processing O5 at t9, where it appears. The case
of this object is similar to O2, and it is also reported in Step 7.

23

Oj tc i mi pc Answer

Step 1 O1 t8 (9,5)
Step 2 O1 t9 0 7 (9,6)
Step 3 O2 t8 (10,3)
Step 4 O2 t9 0 5 (9,3)
Step 5 O2 t10 1 W (9,4) O2

Step 6 O5 t9 (7,2) O2

Step 7 O5 t10 0 W (7,3) O2, O5

Table 2: Trace of Algorithm 3 with the example of Figure 9.

2

1

4

11

0

1

2

3

4

5

6

7

8

9

10

12

13

14

15

110 1 2 3 4 5 6 7 8 9 10 12 13 14 15

t8 : S8

r1

2

r

ERr(t8,t10)

2

1

4

11

0

1

2

3

4

5

6

7

8

9

10

12

13

14

15

110 1 2 3 4 5 6 7 8 9 10 12 13 14 15

t9

r

2

r

ERr(t9,t10)

5

2

1

11

0

1

2

3

4

5

6

7

8

9

10

12

13

14

15

110 1 2 3 4 5 6 7 8 9 10 12 13 14 15

t10

r

5

2

5

(a) (b) (c)

Figure 9: Representation of a time-slice query (t9 and t10 are not represented with snapshots).

An average-case analysis of the time complexity of this query can be made assuming
that the objects distribute uniformly in the space and without taking advantage of the
compression of the log. Let the query region r be of dimensions `x × `y, and the query
instant be at distance t from its closest snapshot. The spatial query on the k2-tree,
for a range of size (`x + 2t) × (`y + 2t) and retrieving c candidates, takes O(`x + `y +

t + (c + 1)k logk s) time [28, Sec. 10.2.1]. On average, c =
(`x+2t)(`y+2t)

`x`y
· o, where o is

the actual output size. Further, we traverse all the objects that are within ranges of
size (`x + 2t) × (`y + 2t) (at the snapshot time) decreasing by one until size `x × `y (t

instants later or earlier). The sum of all those costs is, on average, o·
∑t

i=0
(`x+2i)(`y+2i)

`x`y
=

O(o·(t+t2(`x+`y+t)/(`x`y))). In total, the query has a fixed cost ofO(`x+`y+t+k logk s)
plus an average cost of O(k logk s+ t+(t(`x +`y) logk s+ t2(`x +`y + t+k logk s))/(`x`y))
per object reported.

The analysis shows that, for this query, it is especially worthwhile to start from the
closest snapshot, be it preceding or following tq, so that t is on average d/4. In addition to
having to process fewer log entries, the distance t between Sh.time and tq directly impacts
the size of the snapshot area from where we have to collect the candidate objects, and
therefore the average number of candidates. The analysis also shows that the effect of t
is reduced when the query area is larger.

6.4. Time interval query

Time-interval queries return the objects that were within r at any time instant during
time interval [tb, te]. An easy solution to this query is to use a time-slice algorithm

24

Algorithm 4: Time interval(r, tb, te)

1 Sh ← nearestPreviousSnapshot(tb);
2 Answer ← 〈〉;
3 while Sh+d.time < te do
4 ProcessPortion(r, tb, te,Sh, Answer);
5 Sh ← Sh.nextSnapshot();
6 return Answer

with two small modifications: (i) use the expanded region with respect to te, (ii) when
the processed time instant (tc) is within [tb, te] and the object is inside r, report and
stop tracking it. Our actual solution speeds up this basic procedure by skipping whole
nonterminals whenever possible.

We split the query interval [tb, te] into the log portions it spans, and treat each portion
separately, accumulating the answers. Algorithm 4 calls ProcessPortion (Algorithm 5)
for each portion of the log overlapped by [tb, te].

ProcessPortion is a modification of the time-slice algorithm. In lines 3-10, it collects
the candidates to verify from the snapshot and the appearances that follow, avoiding the
objects already reported. Lines 11-26 treat the trajectory of each candidate. A novelty
with respect to time-slice queries is in lines 18-19: since we only report the objects and
not their positions, we can directly report an object if the MBR of its next nonterminal is
fully contained in the query region r. Otherwise, we must expand the nonterminal (lines
20-21) unless its MBR is disjoint with r, in which case we can process it as a whole, even
if it exceeds tlast. Note that, since we manage the expansion of the nonterminals in line
21, line 23 always treats a complete symbol of the trajectory, knowing that it cannot
exceed tlast (or that, if it exceeds tlast, it is because its MBR is disjoint with r). Finally,
lines 24-26 process a single step, adding the objects found inside r and skipping them
when they are shown to be unable to reach r within the time left until tlast.

We have omitted other possible speedups for simplicity. For example, let r = [x1, x2]×
[y1, y2] and pc + value.MBR = [x′1, x

′
2] × [y′1, y

′
2]. Then, in line 18, we can also directly

add Oj to the answers if tc + value.#t ≤ te and, either x1 ≤ x′1 ≤ x′2 ≤ x2 and
[y1, y2]∩ [y′1, y

′
2] 6= ∅, or if y1 ≤ y′1 ≤ y′2 ≤ y2 and [x1, x2]∩ [x′1, x

′
2] 6= ∅. In both cases, we

know that Oj must be inside r at some moment not exceeding te.
The analysis for these queries is similar to that for time-slice queries, now taking t

as the distance between te and the closest snapshot preceding tb (and ignoring the help
of intermediate snapshots). While omitted for simplicity, we can also process this query
from the snapshot following te with the aim of reducing t.

6.5. Nearest neighbor queries

Nearest neighbor (knn) queries return the K objects nearest to a given query point
pq at a given time instant tq. To solve this query, we obtain the candidate objects from
the snapshot (Sh) that is nearest to tq, follow their trajectory up to tq, and retain the
K candidates that are closest to pq at time tq. The problem is that, unlike in time-slice
queries, we cannot easily determine which objects cannot be part of the solution. This
condition changes dynamically as we find better and better candidates for the answer
set: given the K closest objects to pq found up to now, the distance from pq to the K-th
closest object in tq can be used to compute an upper bound to the distance between

25

Algorithm 5: ProcessPortion(r, tb, te,Sh, Answer)
1 tc ← Sh.time;
2 tlast ← min(te,Sh+d.time);
3 Candidates← 〈〉; // The candidates to be considered, as a list

4 foreach 〈Oj , tc, pc〉 ∈ Sh.findObjectsInRegion(ERr(tc, tlast)) do
5 if Oj 6∈ Answer then Candidates.add(〈Oj , tc, pc〉);
6 foreach Oj ∈ Sh.App do
7 tc ← Dh,h+d(Oj)[0];
8 pc ← Ph,h+d(Oj)[0];
9 if tc ≤ tlast and pc ∈ ERr(tc, tlast) and Oj 6∈ Answer then

10 Candidates.add(〈Oj , tc, pc〉);
11 foreach 〈Oj , tc, pc〉 ∈ Candidates do
12 if pc ∈ r and tc ∈ [tb, te] then Answer.add(Oj);
13 else
14 T ← CTOj

(tc+1, tlast); // The trajectory, as a stack (first on top)

15 while tc < tlast and T is not empty do
16 m← T.pop;
17 if m = NTvalue then
18 if (pc + value.MBR) ⊆ r then
19 Answer.add(Oj); break; // Include object and skip

20 else if (pc + value.MBR) ∩ r 6= ∅ and value→ v1 v2 then
21 T.push(v2); T.push(v1); // Replace nonterminal

22 else
23 〈tc, pc〉 ← moveJ(pc, tc,Sh+d.time,m);
24 if pc ∈ r and tc ∈ [tb, te] then
25 Answer.add(Oj); break; // Include object and skip

26 else if tc < tlast and pc 6∈ ERr(tc, tlast) then break; // Skip candidate ;

a candidate and pq in Sh, so that if the candidate is farther away, it has no chance of
getting closer than the current K-th closest object at tq.

Since this upper bound becomes more restrictive as we improve the answer with closer
objects, it is important to obtain objects close to pq as soon as possible, as this allows
us to discard other objects earlier. For this purpose, we will use the hierarchical space
partitioning induced by the k2-tree of Sh, and will traverse the regions prioritized by
their potential relevance to the query (i.e., those closer to tq will be processed first).

The traversal is carried out with a priority queue, which stores k2-tree regions r
prioritized by increasing values of d(r) = pqr. Initially the whole grid, corresponding
to the k2-tree root, is inserted in the priority queue, and then we iteratively extract
the most promising node v (i.e., covering the region r with minimum d(r) value). Let
{r0, r1, ..., rk2−1} be the subregions of r induced by the children of v. The nonempty
subregions ri corresponding to children vi of v are then reinserted in the queue with
priority d(ri) = pqri. When the children of the region r that we extract are leaves of the
k2-tree, the corresponding objects Oj are processed in a different way.

Those candidate objects Oj we find are inserted in a second priority queue, using a
similar ordering on pqpc, where pc is the position of Oj ; we also record the time instant
tc of the snapshot Sh associated with the objects. In this second queue we initially
accept every object that does not disappear in its log by time instant tq, until we have
K elements. From this point, objects Oj are inserted only if at time tq they can get
closer to pq than the K-th object closest to pq in the second queue. More precisely, let
O, which was known to be at position p in time instant t, be the K-th object closest to

26

Algorithm 6: ObtainCandidates(Sh, K, tq, pq)

1 v ← Sh.root; // The root of the k2-tree of the grid, v.r is its region

2 QR ← ∅; // Priority queue of pairs (region,dist), sorted by increasing dist

3 QC ← ∅; // Priority queue of tuples (obj,time,pos,dist), sorted by increasing dist

4 QR.add(〈v, 0〉); // Insert the whole region as the first pair

5 dmax ← +∞; // Infinite until obtaining K candidates

6 tc ← Sh.time;
7 while QR is not empty do
8 〈v, dr〉 ← QR.extractMin; // Extract minimum distance from queue

9 dmin ← dr −Msp · (tq − tc);
10 if dmin ≥ dmax then break; // Best region cannot beat K-th candidate

11 if children of v are not leaves then
12 foreach v′ nonempty child of v do

13 QR.add(〈v′, pqv′.r〉);
14 else
15 foreach Oj inside v.r do
16 if Oj is present in the log Lh,h+d by time tq then
17 pc ← Sh.findObject(Oj); // Fast to compute from v
18 dmin ← pqpc −Msp · (tq − tc);
19 if dmin < dmax then
20 QC .add(〈Oj , tc, pc, dmin〉);
21 if |QC | ≥ K then
22 Let 〈O, t, p, d〉 be the K-th smallest distance in QC ;
23 dmax ← pqp + Msp · (tq − t)

24 foreach Oj ∈ Sh.App do // Finally, add candidates that appear in the log

25 if Oj is present in the log Lh,h+d by time tq then
26 pc ← Ph,h+d(Oj)[0]; tc ← Dh,h+d(Oj)[0];
27 dmin ← pqpc −Msp · (tq − tc);
28 if dmin < dmax then
29 QC .add(〈Oj , tc, pc, dmin〉);
30 if |QC | ≥ K then
31 Let 〈O, t, p, d〉 be the K-th smallest distance in QC ;
32 dmax ← pqp + Msp · (tq − t)

33 return QC

pq in the priority queue (this is easily maintained by keeping the K closest objects in a
separate queue prioritized by decreasing distance). Then the maximum distance to pq it
can reach at time tq is dmax = pqp+Msp ·(tq−t). Let Oj be at position pc in time instant
tc. Then, at instant tq, Oj cannot be closer to pq than dmin(Oj) = pqpc−Msp · (tq − tc).
Therefore, we insert Oj as a candidate only if dmin(Oj) < dmax. When we populate
the queue of candidates, we must also consider the objects Oj in Sh.App appearing at
times tc ≤ tq (and not disappearing before tq). We prioritize the candidates Oj using
dmin(Oj).

This condition to insert an object as a candidate gives also a criterion to stop the
processing of the priority queue of regions. If we extract region r from the queue, no
object from r can be, at time instant tq, at a distance to pq below dmin(r) = pqr−Msp ·
(tq−tc). Therefore, if dmin(r) ≥ dmax, there is no need to consider any point from region
r, nor from any region yet to be extracted from the first priority queue. At that point
we can discard the first queue and start processing our queue of candidates. Algorithm
6 gives the code (for simplicity, we consider only the nearest snapshot preceding tq).

Let us assume that k = 2, Msp = 1, K = 1, tc = t8, tq = t9, pq = (10, 0), and the

27

2

1

4

110 1 2 3 4 5 6 7 8 9 10 12 13 14 15

11

0

1

2

3

4

5

6

7

8

9

10

12

13

14

15

t8

r
2

r
3

r
321

r
302

r
230

Figure 10: Example of regions of the space inserted in the queue.

grid S8 of Figure 10. We number the regions with a sequence of subindices in {0, 1, 2, 3}
considering the consecutive levels. The children of the root at r0 to r3, the children of
r0 are r00 to r03, and so on. From the root, we insert r2 and r3 in the queue (r0 and
r1 are empty). We then extract r3, the closest one to pq (indeed, containing it), and
reinsert r30 and r32. The next most promising region is r32, from whose children we only
reinsert r321, the nonempty one. From the current set, {r2, r30, r321}, the most promising
one is r321, at distance pqr321 = 2. So we extract it and insert object O2 as our first
candidate, at distance pqO2 = 3. Thus, at time t9, O2 could be at maximum distance
pqO2 = 4. Since the next most promising area, r2, is at distance pqr2 = 3, it is still worth
considering, so we reinsert its nonempty child r23. This is still more promising than r30,
so we extract it and reinsert r230, its nonempty child. Now our candidate regions are
{r30, r230}, and the most promising is r30. We extract it and reinsert r302, its nonempty
child, which becomes the first region to extract. Since pqr302 =

√
17 ≈ 4.1, a point inside

r302 might reach distance ≈ 3.1 to pq at t9, and thus it might still be interesting. We
then extract it and obtain O1, which is at distance pqO1 =

√
26 ≈ 5.1, and can then get

as close as distance ≈ 4.1 in t9. Thus, there is no point in considering O1, because it
cannot get closer to pq than O2. Similarly, there is no point in considering the remaining
region r230 (nor any other region that would have remained to process), because it is at
distance pqr230 =

√
29 ≈ 5.4. In this case, we only have one candidate.

From the priority queue of candidates, the algorithm extracts the first one (with
position pc, at time tc, with minimum dmin) and calculates the next position of the
object using moveJ. The object is then reinserted in the queue with its new position p′c
and time instant t′c, and with dmin recomputed accordingly. As we iterate, the candidates
advance in their log Lh,h+d, with the most promising objects advancing sooner towards
tq. At some point, we will start extracting objects with time tc = tq. For those objects,
dmin is their exact distance to pq at time tq. We store them in a third priority queue,
of maximum size K and sorted by decreasing dmin. When we have K answers in this
third queue, the insertion of a new result may displace the currently K-th result (the
first in the priority queue). Further, we can use the value dmin(O) of the K-th result O

28

Algorithm 7: Knn(K, pq, tq,)

1 Sh ← findNearestPreviousSnapshot(tq);
2 QC ← ObtainCandidates(Sh,K, tq , pq);
3 QF ← ∅; // Priority queue of pairs (obj,dist) sorted by decreasing dist, max size

K
4 dmax ← +∞; // Infinite until obtaining K results

5 if Sh.time = tq then return first K objects of QC ;
6 while QC is not empty do
7 〈Oj , tc, pc, dmin〉 ← QC .extractMin;
8 if |QF | ≥ K and dmin ≥ dmax then break; // Best candidate cannot beat K-th

result

9 if tc = tq then // We have a result

10 QF .add(〈Oj , dmin〉); // dmin is pqpc
11 if |QF | > K then QF .extractMax; // maximum size is K, discard one;
12 if |QF | ≥ K then 〈O, dmax〉 ← QF .inspectMax; // update dmax, O is dummy;

13 else // Advance one position in the log; we have a pointer to CTOj

14 〈tc, pc〉 ← moveJ(pc, tc, tq , CTOj
(tc+1, tq)[0]);

15 dmin ← pqpc −Msp · (tq − tc);
16 QC .add(〈Oj , tc, pc, dmin〉);
17 return QF

to preempt the processing of the queue of candidates: if for the candidate Oj with the
minimum dmin value it holds that dmin(Oj) ≥ dmin(O), then there is no chance that
Oj (nor any other candidate object remaining in the second priority queue) alters the
current set of results. We can then stop the processing and return the results in the third
queue as the definitive answer.

Algorithm 7 shows the pseudocode of the knn query. To illustrate it, we use the
example from Figures 5 and 7 and obtain the nearest object (K = 1) with respect to
location pq = (10, 0) at tq = t9. After obtaining the previous closest snapshot to t9
(S8), Algorithm 7 issues the call ObtainCandidates(S8, 1, t9) to obtain the candidates
from the snapshot. As we have already seen, the traversal of regions yields only one
candidate, O2, with minimum distance dmin = pqO2 −Msp · (tq − tc) = 2. Therefore,
the queue of candidates contains only QC = {〈O2, t8, (10, 3), 2〉}. However, objects O3,
O5, O6, and O7 appear in the log after S8. From those, only O5 appears before or
at t9, and thus it can be added to QF . Indeed, O5 appears at t9, in position (7, 2).
Its minimum (and exact) distance to pq in tq is dmin = pq(7, 2) =

√
13 ≈ 3.6. Since

dmax = 4, this object cannot yet be discarded, so the final queue of candidates is QC =
{〈O2, t8, (10, 3), 2〉, 〈O5, t9, (7, 2), 3.6〉}.

Once Algorithm 7 has all the candidates, it starts processing them in lines 6-16.
It first extracts 〈O2, t8, (10, 3), 2〉. Since t8 is not the target time, the algorithm con-
siders CTO2(t9, t9) = 〈5〉 and applies moveJ on the first element, 5. This converts
t8 into t9 and (10, 3) into (9, 3). It then recomputes dmin =

√
10 ≈ 3.2 and rein-

serts O2 into QC with these new values. The queue of candidates now contains QC =
{〈O2, t9, (9, 3), 3.2〉, 〈O5, t9, (7, 2), 3.6〉}. The next best candidate is again O2, but now
its time is t9, the same as the query, and this means that we have our first result,
QF = {〈O2, 3.2〉}. Since now |QF | ≥ K, we can compute dmax = 3.2. In the next step,
when we extract O5 from QC , its dmin value is 3.6, larger than dmax, and thus disregard
it. We have exhausted QC and the answer is in QF .

29

7. Experimental Evaluation

In this section we experimentally evaluate the space and time performance of GraCT
and compare it with related work. It has been very hard to obtain implementations
of previous indexes. Further, compression-only systems developed for trajectories like
Trajic [30] and SQUISH [24] did not compress well on our data, reducing the space of
a plain text representation, but not the space of a binary representation of the integer
coordinates. We have, nevertheless, compared GraCT with two baselines:

scdcCT: This structure is similar to GraCT with a different representation of the log
structure. The sequence of spiral codes that differentially encode the movements
is compressed with a statistical zero-order compressor, namely byte-oriented (s, c)-
Dense Codes [5] (SCDC) optimized to s = 183 and c = 73. SCDC combines good
compression ratios with fast decoding, thereby supporting fast scanning of the
logs. We use scdcCT as a representative of the various systems that use statistical
compression, instead of the grammar-based compression used by GraCT. We aim
to demonstrate that grammar compression is more effective, and that the ability
of GraCT to skip over whole nonterminal symbols makes it faster than statistical
encoders that, no matter how fast, must process each movement individually. Note
that sampling absolute values at regular intervals to speed up the processing of
logs in scdcCT is equivalent in space to shortening the sampling period d of the
snapshots.

MVR-tree: This is the only classic spatio-temporal structure for which we could obtain
code. The complete structure is the MV3R-tree [40], which combines an MVR-
tree with an auxiliary 3DR-tree, but only the MVR-tree part was available. The
3DR-tree is used to speed up the most basic queries, like obtaining the position
of an object at a given time instant or retrieving its trajectory. We aim to show
that a classic structure uses orders of magnitude more space than GraCT, without
being much faster (actually, the MVR-tree is slower for some queries). We used the
MVR-tree implementation provided by the spatialindex library1. This is a disk-
based structure, but we make it run in main memory for a direct comparison with
GraCT. We also compare both structures on disk, as explained later.

We implemented GraCT and scdcCT in C++, using components from the SDSL
library2 [11]. The experiments were run on an Intel R© CoreTM i7-3820 CPU @ 3.60GHz (4
cores) with 10MB of cache and 64 GB of RAM, running Ubuntu 12.04.5 LTS with kernel
3.2.0-115 (64 bits), gcc version 4.6.4 with -O9 optimization. The code for GraCT and
scdcCT is publicly available at https://gitlab.lbd.org.es/adriangbrandon/ct.git.

We used an implementation for supporting rank operations that adds 6.25% space on
top of the bit sequence to accelerate queries. The sample value 1/ε of the permutations
was set to 5, which increases the size of the data structure by 20% but yields fast
π−1 queries. Our grammar compressor was the Re-Pair implementation provided by
G. Navarro3, using the balanced version. The extra information associated with the

1http://libspatialindex.github.io
2https://github.com/simongog/sdsl-lite
3http://www.dcc.uchile.cl/gnavarro/software/repair.tgz

30

Re-Pair nonterminals was encoded using DACs with an unlimited number of levels and
without a predefined chunk size. Arrays P and D, in contrast, are represented using
DACs configured to use chunks of one byte and with a maximum of two levels.

7.1. Datasets

We used real-world and pseudo-real data from three sources.

• Ships, a real dataset storing the movements of 3,654 boats sailing in UTM Zone
10 over one month in 2014, obtained from MarineCadastre4.

• Planes, a real dataset composed by trajectories of aircrafts from 30 different air-
lines and flights between 30 European airports. This data was obtained from the
OpenSky Network5; we discarded the altitude component and retained latitude and
longitude.

• Taxis, a larger synthetic dataset simulating trajectories of taxis in New York City
during 2013. We download the data from NYC Taxis: A Day in the life6. Since
this includes only the start and end location of each taxi trip, we computed the
trajectory as the shortest route between these two points.

GraCT stores positions in a discrete grid, therefore each position emitted by an object
is discretized into a matrix. We chose cell sizes that seem appropriate in each application,
in the sense that more detail is probably useless: 50× 50 meters in Ships, 5000× 5000
meters in Planes and 10 × 10 meters in Taxis. In addition, our structure deals with
object positions at regular timestamps, but in the real datasets, the frequency of signals
varied. For this reason, the signals were preprocessed and discretized, in order to obtain
the position of each object at regular timestamps: 1 minute for Ships and 15 seconds
for Planes and Taxis.

After this normalization step, some location signals were observed to be incorrect,
because they implied object movements at an extremely high speed (these kind of errors
are not rare in GPS measurements). We set a maximum speed for each dataset, 800km/h
for Planes and 234km/h for the other datasets. If the signal of an object at a timestamp
implies exceeding the maximum speed, that signal is deleted. This amounts to deleting
0.01% of the signals from Ships and 0.83% from Planes. In addition, the frequency of
signals is variable. For example, in Ships the frequency of signals from most boats was
regular when they were sailing, but it stopped for long periods, typically when they were
at a port. This produces disappearances and appearances, which amount to 0.21% of
the entries in Ships and 0.96% in Planes. Finally, since our setup requires the position
of each object at regular timestamps, we interpolated the two closest signals if they were
less than 15 time instants apart, since an object cannot move far during a short period
of time; otherwise we consider it a disappearance/appearance.

Each dataset is stored in a plain text file comprising four columns: object identifier,
time instant, coordinate x and coordinate y. Each value in the columns is stored as a

4http://marinecadastre.gov/ais
5https://opensky-network.org
6http://chriswhong.github.io/nyctaxi

31

Ships Planes Taxis

Total objects 3,654 2,263 1,283
Total points 44,304,802 35,315,697 2,524,018,668
Max x 12,719 3,313 1,090,125
Max y 368,186 1,148 1,160,194
Max time 44,642 172,547 2,102,879
Size Plain 947.35 MB 671.02 MB 59,263.57 MB
Size Bin 380.27 MB 303.12 MB 26,478.01 MB
Size p7zip 36.14 MB 35.82 MB 3,075.93 MB

Table 3: Datasets and their dimensions.

string. In order to obtain a better compression comparison, the data was alternatively
stored in binary form, with the minimum number of bytes. For example, in Ships, two
bytes were used to represent object identifiers (max value 3,654), two for the time instant
column (max value 44,642), two for the x-axis (max value 12,719) and three for the y-axis
(max value 368,186). Table 3 shows the resulting sizes.

To illustrate how compressible the data is, the plain data files were compressed with
p7zip7 with default settings. As we see, p7zip compresses the data to 9.5%–11.8% of its
binary representation.

7.2. Compression

The first experiment compares the compression ratio of GraCT with scdcCT on the
two real datasets, Ships and Planes. GraCT and scdcCT data structures were built on
both datasets using snapshot intervals of d = 120, 240, 360 and 720 time instants. The
construction time for the complete structure was approximately one minute.

Table 4 shows the results of compression. The first row gives the size of both structures
for each snapshot period d, whereas the next two rows separate the space due to the
snapshots (i.e., the k2-trees) and to the compressed logs. It can be seen that the space
of the snapshots is much lower than that of the logs, even with the highest sampling
rate. Still, the compression of the logs themselves improves for larger d. In this aspect,
Re-Pair improves faster than SCDC: the quotient of the log space with d = 720 versus
d = 120 is 0.68 on Ships and 0.47 on Planes, whereas with scdcCT they are 0.78 and
0.60, respectively.

The last two rows give the compression ratios obtained with respect to the plain
and binary representations, respectively. The compression achieved by scdcCT with
d = 720, 13%–15% of the binary representations, shows that statistical compression of
the differences is competitive with state-of-the art compression like the one offered by
p7zip. The grammar-compression used by GraCT, on the other hand, obtains less than
half the space of scdcCT, and less than 60% of the space used by p7zip.

We remark that, within this space, GraCT not only represents the trajectory data,
but it offers efficient access and queries on it. Devoided of the extra information it stores
on the nonterminals to speed up queries, the space used by the grammar compression

7http://p7zip.sourceforge.net

32

Index GraCT scdcCT
Period 120 240 360 720 120 240 360 720

Ships

Size 34.72 26.92 24.27 21.58 65.93 56.02 52.65 49.28
Snapshot 4.05 2.13 1.43 0.74 4.05 2.13 1.43 0.74
Log 30.66 24.79 22.84 20.85 61.88 53.89 51.22 48.55
Ratio (plain) 3.66% 2.84% 2.56% 2.28% 6.96% 5.91% 5.56% 5.20%
Ratio (bin) 9.13% 7.08% 6.38% 5.68% 17.34% 14.73% 13.85% 12.96%

Planes

Size 49.24 32.23 26.55 20.83 82.61 59.80 52.21 44.56
Snapshot 3.85 1.95 1.31 0.68 3.85 1.95 1.31 0.68
Log 41.06 28.08 23.75 19.38 74.43 55.66 49.41 44.56
Ratio (plain) 7.34% 4.80% 3.96% 3.10% 12.31% 8.91% 7.78% 6.64%
Ratio (bin) 16.25% 10.63% 8.76% 6.87% 27.25% 19.73% 17.23% 14.70%

Table 4: Structure sizes (in MB) and compression ratios.

of the logs would be halved or so. This shows that grammar compression is much more
efficient than statistical compression to exploit the redundancy of real-world trajectory
data.

7.3. Query performance

This experiment studies the response times of GraCT and scdcCT, with different
snapshot periods, on the real datasets. Figure 11 shows the average time (in milliseconds)
per query for the following seven types of queries:

• object: this query obtains the position of a given object at a given time instant tq.
We averaged over 20,000 queries for random objects and time instants.

• trajectory: this query returns the trajectory followed by an object during an interval
[tb, te], where te−tb is fixed at 2,000 time instants. We averaged over 10,000 queries
for random objects and time instants tb.

• time-slice S: this query obtains the identifiers and positions of the objects lying
within a small region (40 × 40 cells) at a given time instant. We averaged over
1,000 queries for random region positions and time instants.

• time-slice L: this query obtains the identifiers and positions of the objects lying
within a larger region (320×320 cells). We averaged over 1,000 queries for random
region positions and time instants.

• time-interval S: this query obtains the objects present in a small region (40 × 40
cells) at any time instant between tb and te, where the interval size is te− tb = 100
instants. We averaged over 1,000 queries with random region positions and instants
tb.

• time-interval L: this query obtains the objects present in a larger region (320×320
cells) over a longer interval of size te − tb = 500 instants. We averaged over 1,000
queries with random region positions and instants tb.

33

• knn: this query obtains the K nearest neighbors to a given position at a given time
instant, where K is a random value between 1 and 50. We averaged over 1,000
queries with random objects and time instants.

7.3.1. Object

As seen in Figure 11(a), GraCT outperforms scdcCT in this query, answering within
2–4 microseconds. The logs in GraCT have far fewer entries than those in scdcCT,
and in many cases the extra information stored on nonterminals allows processing of
each GraCT log entry in constant time, just as a simple scdcCT log entry. Further,
as previously demonstrated, Re-Pair compression improves faster as the logs increase,
which makes GraCT times less sensitive than scdcCT to the increased distance between
snapshots. The improvements of GraCT over scdcCT range from 5.9% with a snapshot
period of d = 120 to 46.3% with d = 720 on Ships, and from 12.3% to 100.4% on Planes.

Figure 12 shows the relative time spent on the k2-tree of the snapshot versus the time
spent on the logs for the different queries. Since the times spent on the snapshots are
identical, it follows that GraCT processes the logs way faster than scdcCT. This demon-
strates that, provided with the proper enhanced data, the use of grammar compression
also yields good query times, outperforming the statistical encoding of trajectories, be-
cause it processes fewer entries at about the same speed per entry.

7.3.2. Trajectory

In trajectory queries, as shown in Figure 11(b), GraCT also outperforms scdcCT, but
the difference in response times is small: 12%–20% on Ships and 8%–13% on Planes.
The majority of the time in this query is spent in decompressing the trajectory (of 2,000
entries), which is done at about the same rate in statistical (scdcCT) and grammar-based
(GraCT) compression: 25–45 nanoseconds per decompressed datum on Ships and 15–20
on Planes. Since the trajectories to recover are significantly longer than the snapshot
periods, snapshots mostly disrupt the processing of the logs, which explains why times
improve with fewer snapshots.

Figure 12 shows the case of shorter trajectories, of lengths 100 (Trajectory 100)
and 1,000 (Trajectory 1000), on Ships. As expected, more time is spent on the logs
to retrieve longer trajectories or with longer sampling periods.

7.3.3. Time-slice S and time-slice L

In time-slice queries, the difference in performance between GraCT and scdcCT be-
comes much more significant. As shown in Figures 11(c) and 11(d), GraCT performs 2–4
times faster than scdcCT in both datasets, running each query in less than a millisecond.

This query can be regarded as running an object query on each of the candidate
objects, but as shown in Figure 12, the algorithm spends more time working on the log
than for object queries, because the k2-tree amortizes its traversal cost when retrieving
many points. Thus both indexes spend more time in the traversal of the log, where
GraCT outperforms scdcCT, and less on the k2-tree, where they perform similarly. As
a result, GraCT can be up to 4 times faster than scdcCT on time-slice queries, whereas
in object queries it was up to twice as fast.

34

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

120 240 360 720

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Period of snapshot

Dataset Ships

GraCT
scdcCT

120 240 360 720

Period of snapshot

Dataset Planes

(a) Object

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

120 240 360 720

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Period of snapshot

Dataset Ships

GraCT
scdcCT

120 240 360 720

Period of snapshot

Dataset Planes

(b) Trajectory

0.0

1.0

2.0

3.0

4.0

5.0

120 240 360 720

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Period of snapshot

Dataset Ships

GraCT
scdcCT

120 240 360 720

Period of snapshot

Dataset Planes

(c) Time-slice S

0.0

1.0

2.0

3.0

4.0

5.0

120 240 360 720

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Period of snapshot

Dataset Ships

GraCT
scdcCT

120 240 360 720

Period of snapshot

Dataset Planes

(d) Time-slice L

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

120 240 360 720

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Period of snapshot

Dataset Ships

GraCT
scdcCT

120 240 360 720

Period of snapshot

Dataset Planes

(e) Time-interval S

0.0

5.0

10.0

15.0

20.0

25.0

30.0

120 240 360 720

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Period of snapshot

Dataset Ships

GraCT
scdcCT

120 240 360 720

Period of snapshot

Dataset Planes

(f) Time-interval L

0.0

5.0

10.0

15.0

20.0

25.0

30.0

120 240 360 720

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Period of snapshot

Dataset Ships

GraCT
scdcCT

120 240 360 720

Period of snapshot

Dataset Planes

(g) Knn

Figure 11: Response time for different queries, in milliseconds per query.

35

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

O
bj
ec

t t

Tra
je
ct
or

y
10

0

Tra
je
ct
or

y
10

00

Tim
e

Slic
e

Tim
e

In
te

rv
al
 S

Tim
e

In
te

rv
al
 L

kn
n

P
e

rc
e

n
ta

g
e

 o
f

ti
m

e

GraCT

Snapshot
Log

O
bj
ec

t t

Tra
je
ct
or

y
10

0

Tra
je
ct
or

y
10

00

Tim
e

Slic
e

Tim
e

In
te

rv
al
 S

Tim
e

In
te

rv
al
 L

kn
n

scdcCT

(a) Period 120

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

O
bj
ec

t t

Tra
je
ct
or

y
10

0

Tra
je
ct
or

y
10

00

Tim
e

Slic
e

Tim
e

In
te

rv
al
 S

Tim
e

In
te

rv
al
 L

kn
n

P
e

rc
e

n
ta

g
e

 o
f

ti
m

e

GraCT

Snapshot
Log

O
bj
ec

t t

Tra
je
ct
or

y
10

0

Tra
je
ct
or

y
10

00

Tim
e

Slic
e

Tim
e

In
te

rv
al
 S

Tim
e

In
te

rv
al
 L

kn
n

scdcCT

(b) Period 720

Figure 12: Time spent on the snapshot versus the logs for different queries.

Period 120 240 360 720

MBR no MBR MBR no MBR MBR no MBR MBR no MBR

Slice S 0.25 0.25 0.46 0.47 0.61 0.65 1.08 1.13
Slice L 0.27 0.27 0.46 0.47 0.64 0.67 1.06 1.11
Interval S 1.31 7.40 1.60 12.66 1.80 17.39 2.34 29.68
Interval L 7.96 39.23 8.50 50.84 9.00 59.43 10.32 76.67

Table 5: The impact of using MBRs to preempt time-slice and time-interval queries, in milliseconds.

7.3.4. Time-interval S and time-interval L

As observed in Figures 11(e) and 11(f), time-interval queries are very similar to time-
slice queries with respect to the comparison between GraCT and scdcCT, although this
time GraCT is only up to 3 times faster than scdcCT. On longer time intervals, the
difference is smaller because both structures may have to decompress the movements
along the interval [tb, te]. The difference is larger than on a trajectory query, however,
because GraCT can avoid decompressing nonterminals if their MBRs are disjoint or
contained in the query range.

Table 5 evaluates the improvement we obtain due to the use of MBRs of nonterminals
on Ships. As it can be seen, the use of MBRs has a relatively small impact on time-slice
queries (below 5%), but a very significant one on time-interval queries: increasing with
the sampling period, the speedup factor goes from 5.6 to 12.7 on time-interval S and
from 4.9 to 7.4 on time-interval L queries. Without using MBRs, indeed, GraCT would
be slower than scdcCT on time-interval queries.

7.3.5. Knn

Nearest neighbor queries also require processing the logs of many candidate objects.
However, the process done on each log entry is significantly heavier than on previous
queries: objects are extracted from and reinserted in priority queues, their dmin distances
are recalculated, etc. In this scenario, the fewer number of entries processed by the
grammar-compressed logs of GraCT, which can skip whole nonterminals, is even more
valuable. As a result, GraCT is up to an order of magnitude faster than scdcCT for

36

0%

2%

4%

6%

8%

10%

12%

14%

16%

50
0

10
24

51
20

10
24

0

61
24

0

C
o

m
p

re
s
s
io

n
 r

a
ti
o

Dataset Size (MB)

GraCT
scdcCT

(a) Compression ratio.

 0

 1

 2

 3

 4

 5

 6

 7

 8

50
0

10
24

51
20

10
24

0

61
24

0

T
im

e
 (

µ
s
)

Dataset Size (MB)

Object

(b) Query times for object.

 0

 10

 20

 30

 40

 50

 60

 70

50
0

10
24

51
20

10
24

0

61
24

0

T
im

e
 (

n
s
)

/
O

u
tp

u
t

s
iz

e

Dataset Size (MB)

Trajectory

(c) Query times of trajectory.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

50
0

10
24

51
20

10
24

0

61
24

0

T
im

e
 (

m
s
)

/
In

p
u

t
s
iz

e
 (

G
B

)

Dataset Size (MB)

Slice S
Slice L

Interval S
Interval L

knn

(d) Other query times, over input size.

Figure 13: Evolution of compression ratio and query times as the dataset grows. Dataset sizes are shown
in logscale.

these queries, answering them in less than 3 milliseconds.
Figure 12 shows that the prioritized traversal of the k2-tree consumes a significant

part of the query time on GraCT, but on scdcCT it is counterweighed by the more
expensive processing of the log.

7.4. Scalability

In order to evaluate the scalability of our structure in compression and query times,
we create five prefixes of Taxis with sizes 500 MB, 1,024 MB, 5,120 MB, 10,240 MB,
and 61,240 MB. In each longer prefix, more objects are incorporated to the dataset. We
built GraCT and scdcCT on each dataset, with the period of snapshots set to 720. Over
the GraCT indexes, we ran queries with the same settings of Section 7.3.

As shown in Figure 13(a), the compression ratio of GraCT improves as the dataset
grows, from 9% to 4%. This is a consequence of exploiting repetitiveness via grammar
compression. As the number of objects and trajectories of the same kind increases, finding
similar trajectories is more likely. Instead, as it can be seen, statistical compression is
much less sensitive to repetitiveness, improving only from 12% to 10%. This shows
another advantage of grammar compression when handling very large datasets.

37

With the growth of the data, on the other hand, the depth of the grammar used by
GraCT also grows, logarithmically in case the grammar is balanced. This increases the
cost of navigating inside a nonterminal, for example. This logarithmic growth is apparent
in the object queries (Figure 13(b); since the x axis is logarithmic, a logarithm looks like
a straight line), though in trajectory queries (Figure 13(c)) the time is amortized over the
2,000 output positions (those are decompressed in constant time each from the grammar,
with only a logarithmic additive penalty for the whole query). The other queries grow
linearly because, as more objects are added on a fixed grid, the output size and/or
number of candidates to consider grows proportionally to the data size. This is apparent
in Figure 13(d), where the query times divided by dataset size are essentially constant.

7.5. Comparison with a classical uncompressed index

As anticipated, we compare GraCT with the MVR-tree [40], a classic spatio-temporal
structure based on the R-tree. The MVR-tree comprises multiple versions of the same
data, each associated with a different interval of time, and an R-tree representing the po-
sitions of the objects during that interval. The intervals of the versions are disjoint. The
MVR-tree exploits the repetition of nodes along consecutive R-trees, by sharing common
nodes between versions. It is important to note that this spatio-temporal structure is
efficient at solving time-slice, time-interval, and knn queries only, which are solved by
identifying versions that overlap with the queried time interval. The algorithm traverses
the R-tree of each such version, following the nodes involved in the spatial query range.
Queries object and trajectory, instead, are costly for the MVR-tree. These are speeded
up in the full structure, the MV3R-tree, by using an auxiliary 3DR-tree structure [40]
(which requires even more space). We therefore omit these queries in our comparison.

The MVR-tree was configured to run in main memory. Both structures were built on
the Ships and Planes datasets described in Section 7.1, and GraCT was configured with
the same snapshot distances used in the previous experiments (120, 240, 360 and 720).
The size of the MVR-tree in Ships was 12.16 GB and in Planes it was 11.72 GB, while
the maximum-space configuration of GraCT used 36.40MB and 51.63MB, respectively,
two orders of magnitude less (more precisely, GraCT uses 342 times less space on Ships

and 232 times less space on Planes). The MVR-tree is also 30–40 times larger than the
raw data represented in binary form.

We now study if this gigantic difference in space induces a significant impact on query
time performance. Figure 14 shows the times of both structures averaged over 1,000
random queries of each type: time-slice S, time-slice L, time-interval S, time-interval L,
and knn queries. Instead of the sampling d = 720, we include a new one, d = 60, where
GraCT uses 50.70 MB on Ships and 83.14 MB on Planes. This is still 245 and 144
times smaller than the MVR-tree, respectively, and is sufficient for GraCT to be as fast
as MVR-tree on most queries.

Time-slice queries are the most efficient ones for the MVR-tree. Since they retrieve
objects within a given region at a single time instant only, the MVR-tree needs to traverse
just one R-tree. When the traversal of the tree reaches the leaves, it can retrieve more
than one object per leaf, which is faster than traversing one log of GraCT per candidate.
Figures 14(a) and 14(b) show that, even in this case, the maximum-space configuration
of GraCT matches the performance of the MVR-tree on Ships, and outperforms it on
Planes. It is likely that the higher locality of reference when accessing a structure that
is two orders of magnitude smaller plays in favor of GraCT.

38

0.0

0.2

0.4

0.6

0.8

1.0

60 120 240 360

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Period of snapshot

Dataset Ships

MVR-tree
GraCT

60 120 240 360

Period of snapshot

Dataset Planes

(a) Time-slice S

0.0

0.2

0.4

0.6

0.8

1.0

60 120 240 360

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Period of snapshot

Dataset Ships

MVR-tree
GraCT

60 120 240 360

Period of snapshot

Dataset Planes

(b) Time-slice L

0.0

0.5

1.0

1.5

2.0

2.5

3.0

60 120 240 360

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Period of snapshot

Dataset Ships

MVR-tree
GraCT

60 120 240 360

Period of snapshot

Dataset Planes

(c) Time-interval S

0.0

10.0

20.0

30.0

40.0

50.0

60 120 240 360

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Period of snapshot

Dataset Ships

MVR-tree
GraCT

60 120 240 360

Period of snapshot

Dataset Planes

(d) Time-interval L

0.0

0.5

1.0

1.5

2.0

60 120 240 360

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Period of snapshot

Dataset Ships

MVR-tree
GraCT

60 120 240 360

Period of snapshot

Dataset Planes

(e) Knn

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120 140 160 180 200

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Length of interval

GraCT-Interval-S
GraCT-Interval-L

MVR-Interval-S
MVR-Interval-L

(f) Growing time-interval queries on Ships

Figure 14: Query time comparison of GraCT with the MVR-tree, running in main memory.

This advantage of the MVR-tree vanishes on time-interval queries. In an interval of
time, the MVR-tree may have to traverse a number of R-trees, which makes it much
slower and always loses to GraCT, as seen in Figures 14(c) and 14(d). Figure 14(f)
studies the turning point on Ships by varying the length of the queried time interval,
using the smallest space configuration of GraCT (snapshot distance 720). As the time

39

span of the queries increases, both structures slow down. The MVR-tree times, however,
increase much faster, becoming slower than GraCT when the time interval exceeds 140
time instants on time-interval S and 60 on interval L. GraCT is thus less sensitive to the
length of the queried interval, outperforming MVR-tree already in short time intervals
even on its minimum-space configuration.

Nearest neighbor queries refer again to a single time instant, and therefore the MVR-
tree can handle them within a single R-tree, even if it usually has to traverse many more
nodes than for a time-slice query. In this query, GraCT also has to traverse a large
number of k2-tree nodes and verify many candidates because, unlike the MVR-tree, it
does not have a snapshot of the precise query time instant. As it can be seen in Figure
14(e), the MVR-tree clearly outperforms GraCT on Ships, though not on Planes, where
GraCT always improves and the MVR-tree always degrades with respect to Ships.

7.6. Disk and full precision

With the minimum-space configuration (snapshot sampling of 720), GraCT uses
nearly 600 times less space than the MVR-tree. We can then use GraCT to index in main
memory datasets for which the MVR-tree would by far exceed the available memory, and
would then have to operate on disk. As we show next, even a time-slice query (where the
MVR-tree most prominently excels) requires around 50 milliseconds to be solved by the
MVR-tree on disk, which is 50 times slower than the time required by GraCT in main
memory. If we use a snapshot sampling of 60, then GraCT becomes more than 300 times
faster, and is still 150–250 times smaller than the MVR-tree.

The compression of GraCT is achieved, however, by means of discretizing the data
and therefore losing precision. In most real systems, full precision is anyway unneces-
sary. For example, using eight decimals for the GPS position of an object discriminates
micrometers, which is much finer than what most physical devices can acquire, and only
useful in very specialized fields like tectonic plate mapping.

Still, if full precision is required, GraCT can be used as an in-memory cached index of
the full-precision data stored on disk, exploiting its very small main memory footprint.
To answer a query, GraCT is first used to obtain a list of candidate answers, which satisfy
the query up to where the precision of GraCT can discriminate. Then, in a second step,
those candidate answers are verified by reading the full-precision data from disk.

As a proof-of-concept of the feasibility of this approach, we designed a simple arrange-
ment for time-slice queries, where the MVR-tree performs best. We use the GraCT data
structures of the Ships dataset with 720 time instants between snapshots. In addition,
we store the full-precision data in a relational table of PostgreSql DBMS v9.1.24.8 The
table stores tuples 〈object, time, x, y〉 to represent all the trajectories of all the objects.
To efficiently verify the answers to time-slice queries, a hash index is set on the first two
columns (together). For simplicity, we still assume that the time instants are discretized;
a B-tree can be used for the second column in case they are real numbers as well.

As a baseline, we use the MVR-tree data structure on disk. GraCT, including the full-
resolution data and the hash indexes, occupies 4.18 GB, whereas the MVR-tree occupies
78.61 GB. That is, GraCT still requires 18 times less disk space than the MVR-tree.

8https://www.postgresql.org

40

Slice S Slice L
GraCT+DBMS MVR-tree GraCT+DBMS MVR-tree

Cold state 53.59 59.24 313.79 45.76
Warm state 3.57 45.01 5.39 43.64

Table 6: Response times of time-slice queries on disk, in milliseconds.

To emulate a scenario where the full-resolution data does not fit in main memory, we
configured our machine to use 2 GB for the kernel, so that neither the MVR-tree nor the
PostgreSql table can be completely cached by the operating system or the DBMS.

The experiment begins in cold state, with all the data structures residing on disk
and the caches of the operating system and the DBMS completely empty. The first row
of Table 6 shows the average time of 1,000 executions of the first time-slice query in
cold state. That query requires completely loading the GraCT data structures into main
memory. In the case of the MVR-tree, the execution only loads the nodes of the R-tree
traversed by the query. The second row shows the times resulting from running 1,000
time-slice queries after running the first one, that is, in warm state with the GraCT index
already loaded in memory. We independently tested the second, third, and so on, seeing
no significant differences.

Even in cold state, GraCT is 10% faster than the MVR-tree for time-slice S queries,
but once in warm state, the response time of GraCT drops to 3.57 milliseconds, whereas
the MVR-tree requires around 45 milliseconds, which is about 12 times slower. GraCT is
much slower than the MVR-tree for time-slice L queries in cold state, on the other hand,
but again, once we enter in warm state, GraCT becomes about 8 times faster. That is,
a disk-based system on regime, with full precision using GraCT as an in-memory cached
index is an order of magnitude faster than the MVR-tree and uses much less disk space.

Other queries, like time-interval, require a more sophisticated arrangement to use
GraCT as an in-memory cache. For example, we can store the consecutive points of each
trajectory in contiguous form, indexed by time with a B-tree, and a hash-indexed table
of objects pointing to their corresponding trajectories. This enables an efficient traversal
of the trajectories of candidate objects in the time intervals where GraCT estimates that
they may intersect the query range. Those arrangements also support the simpler queries
object and trajectory. Our experiment suggests that it is much more efficient to verify
potential answers on disk than to find them using a disk-based structure.

8. Conclusions

This article introduces GraCT, a compact data structure for the representation of
moving objects. In our experiments on real-world trajectory datasets, GraCT compresses
the data to 4%–7% of its raw representation size. Within this space, GraCT supports
not only direct access to the data, but also various queries looking for objects in spatio-
temporal windows. The trajectory data is manipulated directly in compressed form, with
only small portions requiring decompression in order to answer queries. The space also
includes the storage of spatial indexes representing snapshots at regular time intervals,
which speeds up queries. The main algorithmic novelty of GraCT is the representation
of the logs of movements between snapshots using grammar-based compression. On

41

our real-life datasets, grammar-based compression captures the repetitiveness arising
from recurrent trajectories, outperforming statistical compression by a factor of 2 and
improving as the datasets become larger. A second novelty is to enrich the grammar by
associating information with the nonterminals, such as their relative MBR. This enables
GraCT to traverse the logs very quickly without decompressing nonterminals in most
cases, thereby answering queries within a few milliseconds. A comparison with the MVR-
tree, a classical index, shows that GraCT is two orders of magnitude smaller and still
competitive in query times when both run in main memory. When the MVR-tree cannot
fit in main memory, GraCT is one or two orders of magnitude faster. This includes an
arrangement where GraCT is used as a low-precision main-memory cached index that
must verify its result on disk, where the full-precision data is kept.

Future work in this area will explore other compression mechanisms that exploit
repetitiveness, looking for ways to process the trajectory data without decompressing it.
Some alternatives are the use of block trees [2] or relative Lempel-Ziv [18]. We also plan
to further use GraCT as a main-memory cached index, extending our arrangement to
handle all the queries considered in this article.

Acknowledgments

This work has been funded by the European Union Horizon 2020 Marie Sk lodowska-
Curie Action Fund [grant agreement EU H2020 MSCA RISE BIRDS: 690941]; Ministerio
de Economı́a y Competitividad (PGE and FEDER) [grant number TIN2016-78011-C4-1-
R], Centro para el desarrollo Tecnológico e Industrial Programa CIEN 2014 (co-founded
with FEDER) [grant number ITC-20151247], Ministerio de Educación y Formación Pro-
fesional (FPU program) [grant number FPU16/02914]; Xunta de Galicia (co-founded
with FEDER) [grant numbers ED431C 2017/58; ED431G/01]; the Chilean National Sci-
ence and Technology Development Fund (Fondecyt Grant 1-170048); and the Millennium
Institute for Foundational Research on Data (IMFD), Chile.

References

References

[1] Asif, M. T., Kannan, S., Dauwels, J., Jaillet, P., 2013. Data compression techniques for urban traffic
data. In: Proc. IEEE Symposium on Computational Intelligence in Vehicles and Transportation
Systems (CIVTS). pp. 44–49.

[2] Belazzougui, D., Gagie, T., Gawrychowski, P., Kärkkäinen, J., Ordóñez, A., Puglisi, S. J., Tabei,
Y., 2015. Queries on LZ-bounded encodings. In: Proc. 25th Data Compression Conference (DCC).
pp. 83–92.

[3] Botea, V., Mallett, D., Nascimento, M. A., Sander, J., 2008. Pist: An efficient and practical indexing
technique for historical spatio-temporal point data. GeoInformatica 12 (2), 143–168.

[4] Brisaboa, N., Ladra, S., Navarro, G., 2013. DACs: Bringing direct access to variable-length codes.
Information Processing and Management 49 (1), 392–404.

[5] Brisaboa, N. R., Fariña, A., Navarro, G., Paramá, J. R., 2007. Lightweight natural language text
compression. Information Retrieval 10 (1), 1–33.

[6] Brisaboa, N. R., Gómez-Brandón, A., Navarro, G., Paramá, J. R., 2016. GraCT: A grammar
based compressed representation of trajectories. In: Proc. 23rd International Symposium on String
Processing and Information Retrieval (SPIRE). pp. 218–230.

[7] Brisaboa, N. R., Ladra, S., Navarro, G., 2014. Compact representation of web graphs with extended
functionality. Information Systems 39 (1), 152–174.

42

[8] Chakka, V. P., Everspaugh, A., Patel, J. M., 2003. Indexing large trajectory data sets with SETI.
In: Proc. Conference on Innovative Data Systems Research (CIDR).

[9] Cudre-Mauroux, P., Wu, E., Madden, S., 2010. Trajstore: An adaptive storage system for very large
trajectory data sets. In: Proc. 26th IEEE International Conference on Data Engineering (ICDE).
pp. 109–120.

[10] Douglas, D. H., Peuker, T. K., 1973. Algorithms for the reduction of the number of points required
to represent a line or its caricature. The Canadian Cartographer 10 (2), 112–122.

[11] Gog, S., Beller, T., Moffat, A., Petri, M., 2014. From theory to practice: Plug and play with succinct
data structures. In: Proc. 13th International Symposium on Experimental Algorithms (SEA). pp.
326–337.

[12] Gutiérrez, G., Navarro, G., Rodŕıguez, A., González, A., Orellana, J., 2005. A spatio-temporal
access method based on snapshots and events. In: Proc. 13th ACM International Symposium on
Advances in Geographic Information Systems (GIS). pp. 115–124.

[13] Guttman, A., 1984. R-trees: A dynamic index structure for spatial searching. In: Proc. ACM
International Conference on Management of Data (SIGMOD). pp. 47–57.

[14] Huang, S., Wang, B., Zhu, J., Wang, G., Yu, G., 2014. R-HBase: A multi-dimensional indexing
framework for cloud computing environment. In: Proc. IEEE International Conference on Data
Mining Workshop. pp. 569–574.

[15] Hughes, J. N., Annex, A., Eichelberger, C. N., Fox, A., Hulbert, A., Ronquest, M., 2015. Geomesa:
A distributed architecture for spatio-temporal fusion. In: Proc. SPIE. Vol. 9473.

[16] Keogh, E., Chu, S., Hart, D., Pazzani, M., 2001. An online algorithm for segmenting time series.
In: Proceedings 2001 IEEE International Conference on Data Mining. pp. 289–296.

[17] Kieffer, J. C., Yang, E.-H., 2000. Grammar-based codes: A new class of universal lossless source
codes. IEEE Transactions on Information Theory 46 (3), 737–754.

[18] Kuruppu, S., Puglisi, S. J., Zobel, J., 2010. Relative Lempel-Ziv compression of genomes for large-
scale storage and retrieval. In: Proc. 17th International Symposium on String Processing and
Information Retrieval (SPIRE). LNCS 6393. pp. 201–206.

[19] Larsson, N. J., Moffat, A., 2000. Off-line dictionary-based compression. Proceedings of the IEEE
88 (11), 1722–1732.

[20] Li, Q., Jianming, H., Yi, Z., 2007. A flow volumes data compression approach for traffic network
based on principal component analysis. In: Proc. IEEE Intelligent Transportation Systems Confer-
ence. pp. 125–130.

[21] Lin, X., Ma, S., Zhang, H., Wo, T., Huai, J., Mar. 2017. One-pass error bounded trajectory simpli-
fication. Proceedings of the VLDB Endowment 10 (7), 841–852.

[22] Ma, Q., Yang, B., Qian, W., Zhou, A., 2009. Query processing of massive trajectory data based
on mapreduce. In: Proc. 1st International Workshop on Cloud Data Management (CloudDB). pp.
9–16.

[23] Meratnia, N., de By, R. A., 2004. Spatiotemporal compression techniques for moving point objects.
In: Proc. 9th International Conference on Extending Database Technology, (EDBT). pp. 765–782.

[24] Muckell, J., Olsen, P. W., Hwang, J.-H., Lawson, C. T., Ravi, S. S., 2014. Compression of trajectory
data: A comprehensive evaluation and new approach. GeoInformatica 18 (3), 435–460.

[25] Munro, J. I., 1996. Tables. In: Proc. 16th Conference Foundations of Software Technology and
Theoretical Computer Science (FSTTCS). pp. 37–42.

[26] Munro, J. I., Raman, R., Raman, V., Rao, S., 2012. Succinct representations of permutations and
functions. Theoretical Computer Science 438, 74–88.

[27] Nascimento, M. A., Silva, J. R. O., 1998. Towards historical R-trees. In: Proc. ACM Symposium
on Applied Computing (SAC). pp. 235–240.

[28] Navarro, G., 2016. Compact Data Structures – A practical approach. Cambridge University Press.
[29] Ni, J., Ravishankar, C. V., 2007. Indexing spatio-temporal trajectories with efficient polynomial

approximations. IEEE Transactions on Knowledge and Data Engineering 19 (5), 663–678.
[30] Nibali, A., He, Z., 2015. Trajic: An effective compression system for trajectory data. IEEE Trans-

actions on Knowledge and Data Engineering 27 (11), 3138–3151.
[31] Nishimura, S., Das, S., Agrawal, D., El Abbadi, A., 2013. MD-HBase: design and implementation

of an elastic data infrastructure for cloud-scale location services. Distributed and Parallel Databases
31 (2), 289–319.

[32] Pfoser, D., Jensen, C. S., Theodoridis, Y., 2000. Novel approaches to the indexing of moving object
trajectories. In: Proc. 26th International Conference on Very Large Data Bases (VLDB). pp. 395–
406.

[33] Potamias, M., Patroumpas, K., Sellis, T., 2006. Sampling trajectory streams with spatiotemporal

43

criteria. In: Proc. 18th International Conference on Scientific and Statistical Database Management
(SSDBM). pp. 275–284.

[34] Sattler, M., Sarlette, R., Klein, R., 2005. Simple and efficient compression of animation sequences.
In: Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA). pp. 209–
217.

[35] Schmid, F., Richter, K.-F., Laube, P., 2009. Semantic trajectory compression. In: Proc. 11th Inter-
national Symposium on Spatial and Temporal Databases (SSTD). pp. 411–416.

[36] Song, R., Sun, W., Zheng, B., Zheng, Y., May 2014. Press: A novel framework of trajectory
compression in road networks. Proceedings of the VLDB Endowment 7 (9), 661–672.

[37] Ta, N., Li, G., Chen, B., Feng, J., 2016. Semantic-aware trajectory compression with urban road
network. In: Proc. 17th International Conference (WAIM), Part I. pp. 124–136.

[38] Tan, H., Luo, W., Ni, L. M., 2012. CloST: A hadoop-based storage system for big spatio-temporal
data analytics. In: Proc. 21st ACM International Conference on Information and Knowledge Man-
agement (CIKM). pp. 2139–2143.

[39] Tao, Y., Papadias, D., 2001. Efficient historical R-trees. In: Proc. International Conference on
Scientific and Statistical Database Management (SSDBM). pp. 223–232.

[40] Tao, Y., Papadias, D., 2001. MV3R-tree: A spatio-temporal access method for timestamp and
interval queries. In: Proc. 27th International Conference on Very Large Data Bases (VLDB). pp.
431–440.

[41] Trajcevski, G., Cao, H., Scheuermann, P., Wolfson, O., Vaccaro, D., 2006. On-line data reduction
and the quality of history in moving objects databases. In: Proc. 5th ACM International Workshop
on Data Engineering for Wireless and Mobile Access. pp. 19–26.

[42] Vazirgiannis, M., Theodoridis, Y., Sellis, T. K., 1998. Spatio-temporal composition and indexing
for large multimedia applications. ACM Multimedia Systems Journal 6 (4), 284–298.

[43] Wang, H., Zheng, K., Xu, J., Zheng, B., Zhou, X., Sadiq, S., 2014. SharkDB: An in-memory
column-oriented trajectory storage. In: Proc. 23rd ACM International Conference on Conference
on Information and Knowledge Management (CIKM). pp. 1409–1418.

[44] Wang, L., Zheng, Y., Xie, X., Ma, W.-Y., 2008. A flexible spatio-temporal indexing scheme for
large-scale GPS track retrieval. In: Proc. International Conference on Mobile Data Management
(MDM). pp. 1–8.

[45] Worboys, M. F., 2005. Event-oriented approaches to geographic phenomena. International Journal
of Geographical Information Science 19 (1), 1–28.

[46] Xu, X., Han, J., Lu, W., 1990. RT-tree: An improved R-tree index structure for spatiotemporal
databases. In: Proc. 4th International Symposium on Spatial Data Handling. Vol. 2. pp. 1040–1049.

[47] Yang, S., He, Z., Chen, Y.-P. P., 2018. GCOTraj: A storage approach for historical trajectory data
sets using grid cells ordering. Information Sciences 459, 1 – 19.

[48] Zhang, Z., Jin, C., Mao, J., Yang, X., Zhou, A., 2017. TrajSpark: A scalable and efficient in-
memory management system for big trajectory data. In: Proc. 1st International Joint Conference
APWeb-WAIM, Part I. pp. 11–26.

[49] Zheng, Y., Zhou, X. (Eds.), 2011. Computing with Spatial Trajectories. Springer.
[50] Zhou, P., Zhang, D., Salzberg, B., Cooperman, G., Kollios, G., 2005. Close pair queries in moving

object databases. In: Proc. 13th Annual ACM International Workshop on Geographic Information
Systems (GIS). pp. 2–11.

44

