
Using Compressed Suffix-Arrays for a Compact Representation of

Temporal-Graphs✩

Nieves R. Brisaboac, Diego Caroa,b, Antonio Fariña∗,c, M. Andrea Rodriguezd

aData Science Institute, Faculty of Engineering, Universidad del Desarrollo, Chile.
bTelefónica I+D Fellow, Chile

cDatabase Laboratory, University of A Coruña, Spain.
dDepartment of Computer Science, University of Concepción, Chile.

Abstract

Temporal graphs represent binary relationships that change along time. They can model the dynamism

of, for example, social and communication networks. Temporal graphs are defined as sets of contacts that

are edges tagged with the temporal intervals when they are active. This work explores the use of the

Compressed Suffix Array (CSA), a well-known compact and self-indexed data structure in the area of text

indexing, to represent large temporal graphs. The new structure, called Temporal Graph CSA (TGCSA), is

experimentally compared with the most competitive compact data structures in the state-of-the-art, namely,

EdgeLog and CET. The experimental results show that TGCSA obtains a good space-time trade-off. It

uses a reasonable space and is efficient for solving complex temporal queries. Furthermore, TGCSA has

wider expressive capabilities than EdgeLog and CET, because it is able to represent temporal graphs where

contacts on an edge can temporally overlap.

Key words: Temporal Graphs, Compressed Suffix Array, Self-index

1. Introduction

The main assumption of static graphs is that the relationship between two vertexes is always available.

However, this is not true in many real world situations. For example, consider how friendship relations

evolve in an online social network, or how the connectivity in a communication network changes when users,

with their mobile devices, move in a city. Temporal graphs deal with the time-dependence of relationships

✩Funded in part by European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement No 690941 (project BIRDS). D. Caro is partially funded by the Chilean government initiative CORFO
13CEE2-21592 (2013-21592-1-INNOVA PRODUCCION). M. A. Rodŕıguez is partially funded by Fondecyt [1170497] and
the Complex Engineering Systems Institute (CONICYT: FBO16). N. R. Brisaboa and A. Fariña were partially funded by
Xunta de Galicia/FEDER-UE [CSI: ED431G/01 and GRC: ED431C 2017/58]; by MINECO-AEI/FEDER-UE [Datos 4.0:
TIN2016-78011-C4-1-R and ETOME-RDFD3: TIN2015-69951-R]; and by MINECO-CDTI/FEDER-UE [CIEN: LPS-BIGGER
IDI-20141259 and INNTERCONECTA: uForest ITC-20161074]. An early partial version of this article appeared in Proc.

SPIRE’14 [3].
∗Corresponding author
Email addresses: brisaboa@udc.es (Nieves R. Brisaboa), dcaro@udd.cl (Diego Caro), fari@udc.es (Antonio Fariña),

andrea@udec.cl (M. Andrea Rodriguez)

Preprint submitted to Information Sciences December 28, 2018

between vertexes by representing these relationships as a set of contacts [36]. Each contact represents an edge

(i.e., two vertexes) tagged with the time interval when the edge was active. For example, in a communication

network, a contact may represent a call between users made from 4 pm to 4.05 pm.

The temporal dimension of edges adds a new constraint to the relationship between vertices not found in

static graphs: two vertexes can communicate only if there is a time-respecting path (also called journeys [36])

between them [36, 46, 50, 47, 19]. For example, in Figure 1.b (corresponding to the time aggregation of

the edges in the temporal graph of Figure 1.a), there are two paths connecting the vertexes a and d: one

through the vertex b, and the other one through c. However, there is no such path when considering the

temporal availability of the edges (a, b) and (a, c). Notice that the vertexes b and c are only reachable from

the vertex a because the edges reaching d are not available. Therefore, taking into account the temporal

dynamism of graphs allows us to exploit information about temporal correlations and causality, which would

be unfeasible through a classical analysis of static graphs [36, 19, 32].

!

"

#

$

!

"

#

$

!

"

#

$

!

"

#

$

!

"

#

$

!
"

!
#

!
$

!
%

% &

Figure 1: A temporal graph composed of four vertexes with a lifespan of four time-instants: a) A snapshot-based representation

showing the available edges per time-instants, b) the time-aggregated graph of the temporal graph.

A direct approach to represent temporal graphs could be a time-ordered sequence of snapshots (Figure

1a), one for each time instant, showing the state of the temporal graph at a time instant as a static graph.

Several centralized and distributed processing systems follow this approach (e.g. Pregel [29], Giraph1,

Neo4J2, Trinity [44]), but without specific support for temporal extensions [24].

In temporal graphs where contacts are active during long time intervals (as in a social network), consec-

utive snapshots tend to become very similar. Thus, strategies based on a sequence of snapshots are space

consuming because edges are duplicated in each snapshot. An alternative change-based approach represents

the temporal graph by the differences between snapshots; that is, by the set of edges that appear/disappear

along time. These differences can be calculated with respect to consecutive snapshots [15], or with respect

to a derived graph that diminishes the number of stored edges [38, 23, 26, 42].

The change-based approach has also been used for pre-computing reachability queries [43, 42], as some

paths may remain available for several time instants [2]. Although these works improve the time performance

1http://giraph.apache.org/
2http://neo4j.org/

2

of complex algorithms, they overlook the space cost, which becomes crucial for large temporal graphs. In

this context, a compact representation can keep larger sections or even the whole temporal graph in memory

and, in consequence, queries could become much more efficient by avoiding disk transfers.

Recently, some compact approaches to represent temporal graphs have been proposed [7, 8]. The work

in [7] presents the ckd-tree, a tree-shaped compact data structure based on the Quadtree [40], which repre-

sents a temporal graph as a point in a four dimensional space. This data structure was designed to reduce

space usage at the expense of time access in sparse temporal graphs. EdgeLog (Time Interval Log per

Edge) [8] uses a compressed inverted index, which also provides fast answers to different types of queries, in

particular, when solving adjacency queries involving the recovery of active neighbors of a vertex at a specific

time instant. CET (Compact Events ordered by Time) [8] uses a wavelet tree [34, 16] to represent temporal

graphs and is the best alternative in the state-of-the-art to answer queries related to time-instant events

that change the state of an edge.

Both EdgeLog and CET overcome the overload of storing a snapshot per each time instant by representing

the temporal graph as a log of events. These events indicate when edges become active or inactive. Then,

the activation state of a given edge can be recovered by counting how many events occurred on that edge

during a time interval. If there is an even number of events, it means that the edge has been active and

inactive several times. Conversely, if the edge has an odd number of events, it means that the last state of

the edge is active. A detailed explanation of these data structures is available in Section 2.

A main drawback of the log-based structures, such as EdgeLog and CET, is that they do not allow

the representation of time-overlapping contacts of an edge. For example, if a contact represents the data

communication between two machines X and Y during a time interval, it is impossible to represent a

second contact between X and Y during an overlapping time interval. This limitation arises because in

these structures the event that represents the activation of the second contact would be interpreted as the

deactivation event of the first contact.

The work in this paper presents and evaluates a data structure named Temporal Graph CSA (TGCSA).

The TGCSA is a compact and self-indexed structure based on a modification of the well-known Compressed

Suffix Array (CSA)[39], extensively used for text indexing. We focus on algorithms to process temporal-

adjacency queries that recover the set of active neighbors of a vertex at a given time instant. These queries

are basic blocks to solve time-respecting paths [32], which can be useful in the context of moving-object

data [30, 25], and also when analyzing activity patterns as temporally ordered sequences of actions occurring

at specific time instances or time intervals [27, 28].

We also present algorithms for answering queries that recover the snapshot of the graph at a time instant,

as well as queries to recover the state of single edges. In addition, we include a complete experimental

evaluation with real and synthetic data that compares TGCSA with EdgeLog and CET in terms of both

space and time usage. The results of this evaluation show that TGCSA opens new opportunities for the
3

application of suffix arrays [31, 39] in the context of graphs in general, and of temporal graphs in particular.

As discussed above, there are different fields where the application of our TGCSA, or other compact

existing alternatives from the state of the art such as EdgeLog or CET, can be of interest. Among others,

we can mention [45, 21]: (i) Social networks, where friendships establish connections between nodes that can

vary along time. (ii) Biological networks, where function brain connections are dynamic. (iii) Communication

networks, where nodes are connected while their exchange information. This applies to person-to-person and

machine-to-machine communication. (iv) Transportation networks, where the connectivity between nodes

can change due to scheduling and traffic conditions. In this context, one could also model movements on a

network by considering that two nodes are connected if there exists an object that moves from one to the

other node during a time interval.

The structure of this paper is as follows. Section 2 presents preliminary concepts about temporal graphs

and relevant queries on them. To make the paper self-contained, Sections 2.2 and 2.3 provide a brief overview

of both EdgeLog and CET. These are the state-of-the-art techniques we compare TGCSA with. Section 3

introduces TGCSA by showing how to modify a traditional CSA to create TGCSA. It also describes how

TGCSA solves relevant queries for temporal graphs and provides pseudocode for such operations. Finally,

this section presents a new representation of the Ψ array from CSA [17, 14], called in this work vbyte-rle,

which increases the query performance of TGCSA. Section 4 provides the experimental evaluation that uses

real and synthetic data. Final conclusions and future research directions are given in Section 5.

2. Preliminary concepts

In this section we introduce temporal graphs and a classification of the relevant basic queries that could

be of interest for most applications. We also revise previous compact representations of temporal graphs.

2.1. Temporal graph definition

Formally, a temporal graph is a set C of contacts that connect pairs of vertexes in a set V during a

time interval defined over the set T that represents the lifetime of the graph. A contact in C of an edge

(u, v) ∈ E ⊆ V × V is a 4-tuple c = (u, v, ts, te), where [ts, te) ∈ T × T is the time interval when the edge

(u, v) is active [36]. We say that an edge (u, v) is active at time t if there exists a contact (u, v, ts, te) ∈ C

such that t ∈ [ts, te). Note that this definition applies for directed graphs as we consider ordered pairs of

vertexes.

We classify operations on temporal graphs into two categories: queries for checking the connectivity

between vertexes and queries for retrieving the changes on the connectivity occurred along time. For the first

category of queries, we define four operations: (1) activeEdge checks if an edge is active. (2) directNeighbor

4

returns the active direct neighbors of a vertex. (3) reverseNeighbor gives the active reverse neighbors of a

vertex. (4) snapshot returns all the active edges. For example, in the temporal graph of Figure 2.a, we know

that at time instant t = 1 the edge (a, d) is active, the set of direct neighbors of c is {d} and the set of reverse

neighbors of d is {a, c}; whereas the snapshot at time t = 3 corresponds to the edges {(a, d), (c, d), (d, b)}.

For queries retrieving the changes on connectivity, we defined two operations: (1) activatedEdge returns

the set of edges that were activated. (2) deactivatedEdge returns the set of edges that were deactivated. For

example, given Figure 2.a at time instant t = 4, the edge {(b, a)} was activated, and the edges {(a, d), (c, d)}

were deactivated.

� �

� �

� �

� �

� � � � 	

(a) Set of contacts

� �
� � � �

� �
� � �

	
����������

� �
� � �

�

�

�

�

�

� �
� � �

(b) EdgeLog representation

Figure 2: A temporal graph of 4 vertexes and its EdgeLog representation. The reverse aggregated graph is omitted in (b).

Note that all previous queries have a time-instant or a time-interval version. In what follows, we concen-

trate on time-instant queries, which can be easily extended to answer time-interval queries, and they also

serve as the building blocks for more complex temporal measures that are based on recovering time-respecting

paths [32].

2.2. EdgeLog: Baseline representation

A simple temporal graph representation [6] stores the aggregated graph3 as |V | adjacency lists, one per

each vertex, with a sorted list of time intervals attached to each neighboring vertex indicating when that

edge is/was active. Figure 2.b shows a conceptual example.

To check if an edge (u, v) was active at time t, we first check if v appears within the adjacency list of

vertex u. If v is found, then we need to check if t falls into one of the time intervals related to (u, v) that

are represented in the time-interval list of that edge. Direct neighbors of vertex u at time t are recovered

similarly. For each neighbor v in the adjacency list of u, we check if t is within the time intervals of the edge

(u, v).

A simple representation of the aggregated graph and the temporal labels attached to vertices has two

main drawbacks: (1) it uses much space; and (2) operation reverseNeighbor requires traversing all the

3The static graph including all the edges that were active at any time during the lifetime of the temporal graph.

5

adjacency lists. The data structure EdgeLog [8] addressed these weaknesses. On the one hand, since both

the adjacency list and the time-interval list are sorted (i.e., they are of the form 〈t1, t2, t3, ..., tl〉, with

ti < ti+1), they can be represented as d-gaps 〈t1, t2 − t1, t3 − t2, ..., tl − tl−1〉, and those differences can be

compressed using a variable-length encoding (e.g., PForDelta [52], Simple16 [51], Rice codes [49]). On the

other hand, to avoid traversing all the adjacency lists in reverseNeighbor queries, EdgeLog stores a reverse

aggregated graph containing an adjacency list with all the reverse neighbors of each vertex. Therefore, to

get the reverse neighbors of vertex v at time t, we first use the reverse adjacency list to obtain the candidate

reverse neighbors of v. Then, for each candidate reverse neighbor u, we search for v in its adjacency list

and, finally, check if the edge (u, v) is active at time t (using the time-interval list of the edge).

2.2.1. Strengths and weaknesses of EdgeLog

Although EdgeLog is a simple structure using well-known technology, it is expected to be extremely

space-efficient when the temporal graph has a low number of edges per vertex and a large number of

contacts per edge. In the opposite way, a low number of contacts per edge will have a negative impact

on the compression obtained by EdgeLog (as d-gaps become large). Note also that, even with the reverse

aggregated graph to find reverse neighbors, the performance is expected to be poor if the number of edges

per vertex is high because all their adjacency lists will have to be checked.

EdgeLog was designed to be efficient for activeEdge, directNeighbor, and reverseNeighbor queries, but it

could not efficiently answer queries such as: “Find all the edges that have active contacts at time t” or “Find

all the edges that have been active only once”. This is because in such operations, all the adjacency lists

must be processed. Also, the applicability of EdgeLog is limited to temporal graphs whose contacts do not

temporally overlap; that is, it assumes that a contact of an edge ends before another contact of the same

edge starts.

2.3. CET: Compact Events ordered by Time

In CET a temporal graph is a sequence of symbol pairs that represent the changes on the connectivity

between vertexes. Each pair represents either the activation or deactivation of an edge along time. Note

that a contact of the form (u, v, ts, te) generates two changes: an activation of the edge (u, v) at time ts, and

a deactivation at time instant te. The sequence of pairs (S) is composed of the changes on the connectivity

of edges (i.e., activations or deactivations produced by all the contacts in the temporal graph) grouped by

time instant in increasing order. In Figure 3.a, we show how the sequence of changes of the temporal graph

from Figure 2.a is built. We can see that the first two entries of S correspond to the edges (a, d) and (d, b)

that are activated at time instant t0. Next entry corresponds to the activation of the edge (c, d) at time

instant t1. The fourth and fifth entries of S are related to the edge (a, d), which is deactivated at time

instant t2 and activated again at t3, respectively. The next three entries reflect the changes produced at t4

6

when the edges (a, d) and (c, d) are deactivated and (b, a) is activated. Finally, the edges (b, a) and (d, b)

are deactivated at time instant t5.

The activation state of an edge at time instant t is computed by counting how many times the pair

encoding the edge appears in the subsequence of changes within the time interval between 0 and t (in the

closed time interval). As we assume that all edges are inactive at the beginning of the lifetime, the first

occurrence of the pair means that the edge becomes active, the second occurrence means that the edge

becomes inactive, and so on. In consequence, if the pair appears an odd number of times, it means that

the state of the edge is active; otherwise, it is inactive. For example, we can see in Figure 3.a that, because

the pair ad occurs three times within interval [t0, t3), the edge (a, d) is active at time instant t3. The direct

neighbors of a vertex u at time t are also recovered using the counting strategy, but checking the frequency of

the form (u, ∗), i.e., the pairs whose first component is u. Similarly, the reverse neighbors of v are obtained

by counting the pairs that end with v.

The sequence of pairs that composes S is represented in an Interleaved Wavelet Tree (IWT) [8], a variant

of the Wavelet Tree [16, 18] capable of counting the number of occurrences of multidimensional symbols in

logarithmic time, while keeping a reduced space. The Wavelet Tree is a balanced binary tree, whose leaves

are labeled with symbols in an alphabet Σ, and whose internal nodes handle a range of the alphabet. Each

node of the Wavelet Tree represents the sequence as a bitmap with 0s and 1s, depending on the binary

code used to represent each symbol in the alphabet Σ. Figure 3.b shows the IWT representation for the

sequence of changes S of the temporal graph in Figure 2.a. (For more details on the Wavelet Tree and its

applications, refer to [34]).

In the IWT, the pairs of symbols in S are represented by an interleaved code that is the result of

interleaving the bits (Morton Code [41]) of the codes corresponding to the source and target vertexes of each

pair. Figure 3.c shows the interleaved bits for the pairs (corresponding to the edges) of the temporal graph

in Figure 2.a. Note that the symbols in pair ad are given the codes 00 and 11 respectively. Therefore, the

interleaved code for pair ad is 0101, and those four bits are represented along the wavelet tree by starting in

the root node with the first 0. Because that bit is a zero, we move to the left child in the next level where

we use the second bit of such code. This second bit is 1 and appears at the first position in the bitmap.

Subsequently, we move to the right child in the next level, and use the third bit of the code, which is the 0

at the first position of the bitmap. Finally, we move again to the left child of the node and reach the last

level where we set the last bit of the code of ad, which is 1.

The counting operation of a symbol c in the sequence S[1, i]4 is translated into counting operations over

the bitmaps in the path of the symbol c. In order to show how the counting algorithm works, let us use

the operation rankb(B, i).5 The algorithm works as follows. At the root node, if the first bit of symbol c

4For simplicity, we will use the notation V [i, j] to refer to the sequence of elements 〈V [i], . . . , V [j]〉.
5Given a bitmap B, rankb(B, i) computes the number of occurrences of bit b in B[1, i].

7

ad db cd ad ad ad ba cd db ba

0 1 1 0 0 0 0 1 1 0

ad ad ad ad ba ba

1 1 1 1 0 0

db cd cd db

0 1 1 0

ad ad ad ad

0 0 0 0

db db

1 1

ba ba

1 1

ad ad ad ad

1 1 1 1

ba ba

0 0

cd cd

0 0

db db

1 1

cd cd

1 1

a

Source

vertex

b

c

d

00

Code

01

10

11

a

Target

vertex

b

c

d

00

Code

01

10

11

Interleaved

code

ad

Edge

ba

cd

db

0101

0010

1101

1011

(b) (c)

Time instants

Changes on the connectivity of each

edge grouped by time instant

S:

S: ad db cd ad ad ad ba cd db ba

t0 t1 t2 t3 t4 t5

(a)

Figure 3: The CET data structure representing the temporal graph in Figure 2.a. The top part shows the sequence of changes

S. The bottom-left part shows the Interleaved Wavelet Tree (IWT) representation of S. The bottom-right part shows the

interleaving bits used to represent pairs of symbols in the IWT.

is 0 (1) we descend through the left (right) child of the node. At the child node, the position i is updated

to rank0(Bv, i) (rank1(Bv, i)), if the first bit of the symbol c is 0 (1). This process is recursively repeated

until we reach a leaf node. At the leaf node, the number of occurrences of the symbol c corresponds to the

updated value of i. In total, this counting strategy requires to answer O(log n) rank operations over the

bitmaps in the path of a symbol. Figure 3.b shows, with a darker background, the bitmaps used to count

how many times the symbol ad appears until the fifth position of the sequence.

2.3.1. Strengths and weaknesses of CET

One advantage of CET is its ability to retrieve reverse neighbors with the same time performance of direct

neighbors, due to the bi-dimensional representation used for storing the events of activation/deactivation of

edges. Indeed, we just need to update the retrieval range to (∗, v) to obtain the frequency of neighboring

changes of the edges whose target vertex is v.

Another advantage is that the time performance in operations about vertexes and edges is independent

of the number of contacts per query in the graph. This is because IWT allows the counting of events in

logarithmic time with respect to the number of edges (instead of a sequential counting on the history of

events). Due to the temporal arrangement of events of activation/deactivation of edges, operations regarding

events on edges are easily obtained by extracting the subsequence related to the time instant of the query.

For example, to obtain the edges that change their state at time instant t, we just need to recover the pairs

of vertexes in the section related to events occurred at time t.

Despite the advantages of CET, its main weakness is related to the counting strategy used to recover

the states of edges when contacts are active for short time intervals. For example, if we want to retrieve
8

a snapshot at a time instant t in a graph where all the edges were activated and deactivated before t, we

are forced to retrieve the frequency of all the edges (i.e., visiting each node of the IWT), although only a

small fraction of them will actually be in the output. In addition, the frequency counting does not allow

the representation of temporal graphs with overlapping contacts. This is because a symbol representing an

overlapping contact will be interpreted as a symbol denoting the deactivation of the contact.

2.4. Improved representations of EdgeLog and CET

In the previous section, the descriptions of EdgeLog and CET are given for temporal graphs where edges

can freely appear and disappear along time, with no restrictions on the number of contacts per edge. The

representation of these data structures can be improved by taking into account properties of the graph being

represented. In particular, properties such as the duration and the dynamism of contacts [19].

When all contacts last only one time instant, both EdgeLog and CET can be modified to only store the

event that activates an edge because, by definition, all edges will only remain active for one time instant.

This small modification invalidates the strategy used to check if the edge is active (i.e., the counting strategy

in CET, and the check of the interval in EdgeLog). However, it enables a new strategy to check if an edge

is active. For example, in EdgeLog, the list of time intervals per edge is replaced by a list of time instants

when an edge was active. Thus, the updated algorithm for checking the activation state of an edge at time

t is replaced by verifying if the new list of time instants contains t. Similarly in CET, the activation state

of an edge is replaced by checking if the edge appears in the subsequence related with the events occurred

at time instant t.

The data structures were also specialized for temporal graphs where each edge has only one contact, and

once activated, this contact remains active until the end of the lifetime. In the literature, these graphs are

called incremental graphs [13]. With this kind of temporal graphs, the modification is straightforward. As

all contacts end at the same time instant (i.e., at the end of the lifetime), it is not necessary to explicitly

store the events that deactivate the edges. Caro et al. [8] also used this strategy to improve the space cost of

both EdgeLog and CET data structures, without the need of updating the query algorithms. Nevertheless,

its usefulness depends on how many contacts effectively end at the last time instant of the graph.

3. CSA for Temporal graphs (TGCSA)

The Compressed Suffix Array for Temporal Graphs (TGCSA) is a new data structure adapted from

Sadakane’s Compressed Suffix Array (CSA) [39] to represent temporal graphs. Unlike EdgeLog and CET,

it can represent contacts of the same edge that temporally overlap, what makes TGCSA a more general

representation for temporal graphs.

Below we provide a brief presentation of the CSA. Then, we include a detailed description of TGCSA

where we show how to create a TGCSA and we present a modification of the main structure (Ψ) of TGCSA
9

(Section 3.4) that targets at improving its efficiency. Finally, we also show how it solves the most relevant

temporal queries.

3.1. Sadakane’s Compressed Suffix Array (CSA)

Given a sequence S[1, n] built over an alphabet Σ of length σ, the suffix array A[1, n] built on S is a

permutation of [1, n] of all the suffixes S[i, n] such that S[A[i], n] ≺ S[A[i+ 1], n] for all 1 ≤ i < n, being ≺

the lexicographic ordering [31]. In Figure 4.a, we show the suffix array A for the text S ="abracadabra".6

Because A contains all the suffixes of S in lexicographic order, this structure permits to search for any pat-

tern P [1,m] in time O(m log n) with a simple binary search of the range A[l, r] (i.e., [l, r]← binSearch(P))

that contains pointers to all the positions in S where P occurs. The term m of the cost appears because, at

each step of the binary search, one could need to compare up to m symbols from P with those in the suffix

S[A[i], A[i] +m− 1]. Unfortunately, the space needs of A are high.

To reduce the space needs, CSA [39] uses another permutation Ψ[1, n] defined in [17]. For each position

j in S pointed by A[i] = j, Ψ[i] gives the position z such that A[z] points to j + 1 = A[i] + 1. There is

a special case when A[i] = n, in which case Ψ[i] gives the position z such that A[z] = 1. In addition, two

other structures are needed, a vocabulary array V [1, σ′] with all the different symbols that appear in S, and

a bitmap D[1, n] aligned to A so that D[i] ← 1 if i = 1 or if S[A[i]] 6= S[A[i − 1]] (D[i] ← 0; otherwise).

Basically, a 1 in D marks the beginning of a range of suffixes pointed from A such that the first symbol of

these suffixes coincides. Therefore, if the ith and (i+ 1)
th

ones in D occur in D[l] and D[r], respectively,

that is, if select1(D, i) = l and select1(D, i+1) = r, it means that all the suffixes S[A[l], n], S[A[l+1], n],...

S[A[r− 1], n] pointed from the entries A[l, r− 1] start by the same symbol of the vocabulary. The bitmap D

is used to index the vocabulary array. Note that V [rank1(D, l)] = V [rank1(D, x)] ∀x ∈ [l, r−1]. Recall that

rank1(D, i) returns the number of 1s in D[1, i] and can be computed in constant time using o(n) extra bits

[22, 33], whereas select1(D, i) returns the position of the ith 1 in D. In Figure 4.b, we show the components

of the CSA for the text "abracadabra".

By using Ψ, D, and V , it is possible to perform binary search without the need of accessing A or S.

Note that, the symbol S[A[i]] pointed by A[i] can be obtained by V [rank1(D, i)], symbol S[A[i] + 1] can

be obtained by V [rank1(D,Ψ[i])], symbol S[A[i] + 2] can be obtained by V [rank1(D,Ψ[Ψ[i]])], and so on.

Recall that Ψ[i] basically indicates the position in A that points to the symbol S[A[i] + 1]. Therefore, by

using Ψ, D, and V we can obtain the symbols S[A[i], A[i] + m − 1] that we could need to compare with

P [1,m] in each step of the binary search.

In principle, Ψ would have the same space requirements as A. Fortunately, Ψ is highly compressible. It

was shown to be formed by σ subsequences of increasing values [17] and, therefore, it can be compressed to

6The $ at the end of S is a terminator that must be lexicographically smaller than all the other symbols in S.

10

a b r a c a d a b r a $

1 2 3 4 5 6 7 8 9 10 11 12

S =

A = 12 11 8 1 4 6 9 2 5 7 10 3

$ a
b

ra
c
a
d

a
b

ra
$

a
b

ra
$

a
$

a
c
a
d

a
b

ra
$

b
ra

$

b
ra

c
a
d

a
b

ra
$

c
a
d

a
b

ra
$

d
a
b

ra
$

a
d

a
b

ra
$

ra
$

ra
c
a
d

a
b

ra
$

Ψ = 4 1 7 8 9 10 11 12 6 3 2 5

V = $ a b c d r

1 2 3 4 5 6

D = 1 1 0 0 0 0 1 0 1 1 1 0

1 2 3 4 5 6 7 8 9 10 11 12

a) b)

Figure 4: The Compressed Suffix Array for the text S ="abracadabra". The left part shows the Suffix Array (A). The

right part depicts the permutation Ψ, the bitmap D, and the vocabulary V . Arrows under the elements of Ψ denote (highly

compressible) increasing values. In addition, the inverse of the Suffix Array would be A−1 = 〈4, 8, 12, 5, 9, 6, 10, 3, 7, 11, 2, 1〉.

around the zero-order entropy of S [39], and by using δ-codes to represent the differential values, a space

cost of nH0 + O(n log log σ) bits is obtained. Note that, in Figure 4.b, the arrows under Ψ denote the σ

subsequences of increasing values in Ψ. In [35], they showed that Ψ can be split into nHk + σk (for any k)

runs of consecutive values so that the differences within those runs are always 1. This permitted them to

combine δ-coding of gaps with run-length encoding (of 1-runs) yielding higher-order compression of Ψ. In

addition, to maintain fast random access to Ψ, absolute samples at regular intervals are kept.

In [14], authors adapted CSA to deal with large (integer-based) alphabets and created the integer-based

CSA (iCSA). They also showed that, in this scenario, the best compression of Ψ was obtained by combining

differential encoding of runs with Huffman [20] and run-length encoding.

As said before, Ψ, D, and V are enough to simulate the binary search for the interval A[l, r] where

pattern P occurs without keeping A and S ([l, r] ← CSA binSearch(P)). Being r − l + 1 the number of

occurrences of P in S, this permits to solve the well-known count operation. However, if one is interested in

locating those occurrences in S, A is still needed. In addition, to be able to extract the subsequence S[i, j],

we also need to keep A−1 so that we know the position in A that points to S[i]. In practice, only sampled

values of A and A−1 are stored. Non-sampled values A[i′] can be retrieved by applying i′ ← Ψ[i′] k-times

until a sampled position A[x] is reached (then A[i′] ← A[x] − k). Similarly, sampled values of A−1[i] can

be obtained by applying k-times i′ ← Ψ[i′] from the previous sample A−1[x] (starting with i′ ← x). In this

case, A−1[i] ← A−1[x] + k. From this point, the CSA is a self-index built on S that replaces S (as any

substring S[i, j] could be extracted) and does not need A anymore to perform searches.

3.2. Modifying CSA to represent Temporal Graphs

Recall that a temporal graph is a set C of contacts of the form c = (u, v, ts, te), where u and v are vertexes

(V) and a link or edge between them is active during a time interval [ts, te). Also [ts, te) ⊂ T × T , with

T being the time instants representing the lifetime of the graph. In Example 1, we include a set of five

contacts that we will use in our discussion below.

11

4

1

5

2

t
1

3

4

1

5

2

t
2

3

4

1

5

2

t
3

3

4

1

5

2

t
4

3

4

1

5

2

t
6

3

4

1

5

2

t
7

3

4

1

5

2

t
5

3

4

1

5

2

t
8

3

Figure 5: The temporal graph from Example 1.

Example 1. Let us consider the temporal graph in Figure 5 with |V | = 5 vertexes numbered 1 . . . 5 and

|T | = 8 time instants numbered 1 . . . 8. This graph contains the following five contacts: (1, 3, 1, 8), (1, 4, 5, 8),

(2, 1, 1, 6), (4, 3, 7, 8), and (4, 5, 5, 7). �

Targeting at using a CSA to obtain a self-indexed representation of a set of contacts (i.e. all their terms

regarded as a unique sequence), we discuss in this section two adaptations that we performed. The first one,

using-disjoint-alphabets, consists in assigning ids from disjoint alphabets to both vertexes and time instants.

Then, when we perform a query for a given id (or a sequence of ids) within the CSA, that id will correspond

either to a source vertex, a target vertex, a starting time instant, or an ending time instant. The second

modification consists in making Ψ cyclical on the elements of the 4-tuple representing a contact. This will

permit us to use the regular binary search procedure of the CSA to efficiently search for (and retrieve) those

contacts matching some constraints on their terms.

3.2.1. Using disjoint alphabets

Given a set of n contacts, such as the one in Example 1, our procedure to create TGCSA starts by

creating an ordered list of the n contacts, so that they are sorted by their first term, then (if they have the

same first term) by the second term, and so on. After that, these sorted contacts are regarded as a sequence

with 4n elements (S[1, 4n]), and a suffix array A[1, 4n] is built over it. This is depicted in Figure 6.

1 3 1 8 1 4 5 8 2 1 1 6 4 3 7 8 4 5 5 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S

16A 10 1 5 11 3 9 2 14 13 17 6 18 19 7 12 20 15 4 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

Figure 6: Suffix Array for the contacts from Example 1 using a unique alphabet Σ = {1, 2, 3, 4, 5, 6, 7, 8}.

If S were made up of text, A and S (or a CSA built on S) would be enough to perform searches for any

word or text substring P [1,m]. In such case, if we looked for the occurrences of symbol 5 (i.e P [1, 1] = 〈5〉),

A[12, 14] = 〈18, 19, 7〉 would indicate that there are 3 occurrences of symbol 5. They occur at S[18], S[19],

and S[7] respectively. However, in our scenario, when we search for symbol 5 (i.e. P [1, 1] = 〈5〉) we have

to be able to distinguish among the source vertex 5, the target vertex 5, the starting time instant 5 and

the ending time instant 5. This would require accessing all the entries A[i], ∀i ∈ [12, 14], and checking

12

the positions in S they are pointing to. In practice, if A[i] mod 4 = 1 then A[i] points to a source vertex;

otherwise, if A[i] mod 4 = 2 then it points to a target vertex, and so on. However, this procedure would ruin

the O(m log n) search time that would now become O(m logn+occ), where occ is the number of occurrences

of the query pattern in S.

A simple workaround to the problem above consists in using disjoint alphabets for the four terms in a

contact. In our case, we use alphabets Σ1,Σ2,Σ3, and Σ4 satisfying that Σ1 ≺ Σ2 ≺ Σ3 ≺ Σ4 (≺ indicates

lexicographic order). Note that we can always replace vertexes and time instants in the original set of

contacts by new ids satisfying this property. For example, in Figure 7, we have created a new sequence S

where: (i) the ids of the source vertexes have been kept as they were initially (Σ1 = {1, 2, 4}); (ii) the ids

of the target vertexes have been added +10 (Σ2 = {11, 13, 14, 15}); (iii) the ids of the starting time instants

have been added +20 (Σ3 = {21, 25, 27}); and (iv) the ids of the ending time instants have been added +30

(Σ4 = {36, 37, 38}). Now, when we build the suffix array for the new S, we can search for either the pattern

〈5〉, 〈15〉, 〈25〉, or 〈35〉, depending on if we want to find the occurrences of the term 5 that corresponds to

a source vertex, target vertex, starting time, or ending time, respectively. For example, we can see in the

figure that when we are searching for the starting time 5, we can simply add +20 to its id and actually use

the suffix array (or the CSA) to look for P = 〈25〉 obtaining its two occurrences pointed by A[13] and A[14].

However, to search for the target vertex 5 we would add +10 to its id and found that A[10] points to its

unique occurrence in S. In any case, we retain the original O(m log n) search time as expected.

1 13 21 38 1 14 25 38 2 11 21 36 4 13 27 38 4 15 25 37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S

16A 1 5 9 13 17 10 2 14 6 18 11 3 19 7 15 12 20 4 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

0D 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0

7 9 6 8 10 11 12 15 14 13 16 18 17 19 20 4 1 2 3 5

V 1 2 3 11 13 14 15 21 25 27 36 37 38

3 5 1 2 4‘

Figure 7: Suffix Array for the contacts from Example 1 using disjoint alphabets. The structures Ψ, D, and V for the

corresponding CSA are also depicted.

An interesting by-product that arises from the use of disjoint alphabets is that, since values from Σi

are smaller than those from Σj (∀i < j), the first quarter of entries in A (A[1, n]) will point to the first

terms of all the contacts (S[1 + 4k], ∀k ∈ [0, n)), the next n entries in A (A[n + 1, 2n]) to the second terms

(S[2 + 4k], ∀k ∈ [0, n)), and so on. Consequently, the first quarter of entries of Ψ (Ψ[1, n]) will point to a

position in the range [n + 1, 2n], because in the indexed sequence S each symbol u ∈ Σ1 is followed by a

symbol v ∈ Σ2, and so on. In this way, each entry in the last quarter of Ψ will point to a position in the

range [1, n], corresponding to the first quarter of entries in A.

13

In our example, recall we have n = 5 contacts. We can see that the entries in the four quarters of A

discussed above match that: ∀i ∈ [1, 5], A[i] mod 4 = 1; ∀i ∈ [6, 10], A[i] mod 4 = 2; ∀i ∈ [11, 15], A[i]

mod 4 = 3; and ∀i ∈ [16, 20], A[i] mod 4 = 0. In addition, in Figure 7, we have also included the Ψ

structure that arises when we build the corresponding CSA. In this case, we can also verify that it holds that:

∀i ∈ [1, 5],Ψ[i] ∈ [6, 10]; ∀i ∈ [6, 10],Ψ[i] ∈ [11, 15]; ∀i ∈ [11, 15],Ψ[i] ∈ [16, 20]; and ∀i ∈ [16, 20],Ψ[i] ∈ [1, 5].

This property will be of interest in the following section.

3.2.2. Modifying Ψ to make it cyclical on the terms of each contact

Recall that in a regular CSA, once we know that the ith entry in the underlying suffix array A points to

a position z = A[i] of the source sequence S, we can recover the entries S[z], S[z + 1], ... from the original

sequence S as S[z] = S[A[i]]← V [rank1(D, i)], the next symbol as S[z+1] = S[A[i]+1]← V [rank1(D,Ψ[i])],

the next symbol as S[z + 2] = S[A[i] + 2] ← V [rank1(D,Ψ[Ψ[i]])], and so on. Therefore, as shown in

Section 3.1, by using Ψ, D, and V , we can binary search for any pattern P obtaining the range [l, r] so that

∀i ∈ [l, r], A[i] points to the positions in S where P can be found. Then, from those positions on, we could

recover the source data of the suffixes S[A[i], ...] that start with P . Unfortunately, this mechanism allows us

to recover the source data only forward-wise (not backwards), and this is not enough in our scenario because

we typically want to search for the contacts that match a given constraint and then we want to retrieve all

their terms.

To clarify the issue above, consider, for example, when we look for the contacts whose target vertex

is v = 5 (P = 〈15〉), then we obtain its unique occurrence at the position 10 (A[10]). Consequently,

to retrieve the terms of that contact (u, v, ts, te), we would compute: v ← V [rank1(D, 10)] = 15; ts ←

V [rank1(D,Ψ[10])] = 25; te ← V [rank1(D,Ψ[Ψ[10]])] = 37. However, u′ ← V [rank1(D,Ψ[Ψ[Ψ[10]]])]

would not recover the first term of the current contact, but the first term of the next contact in S. As in

a regular CSA, to retrieve u, we would have to access A[10] = 18 to know that the target vertex v occurs

at position S[18], and consequently the source vertex u should be retrieved from S[18− 1]. Now, because S

is not actually kept in the CSA, to extract S[17], we have to know the entry x in A such that A[x] = 17.

We can use that x = A−1[17] = 5.7 Finally, by using u ← V [rank1(D,5)] = 4 we have fully recovered the

contact (4, 15, 25, 37) we were searching for. To sum up, the previous procedure would make it necessary to

use not only Ψ, D, and V , but also A and A−1 as explained in Section 3.1. Fortunately, we can modify Ψ

in such a way that it allows us to move circularly from one term to the next term within a given contact.

Recall that, due to our disjoint alphabets, if A[i](i ∈ [3n + 1, 4n]) points to the last term of the jth

contact, then Ψ[i] would store the position in A pointing to the first term of the following (j + 1)th contact

(A[i] + 1 = A[Ψ[i]]), which would be in the range [1, n]. For TGCSA, we modified these pointers in the last

7Recall A−1[j] = x indicates which position x from A points to the jth entry of S. That is, such that A[x] = j.

14

quarter of Ψ in such a way that, instead of pointing to the position x = A[Ψ[i]] corresponding to the first

term of the following contact, they point to the first term of the same contact; that is, A[Ψ′[i]] = x − 1 or

A[Ψ′[i]] = n if x = 1. The modified quarter of Ψ is depicted as Ψ′ in Figure 7. In this way, starting at

any entry i in Ψ, and following the pointers Ψ[i], Ψ[Ψ[i]], and Ψ[Ψ[Ψ[i]]], all the elements of the current

contact can be retrieved, but no entry from any other tuple will be reached. Due to this modification, in

the example above, we can recover u← V [rank1(D,Ψ[Ψ[Ψ[10]]])], and A and A−1 are no longer needed.

Note that it is not possible now to traverse the whole CSA by just using Ψ because consecutive applica-

tions of the Ψ function will cyclically obtain the four elements of the corresponding contact. However, this

small change in Ψ to make it cyclical on the terms of each contact, brings additional interesting searching

capabilities that we will exploit in Section 3.5.

3.3. Detailed construction of TGCSA

Once we have explained the need of using disjoint alphabets and the reason why we use a modified Ψ, in

this section we explain the actual procedure to build our TGCSA. In Figure 8, we depict all the structures

involved in the creation of a TGCSA representing the temporal graph in Example 1.

As indicated above, the first step to build a TGCSA is to create a sequence S with the ordered n contacts.

Hence we obtain, S[1, 4n] = 〈u1, v1, t1s, t
1
e, u

2, v2, t2s, t
2
e, . . . , u

n, vn, tns , t
n
e 〉.

8

The second step involves defining a reversible mapping that enables us to use disjoint alphabets. Let us

assume we have ν = |V | different vertexes and τ = |T | time instants. It is possible to define a reversible

mapping function that maps the terms of any original contact c = (u, v, ts, te) to c′ = (u, v + ν, ts +

2ν, te + 2ν + τ). To achieve this, we define an array gaps[1, 4] ← 〈0, ν, 2ν, 2ν + τ〉 and a set with elements

c′[i] ← c[i] + gaps[i], ∀i = 1 . . . 4. This mapping defines four ranges of entries in an alphabet Σ′ for both

vertexes and time instants such that |Σ′| = 2ν + 2τ . Note that vertex i is mapped to either the integer

i or i + ν depending on whether it is the source or target vertex of an edge. Similarly, the time instant

t is mapped to either t + gaps[3] or t + gaps[4]. This allows us to distinguish between starting/ending

vertexes/time instants by simply checking the range where their value falls into.

Observe that even though vertex i always exists in the temporal graph, either source vertex u′ = i +

gaps[1] = i or target vertex v′ = i + gaps[2] could actually not be used. Similarly, a time instant t′ could

not occur either as an initial or as an ending time of a contact, yet we could be interested in retrieving all

the edges that were active at that time t′.

To overcome the existence of holes in the alphabet Σ′, a bitmap B[1, 2ν + 2τ] is used. We set B[i]← 1

if the symbol i from Σ′ occurs in a contact, and B[i] ← 0; otherwise. Therefore, each of the four terms

8Note that the ordering is not relevant because we have a set of contacts. Therefore, we will assume that contacts are sorted

by the first term, then by the second one, and so on.

15

16

0

1 3 1 8 1 4 5 8 2 1 1 6 4 3 7 8 4 5 5 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 2 3 4 5 vertexes 1 2 3 4 5 6 7 8 times 0 5 10 18

1 2 3 4

gaps

1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
B

+gaps[0] +gaps[1] +gaps[2]
+gaps[3]

shaded

symbols do not

actually occur

in a contact

Target vertexesSource vertexes ending timesstarting times

Sid 1 5 8 13 1 6 9 13 2 4 8 11 3 5 10 13 3 7 9 12

A 1 5 9 13 17 10 2 14 6 18 11 3 19 7 15 12 20 4 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0

7 9 6 8 10 11 12 15 14 13 16 18 17 19 20 4 1 2 3 5

7 9 6 8 10 11 12 15 14 13 16 18 17 19 20 3 5 1 2 4

reg

(Original sequence)

original alphabets for

vertexes and times

new alphabet

(after gaps)

(bitmap to avoid holes)

(Indexable sequence)

iCSA is

build on Sid

Figure 8: Structures involved in the creation of a TGCSA for the temporal graph in Example 1.

within a contact (u, v, ts, te) will correspond to a 1 in B. Then an alphabet Σ of size σ = rank1(B, 4n)9 is

created containing the positions in B where 1 occurs. For each symbol i ∈ Σ′, a mapID(i) function assigns

an integer id ∈ Σ to i, so that id← mapID(i) = rank1(B, i) if B[i] = 1, and 0←mapID(i) if B[i] = 0. The

reverse mapping function is provided via unmapID(id) = select1(B, id).10

At this point, a sequence of ids Sid[1, 4n] can be created by setting Sid[i]←mapID(S[i]+gaps[i mod 4+

1]), ∀i = 1 . . . 4n. Indeed, being type = 1, 2, 3, 4, respectively, the types of source vertexes, target vertexes,

starting time instants, and ending time instants from the original sequence S, we can map any source symbol

i from S into Sid by id =getmap(i, type)← rank1(B, i+gaps[type]). Similarly, the reverse mapping obtains

i =getunmap(id, type)← select1(B, id)− gaps[type].

Once we have made up our indexable sequence Sid, an iCSA is built over it.11 Then, as discussed in

Section 3.2.2, we modified the array Ψ in our TGCSA to allow Ψ to move circularly from one term to the

next one within the same contact. To do this, we simply have to modify the last quarter of the regular Ψ

array so that, ∀i = 3n+ 1 . . . 4n, Ψ[i] ← ((Ψ[i] − 2) mod n) + 1. This small change brings an interesting

property that allows us to perform a query for any term of a contact in the same way. We use the iCSA to

binary search for a term of a contact(s), obtaining a range A[l, r], and then by circularly applying Ψ up to

three times, we can retrieve the other terms of the contact(s).

To sum up, TGCSA consists of a bitmap B, and the structures D and Ψ of the iCSA. In practice, B is

9Recall rank1(B, i) returns the number of 1s in B[1, i].
10Recall select1(B, i) computes the position of the ith 1 in B.
11We actually added four integers set to zero that make up a dummy contact (0,0,0,0) at the beginning of Sid. This is

required to avoid limit-checks at query time.

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0D 0 0 0 0 0 0 1 ...

10 145 650 779 786 788 791 150 156 305 306 307 308 309 310 311 312 313 328 460 490 1 6 586 800 . . . 850 . . . 999 ...

10 650 150 1 586 800 999 ...s0
1 3 8 15 16 16 21 ...ptr0
1 3 8 22 24 25 33 ...off0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0D1 0 0 1 0 0 0 0 ...

791 328 850 ...s1
8 13 19 ...ptr1
7 19 29 ...off1

135 129 7 2 3 6 149 1 9 15 132 30 5
vbyte-

gaps
...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

run-L9

Figure 9: Example of vbyte-rle representation of Ψ assuming tΨ = 4.

compressed using Raman et al. strategy12 [37], and for D we used a faster bitmap representation [14] using

1.375|D| bits. For the representation of Ψ we also used the best option (named huff-rle-opt) that samples

Ψ at regular intervals and then differentially encodes the remaining values [14]. Yet, we also created an

alternative representation for Ψ that is discussed in Section 3.4.

3.4. A more suitable representation of Ψ for temporal graphs: vbyte-rle strategy

The regular representation of Ψ is based on sampling the Ψ array at regular intervals (one sample every

tΨ entries) and then, differentially encoding the remaining values between two samples. In [14], they studied

different alternative encodings for the non-sampled values, and showed that the best space/time trade-off in

a text-indexing scenario was reported by coupling run-length encoding of 1-runs (sequences of +1 values)

with bit-oriented Huffman (huff-rle-opt approach). In practice, they used tΨ Huffman codes to indicate the

presence of 1-runs of length 1 . . . tΨ. They also reserved nsv Huffman codes to represent short gaps (where

nsv is a parameter typically set to 214). Finally, being ω the machine word size, 2 × ω additional Huffman

codes are used as escape codes to mark the number of bits needed to either represent a large positive gap

(g) or a negative gap (−g). In both cases, such a escape code is followed by g represented with ⌈log2 g⌉ bits.

In this paper, we present a new strategy to represent Ψ, that we called vbyte-rle, where we try to speed

up the Ψ access performance at the cost of using a little more space. An example of the structure for the

resulting Ψ representation is shown in Figure 9. We also use sampling and differentially encode non-sampled

values. Yet, we made some changes with respect to the traditional Ψ representations (i.e., huff-rle-opt), which

are summarized as follows:

• We used vbyte (byte-aligned) codes [48] rather that bit-oriented Huffman codes to differentially encode

non-sampled values. This should result in around one order of magnitude improvement in decoding

speed when sequential values of Ψ are to be retrieved. Note that in the bottom part of Figure 9, we

12Raman et al strategy allows both select1 and rank1 in O(1) time and requires |B|H0(B) + o(|B|) bits.

17

include a sequence of byte-oriented codewords (either 1 or 2-byte codewords in our example) that are

used to represent the gaps from the original Ψ structure. It can also contain a pair of codewords for

the pair 〈1, L〉 to encode a 1-run of length L. Of course, using byte-aligned rather than bit-oriented

codes will imply a loss in compression effectiveness.

• We do not sample Ψ at regular intervals. Instead of that, we keep samples aligned with the ones in

bitmap D, that is, there is a sample at the beginning of the interval in [lc, rc] corresponding to each

symbol c. This modification brings three main advantages:

(ii) We ensure that Ψ[lc] is always sampled, whereas with the traditional representation of Ψ the

previous sampled position could be in the range [lc − tΨ + 1, lc]. Therefore, lc was sampled

with probability 1/tΨ. Note that, in TGCSA, a typical access pattern to Ψ during searches

(see Section 3.5) consists in traversing all the values Ψ[lc, rc] once we know the interval [lc, rc]

corresponding to a given symbol c. This requires decoding gaps from the previous sample to lc in

huff-rle-opt to obtain synchronization at value Ψ[lc], and sequentially decoding gaps from there

on. Since lc is always sampled in vbyte-rle, we avoid that synchronization cost.

(ii) While in the traditional representation of Ψ, the differential sequence Ψ[j]−Ψ[j− 1] (j ∈ [2, 4n])

could contain up to σ/2 negative values (when i = lc belongs to a symbol c and j − 1 = rc−1 to

symbol c− 1)[17], the vbyte-rle representation does not deal with negative values because j = lc

is always a sampled position.

(iii) We do not break 1-runs. Recall that 1-runs could occur mainly within the range [lc, rc] corre-

sponding to a given symbol c. Because our first-level sampling stores only a sample at position

lc, 1-runs are no longer split. This is interesting for both space and access time because a unique

codeword can be used to represent a large 1-run sequence. In our example, we can see that the

codewords 〈1, 9〉 in vbytegaps[10, 11] represent the 1-run of length 9 within Ψ[10, 18]. That is, we

do not break the 1-run every tΨ = 4 values.

In Figure 9, we can see that samples consist of a triple of values 〈s′, ptr′, off′〉 that are aligned with the

ones in D: s′ indicates the absolute value, ptr′ is a pointer to vbytegaps sequence, and off′ indicates the

index of the sampled position. In practice, these values are set in three arrays s0[1, σ], ptr0[1, σ], and

off0[1, σ], respectively, such that if Ψ[j] = s′ is sampled, we set s0[rank1[D, j]] = s′, off0[rank1[D, j]] =

j, and ptr0[rank1[D, j]] = x.

Note that the absolute values s′ are kept explicitly in s0 and are not represented within the sequence

vbytegaps (exactly as in huff-rle-opt). For example, Ψ[1] = 10 is stored at the first entry of s0, and the

first codeword in vbytegaps represents value 135, which corresponds to the gap Ψ[2]−Ψ[1]. Hence, no

codeword in vbytegaps is associated with the sampled value Ψ[1]. Note also that x is the position in

18

vbytegaps that we have to access to recover values Ψ[j + 1, ...]. In our example, we can see that Ψ[9]

can be recovered by accessing the previous sampled value s0[3] = 150 = Ψ[8], then accessing sequence

vbytegaps at position x = ptr0[3] = 8 to obtain the gap Ψ[9] − Ψ[8] by gap = decode vbyte(x) = 6.

Finally, we recover Ψ[9] = 150+ 6 = 156. As an important remark, observe that given a symbol c, we

will use off0[c] to obtain the starting sampled position lc for the range Ψ[lc, rc]. We could skip storing

array off0 as we can compute lc = select1(D, c). This introduces a space/time trade-off that we discuss

in the next section.

Despite the advantages of the sampling structures described above, our representation has also a main

drawback: we cannot parameterize the number of samples we want to use. Thus, we can be using

a rather too dense sampling for infrequent symbols (consequently, we expect that compression will

suffer in datasets with very large vocabularies (σ ≈ n)), or we can be using a very sparse sampling for

frequent symbols c, as they will have only one sample at the beginning of the corresponding interval

[lc, rc]. This fact could slow down the access to an individual position Ψ[j], with j ∈ [lc + 1, rc]. To

overcome this, we added a second-level sampling where we sample the positions lc+ tΨ, lc+2× tΨ, . . .

(tΨ is again the sampling interval). We use a bitmap D1 (see Figure 9) to mark the positions of these

samples in Ψ, and, aligned with the ones in D1, arrays s1[1, n1], ptr1[1, n1], and off1[1, n1] keep the

sampling data (n1 is the number of ones in D1). This second-level sampling works exactly like the

first-level one with the exception that sampled values are also retained in the vbytegaps sequence. This

redundant data is kept to allow us to sequentially decode the whole values Ψ[lc +1, rc] belonging to a

given symbol c without the need to access the second-level sampling data. This is of interest when we

want to retrieve a range of consecutive values from Ψ instead of simply recovering an individual value.

3.4.1. Comparing the Space/time trade-off of vbyte-rle with huff-rle-opt.

We run experiments to compare the space/time trade-off obtained by huff-rle-opt against vbyte-rle and

vbyte-rle-select (the latter is the variant of vbyte-rle where arrays off0 and off1 are not stored). We tuned these

representations using four different sampling values for Ψ. In particular, we used values tΨ ∈ {256, 64, 16, 8}

(from sparser to denser sampling, respectively). In addition, we include in the comparison a non-compressed

baseline representation for Ψ[1, 4n] (we refer to it as plain) that represents each entry of Ψ with ⌈log 4n⌉ bits

and provides direct access to any position.

In Figures 10 and 11, we compare the space (shown as the number of bits needed to represent each entry

in Ψ) and time (in µs per entry reported) required to access all the values in Ψ for three different scenarios.

In the plots labeled by [B1] and [B2], we assume that the ranges [lc, rc] for all the symbols c ∈ [1, σ] are

known and we perform a buffered access to retrieve the values Ψ[lc, rc] for all these symbols. In scenario

[B2], we only retrieve those values Ψ[lc, rc] for symbols occurring at least 8 times (hence rc − lc− 1 ≥ 8). In
19

these buffered scenarios, synchronization is done once to obtain Ψ[lc] (except in plain that has direct access

and does not require synchronization at all) and from there on, we apply sequential decoding of subsequent

values. In the last scenario (plot labeled [S1]), we show the cost of accessing Ψ at individual positions (hence

synchronization, for the compressed variants, is required for each access to Ψ). We access sequentially all

the positions in Ψ, ∀j ∈ [1..4n].

We have run tests for all the datasets in Table 2 (described in Section 4) and show results here for

datasets: I.Comm.Net, Powerlaw, Flickr-Data, and Wikipedia-Links. We do not show plots for ba*

datasets because they obtain as fairly identical shapes as those for I.Comm.Net (yet with slightly different

x-axis).

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 12 14 16 18 20 22 24 26 28

ac
ce

ss
 t

im
e

to
 Ψ

 (
µs

ec
/p

os
.)

space (bits per Ψ entry)

Ψ buffered access test (I.Comm.Net)

[B1] huff-rle-opt
[B1] vbyte-rle

[B1] vbyte-rle-select
[B1] plain

[B2] huff-rle-opt
[B2] vbyte-rle

[B2] vbyte-rle-select
[B2] plain

0.006

0.007

 17 18 19 20 21 22 23 24 25 26

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 16 18 20 22 24 26 28 30 32 34 36

ac
ce

ss
 t

im
e

to
 Ψ

 (
µs

ec
/p

os
.)

space (bits per Ψ entry)

Ψ buffered access test (Flicker)

[B1] huff-rle-opt
[B1] vbyte-rle

[B1] vbyte-rle-select
[B1] plain

[B2] huff-rle-opt
[B2] vbyte-rle

[B2] vbyte-rle-select
[B2] plain

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 16 18 20 22 24 26 28

ac
ce

ss
 t

im
e

to
 Ψ

 (
µs

ec
/p

os
.)

space (bits per Ψ entry)

Ψ buffered access test (Powerlaw)

[B1] huff-rle-opt
[B1] vbyte-rle

[B1] vbyte-rle-select
[B1] plain

[B2] huff-rle-opt
[B2] vbyte-rle

[B2] vbyte-rle-select
[B2] plain

0.006
0.008
0.010

 20 21 22 23 24 25 26 27 28 29

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 14 16 18 20 22 24 26 28 30 32 34

ac
ce

ss
 t

im
e

to
 Ψ

 (
µs

ec
/p

os
.)

space (bits per Ψ entry)

Ψ buffered access test (Wikipedia Links)

[B1] huff-rle-opt
[B1] vbyte-rle

[B1] vbyte-rle-select
[B1] plain

[B2] huff-rle-opt
[B2] vbyte-rle

[B2] vbyte-rle-select
[B2] plain

Figure 10: Space/time trade-off for buffered access to Ψ.

We can see that the cost of the synchronization required by huff-rle-opt and the slower decoding of bit-

Huffman in comparison with vbyte make huff-rle-opt more than 5 times slower than vbyte-rle when decoding

all the entries of Ψ corresponding to a given symbol c. In Section 3.5, we will see that this particular

operation appears in most TGCSA query algorithms (a for loop after a binary search that returns the range

of Ψ values for a given symbol). The shortcoming of this speed up at recovering Ψ values is that the overall

size of Ψ increases by around 20-25%. As we expected, it can be seen that in the Flickr-Data dataset,

due to the large vocabulary size of this dataset in comparison with the number of contacts, the vbyte-rle

representation becomes unsuccessful because a plain representation of Ψ would even be smaller. We also
20

include results for the vbyte-rle-select counterpart. In this case, we do not explicitly store arrays off0 and off1,

and we require select1 operations to know the position j in Ψ corresponding to the i-th sample. In general,

when the number of synchronization operations is small (this occurs when σ is small), vbyte-rle-select offers

an interesting space/time trade-off. In particular, we can see that it typically yields the same performance

of plain baseline representation while requiring 5-40% less space.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 12 14 16 18 20 22 24 26 28

ac
ce

ss
 t

im
e

to
 Ψ

 (
µs

ec
/p

os
.)

space (bits per Ψ entry)

Ψ sequential access test (I.Comm.Net)

[S1] huff-rle-opt
[S1] vbyte-rle

[S1] vbyte-rle-select
[S1] plain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 16 18 20 22 24 26 28 30 32 34 36

ac
ce

ss
 t

im
e

to
 Ψ

 (
µs

ec
/p

os
.)

space (bits per Ψ entry)

Ψ sequential access test (Flicker)

[S1] huff-rle-opt
[S1] vbyte-rle

[S1] vbyte-rle-select
[S1] plain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 16 18 20 22 24 26 28 30

ac
ce

ss
 t

im
e

to
 Ψ

 (
µs

ec
/p

os
.)

space (bits per Ψ entry)

Ψ sequential access test (Powerlaw)

[S1] huff-rle-opt
[S1] vbyte-rle

[S1] vbyte-rle-select
[S1] plain

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 14 16 18 20 22 24 26 28 30 32 34

ac
ce

ss
 t

im
e

to
 Ψ

 (
µs

ec
/p

os
.)

space (bits per Ψ entry)

Ψ sequential access test (Wikipedia Links)

[S1] huff-rle-opt
[S1] vbyte-rle

[S1] vbyte-rle-select
[S1] plain

Figure 11: Space/time trade-off for sequential access to Ψ.

Unfortunately, not all the accesses to Ψ performed at query time will follow a sequential pattern in

TGCSA. In that case, the previous buffered retrieval of Ψ values is not applicable, and we need to perform

many random accesses to positions within Ψ. Accessing random positions implies that each access to Ψ[j]

must initially check if j is a sampled position. This is accomplished by checking if j mod tΨ = 0 in

huff-rle-opt or if access(D, j) = 1 in vbyte-rle.13 In that case Ψ[j] = s0[⌊j/tΨ⌋] or Ψ[j] = s0[rank1(D, j)],

respectively. Yet, in vbyte-rle we could still have a sampled value if access(D1, j) = 1 and we would obtain

the sampled value by Ψ[j] = s1[rank1(D1, j)].

In Figure 11, we can see that when we access individual positions of Ψ, vbyte-rle and its two-level sampling

approach is still able to improve the Ψ access time of huff-rle-opt. In general, huff-rle-opt using tΨ = 8 (very

dense setup) obtains similar values than vbyte-rle with tΨ = 64 (a relatively sparse setup). Yet, in vbyte-rle

13access(D, j) returns the value of the bit at position j in the bitmap D.

21

we still have room to decrease access time at the cost of using a denser tuning. As expected, in this scenario,

vbyte-rle-select becomes unsuccessful, and plain is unbeatable due to its direct access capabilities.

3.5. Performing queries in TGCSA

We can take advantage of the iCSA capabilities at search time to solve all the typical queries in a

temporal graph regarding direct and reverse vertexes from contacts that are active at a given time instant

t (directNeighbor and reverseNeighbor queries, respectively). Basically, we binary search the range in A[l, r]

for the given source or target vertex, and for each position i ∈ [l, r], we apply Ψ circularly up to the third

or four ranges where we can check whether or not the starting-time and ending-time constrains hold. In

Figure 12, we include the pseudocode of the algorithms to answer both directNeighbor and reverseNeighbor

queries. Note that they are almost identical with the difference that, in the former, the search begins in

the range A[lu, ru] corresponding to the source vertex, whereas in the latter the starting range A[lv, rv]

corresponds to the target vertex being searched for.

Note that the accesses to Ψ in the for loop in line 8 traverse consecutive positions i ∈ [lu, ru] (or

i ∈ [lv, rv] for reverse neighbors). Recall that we do not have direct access to all the values of Ψ, but only to

sampled positions and the remaining values require accessing the previous sample (to gain synchronization

on either the Huffman-compressed or Vbyte-compressed stream of gaps) and sequentially decoding gaps

from there on up to the desired position (see Section 3.4 for more details). Therefore, although it is not

stated in the pseudocode, we have boosted the access to consecutive positions in Ψ (i.e. Ψ[lu, ru]) by

implementing a buffered access method to Ψ. By using this buffered access method to recover Ψ[lu, ru],

we only access the sample before position lu, then we synchronize at value Ψ[lu],14 and from there on, we

sequentially decompress the remaining values in Ψ[lu+ 1, ru]. The other accesses to Ψ (i.e., Ψ[x] and Ψ[y]

in directNeighbor) are completely random and there is no room for optimization there. We will also apply

this buffered access to Ψ in the loops on the following algorithms.

When comparing queries, activeEdge is expected to be faster than directNeighbor because we can binary

search for a phrase u· v rather than by a unique vertex u, hence returning a much shorter initial range. The

pseudocode for solving the activeEdge operation at a given time instant is included in Figure 13.

To solve snapshot queries given a time instant t, which return the set of active contacts (u, v, t1, t2) such

that t1 ≤ t < t2, we can binary search the starting and ending-time intervals: [lts, rts]← CSA binSearch(getmap(t, 3))

and [lte, rte] ← CSA binSearch(getmap(t, 4)). All the contacts pointed by A[2n + 1, rts] hold t1 ≤ t and

those in A[rte + 1, 4n] hold t2 > t. Therefore, ∀i ∈ [2n + 1, rts], if Ψ[i] > rte, we recover the source and

target vertexes by Ψ[Ψ[i]] and Ψ[Ψ[Ψ[i]]], respectively. The original values are obtained via getunmap().

Figure 14 includes the pseudocode to solve snapshot queries.

14Recall Ψ[lu] is always sampled in vbyte-rle and no synchronization costs are involved.

22

DirectNeighbors (vrtx, t) //neighbors (v) of vrtx in contact (vrtx,v,t1,t2) s.t. t1 ≤ t < t2

(1) u ← getmap(vrtx, typeV ertex = 1); // maps into the final alphabet without holes

(2) if u = 0 then return ∅; // vertex does not appear as source vertex

(3) neighbors ← ∅;

(4) ts ← getmap(t, typeStartT ime = 3); te ← getmap(t, typeEndTime = 4);

(5) [lu, ru] ← CSA binSearch(u); // range A[lu, ru] for vertex u

(6) [lts, rts] ← CSA binSearch(ts); // range A[lts, rts] for starting time ts

(7) [lte, rte] ← CSA binSearch(te); // range A[lte, rte] for ending time te

(8) for i← lu to ru // checks time intervals for each occurrence of u

(9) x ← Ψ[i]; // x = position of target vertex

(10) y ← Ψ[x]; // y = position of starting time

(11) if (y ≤ rts) then

(12) z ← Ψ[y]; // z = position of ending time

(13) if (z > rte) then

(14) neighbors ← neighbors ∪ {getunmap(x, typeRevV ertex = 2)};

(15) return neighbors;

ReverseNeighbors (vrtx, t) //reverse neighbors (u) of vrtx in contact (u,vrtx,t1,t2) s.t. t1 ≤ t < t2

(1) v ← getmap(vrtx, typeRevV ertex = 2); // maps into the final alphabet without holes

(2) if v = 0 then return ∅; // vertex does not appear as target vertex

(3) rev neighbors ← ∅;

(4) ts ← getmap(t, typeStartT ime = 3); te ← getmap(t, typeEndTime = 4);

(5) [lv, rv] ← CSA binSearch(v); // range A[lv, rv] for vertex v

(6) [lts, rts] ← CSA binSearch(ts); // range A[lts, rts] for starting time ts

(7) [lte, rte] ← CSA binSearch(te); // range A[lte, rte] for ending time te

(8) for i← lv to rv // checks time intervals for each occurrence of v

(9) y ← Ψ[i];

(10) if (y ≤ rts) then

(11) z ← Ψ[y];

(12) if (z > rte) then

(13) u ← Ψ[z];

(14) rev neighbors ← rev neighbors ∪ {getunmap(u, typeV ertex = 1)};

(15) return rev neighbors;

Figure 12: Obtaining the direct neighbors (directNeighbor) and the reverse neighbors (reverseNeighbor) of a vertex in a contact

that is active at time t.

23

activeEdge (vrtxu, vrxtv , t) //checks if exists (vrtxu,vrtxv,t1,t2) s.t. t1 ≤ t < t2

(1) u ← getmap(vrtxu, typeV ertex = 1); // maps into final alphabet without holes

(2) v ← getmap(vrtxv , typeRevV ertex = 2);

(3) if u = 0 or v = 0 then return false; // edge does not exist

(4) ts ← getmap(t, typeStartT ime = 3); te ← getmap(t, typeEndTime = 4);

(5) [luv , ruv] ← CSA binSearch(uv); // range A[luv , ruv] for edge uv

(6) [lts, rts] ← CSA binSearch(ts); // range A[lts, rts] for starting time ts

(7) [lte, rte] ← CSA binSearch(te); // range A[lte, rte] for ending time te

(8) for i← luv to ruv // checks time intervals for each occurrence of uv

(9) x ← Ψ[i];

(10) y ← Ψ[x];

(11) if (y ≤ rts) then

(12) z ← Ψ[y];

(13) if (z > rte) then

(14) return true;

(15) return false;

Figure 13: Checking if an edge is active at time instant t (activeEdge operation).

Queries regarding activation/deactivation events at a given time instant t in the graph can be solved

very efficiently. A unique binary search allows TGCSA to find all the contacts that have an event at time

t. In the case of the deactivatedEdge operation, the binary search looks for the range [lte, rte] ⊆ [3n+ 1, 4n]

corresponding to contacts (u, v, t1, t2) where t2 = t, whereas for the activatedEdge operation we obtain an

interval [lts, rts] ⊆ [2n+1, 3n] corresponding to those contacts where t1 = t. From these intervals, we apply

Ψ circularly (twice or three times, respectively) up to reaching the values u and v corresponding to the

source and target vertex of these contacts. In Figure 15, we include the pseudocode for the deactivatedEdge

operation. Note that the activatedEdge operation would be similar but the loop would traverse positions

i ∈ [lts, rts] with x← Ψ[Ψ[i]] in line 5.

Taking a look at the pseudocodes presented for TGCSA query operations, we can see that we are using

the following operations during searches: (i) getmap and getunmap calls that imply performing rank and

select over B and can be solved in O(1) time. (ii) A call to CSA binSearch(p) that requires O(log n)

time and returns a range A[l, r] containing the occurrences of a pattern p. Up to two additional calls

to CSA binSearch(p′) could be needed depending on the query, also requiring O(log n) time. (iii) A loop

traversing the L = r − l + 1 entries in A[l, r] that involves only O(1) operations, typically getunmap and

accesses to Ψ. The exception is the snapshot operation that traverses always L← rts − 2n entries. To sum

up, the temporal queries in TGCSA can be solved in time O(log n+ L).

Dealing with interval queries. As indicated in Section 2, we have shown how TGCSA handles directNeighbor,

reverseNeighbor, activeEdge, snapshot, activatedEdge, and deactivatedEdge queries at a given time instant t.

Yet, these operations could be easily extended in TGCSA to time intervals. In queries that refer to checking

24

snapshot (t) //returns all the edges (u,v) s.t. ∃ contact (u,v,t1,t2) where t1 ≤ t < t2

(1) ts ← getmap(t, typeStartT ime = 3);

(2) te ← getmap(t, typeEndTime = 4);

(3) [lts, rts] ← CSA binSearch(ts); // range A[lts, rts] for starting time ts

(4) [lte, rte] ← CSA binSearch(te); // range A[lte, rte] for ending time te

(5) snap ← ∅;

(6) for i← 2n + 1 to rts

(7) z ← Ψ[i];

(8) if (z > rte) then

(9) x ← Ψ[z];

(10) y ← Ψ[x];

(11) u ← getunmap(x, typeV ertex = 1);

(12) v ← getunmap(y, typeRevV ertex = 2);

(13) snap ← snap ∪ {(u, v)};

(14) return snap;

Figure 14: snapshot operation returns the edges that are active at time instant t.

DeactivatedEdges (t) //returns all the edges (u,v) s.t. ∃ contact (u,v,t1,t2) where t2 = t

(1) te ← getmap(t, typeEndTime = 4);

(2) [lte, rte] ← CSA binSearch(te); // range A[lte, rte] for ending time te

(3) edges ← ∅;

(4) for i← lte to rte

(5) x ← Ψ[i];

(6) y ← Ψ[x];

(7) u ← getunmap(x, typeV ertex = 1);

(8) v ← getunmap(y, typeRevV ertex = 2);

(9) edges ← edges ∪ {(u, v)};

(10) return edges;

Figure 15: deactivatedEdge operation returns the edges that were deactivated at time t.

the connectivity between vertexes (the first three ones), one would be interested in contacts (u, v, t1, t2)

occurring not only at a given time instant t, but during a whole time interval [t, t′); that is, [t, t′) ⊆ [t1, t2)

(this is called strong semantics for intervals in the literature). A different option (referred to as weak se-

mantics) consists in reporting those contacts occurring at least at some point of [t, t′); that is, such that it

holds [t1, t2) ∩ [t, t′) 6= ∅. Note that for queries retrieving the changes on connectivity (activatedEdge and

deactivatedEdge), it makes no sense to distinguish between weak and strong semantics, and we would be

interested in simply checking if the connectivity changed at some point of the interval [t, t′).

If we focus on queries constrained to an interval [t, t′) under strong semantics, to solve directNeighbor

queries, we should only adapt the temporal constraint so that contacts match (y ≤ rts) AND (z > rte). Yet,

in this case, rts and rte must be the right hand of the ranges [lts, rts] and [lte, rte] corresponding to t and

25

t′, respectively. Therefore, we should modify line 4 in the pseudocode of Figure 12 to set ts ← getmap(t, 3)

and te ← getmap(t′, 4); instead of ts ← getmap(t, 3) and te ← getmap(t, 4). Algorithms reverseNeighbor (in

Figure 12) and activeEdge (in Figure 13) could be adapted by simply modifying their line 4 in the same way.

Although not considered in previous works, we could also think of defining a snapshot operation to recover

the contacts that were active during the interval [t, t′). Under strong semantics, this interval-wise snapshot

could be defined such that it would retrieve the contacts that were activated before t and deactivated after t′.

Therefore, we could see this operation as the union of the results of snapshot at a given time tx, ∀t ≤ tx < t′.

This case would only require modifying line 2 from Figure 14, to again set te ← getmap(t′, 4).

For deactivatedEdge queries at time interval [t, t′) (see Figure 15), we would have to replace lines 1 −

4 by the following: First, we map both t and t′ values to the ending times ts and te; that is, ts ←

getmap(t, 4) and te ← getmap(t′, 4). Then, we binary search for the corresponding intervals in TGCSA:

[lts, rts] ←CSA binSearch(ts) and [lte, rte] ←CSA binSearch(te). And finally, all the ending time instants

between lts and lte − 1 correspond to contacts deactivated within [t, t′). Therefore, we have to traverse the

entries in that range, that is, we would iterate (line 4) for i← lts to lte−1. A similar adaptation is possible

for activatedEdge queries.

We can also deal with weak semantics in TGCSA. As an example, we show how to adapt directNeighbor

queries to this scenario. The rest of operations can be adapted similarly. Now, a directNeighbor query for a

given vertex u constrained to an interval [t, t′) must retrieve any vertex v from a contact (u, v, t1, t2) that

were active at some time instant within [t, t′). Therefore, these contacts must match the time constraint

(t1 < t′) AND (t2 > t). Focusing on Figure 12, because we need to compare the starting time instant of the

contacts (t1) with t′, and their ending time instant (t2) with t, we would have to replace line 4 to set ts ←

getmap(t′, 3) and te ← getmap(t, 4). Finally, the sentences in lines 11− 14 in the for-loop must be changed

to modify the temporal condition. In practice, we replace them by:

(11) if ((y < lts) then

(12) z ← Ψ[y];

(13) if (z > rte) then

(14) neighbors ← neighbors ∪ {getunmap(x, typeRevV ertex = 2)};

3.6. Strengths and weaknesses of TGCSA

The strong expressive power of TGCSA is probably its main advantage with respect to other state-of-

the-art representations such as EdgeLog and CET ([12, 8]). Recall TGCSA can really represent any set of

contacts, including contacts of a given edge that temporally overlap.

Another important property is that it can answer queries over any term of a contact in the same way;

that is, searching for all the contacts of a source node u is performed exactly with the same algorithm as

searching for all the contacts starting in a specific time instant t: first a binary search is performed over one
26

Operation CET EdgeLog TGCSA

directNeighbor O(d log ν) O(d + c) O(log n + d tΨ)

reverseNeighbor O(d log ν) O(d2 + c) O(log n + d tΨ)

activeEdge O(log ν) O(d + c′) O(log n + c′ tΨ)

activatedEdge O(k log ν) O(n) O(log n + k tΨ)

deactivatedEdge O(k log ν) O(n) O(log n + k tΨ)

snapshot O(e log ν) O(n) O(logn + n tΨ)

Table 1: Comparison of the costs of the search operations in TGCSA, CET, and EdgeLog [8]. The term d denotes the degree

of the vertex of the query in the aggregated graph. The term c (c′) is the number of contacts related to the vertex (edge)

in the query. The term k is the number of contacts starting or ending at the time instant of the queries activatedEdge and

deactivatedEdge. Finally, e is the number of different edges in the aggregated graph.

of the four sectors of the array Ψ, depending on the term of the contact that is searched for (i.e., bounded

in the query), to locate the area devoted to that value, and then, for each of the entries in that area, Ψ is

applied three times to recover the other components of each contact. The overall search time is O(log n+L),

where L is the length of the range reported by the initial binary search (with the exception of the snapshot

operation). Although other data structures are more efficient for some types of queries, TGCSA has a more

regular behavior over all types of queries. Table 1 compares the cost of the query operations in TGCSA with

those of the most representative state-of-the-art counterparts: CET and EdgeLog. Furthermore, for graphs

whose contacts last for only one time instant (Point-contact Temporal Graphs), the behavior of TGCSA

improves because the suffix array only has three sections and Ψ has only to be applied twice to recover each

contact.

Observe that within the section devoted to any symbol, in each of the four quarters of Ψ, all the pointers

are always growing, which is a property that allows good compression. However, this property is also the

main drawback of this representation. When there are few occurrences of the symbols in the vocabulary;

that is, when the vocabulary is huge and there are few occurrences of each symbol, Ψ will not be very

compressible. As shown in the experimental results, the compression in some synthetic collections is poor

when the relative number of contacts per time instant is low or when the number of edges per node is low.

In these cases, the increasing areas of Ψ are small. Therefore, the differences between pointer values are

rather big, and consequently, not very compressible.

4. Experimental results

We ran several experiments with real and synthetic temporal graphs. Table 2 gives the main characteris-

tics of these graphs including: the name of each dataset, the numbers of their vertexes, edges, and contacts,

and the length of the graphs’ lifetime. In addition, we show the numbers of contacts per vertex, edges

per vertex, and contacts per edge, respectively. Finally, we show the space of a plain representation of the

original datasets (in MiB) assuming that each contact was represented with four 32-bit integers (Sizeu32),

27

or with 2⌈log ν⌉+ 2⌈log τ⌉ bits (Sizeb).

Dataset Vertexes Edges Lifetime Contacts c/ν e/ν c/e Sizeu32 Sizeb

(ν) ×103 (e) ×103 (τ) ×103 (c) ×103 (MiB) (MiB)

I.Comm.Net 10 15,940 10 19,061 1.2 1594.1 1.2 291 127

Flickr-Data 6,204 71,345 167,943 71,345 1.0 11.5 1.0 1,089 868

Powerlaw 1,000 31,979 1 32,280 1.0 32.0 1.0 493 231

Wikipedia-Links 22,608 564,224 414,347 731,468 1.3 25.0 1.3 11,161 9,417

ba100k10u1000 100 941 100 941,408 1000.0 9.4 1000.0 14,365 7,631

ba1M10p12 1,000 9,735 1,000 50,177 5.2 9.7 5.2 766 479

ba1M10u5 1,000 9,735 1,000 48,679 5.0 9.7 5.0 743 464

ba1M10u50 1,000 9,735 1,000 486,792 50.0 9.7 50.0 7,428 4,642

Table 2: Description of temporal graphs used in our experiments.

The dataset I.Comm.Net is a synthetic dataset where short communications between random vertexes

are simulated. The dataset Powerlaw is also synthetic; it simulates a power-law degree graph, where few

vertexes have many more connections than the other vertexes (following a power-law distribution), but

with a short lifetime. Flickr-Data is a real dataset that consists in an incremental temporal graph that

indicates the time instant in which two people became friends in the Flickr social network, with a temporal

granularity given in seconds, and a lifetime that starts with the creation of Flickr and ends in April 2008.

The dataset Wikipedia-Links contains the history of links between articles from the English version of the

Wikipedia with a time granularity given also in seconds. This dataset corresponds to a history dump of the

Wikipedia15 downloaded on 2014-03-04. Other synthetic datasets were built by first setting a given degree

distribution on the aggregated graph, and then assigning a number of contacts to each edge that follows

a given distribution. The time interval of each edge was selected uniformly over the lifetime. We used

the Barabási-Albert model [1] (see datasets ba* below) to generate a powerlaw degree distribution. Then

we used a uniform (U) and a pareto (P) distribution to assign the number of contacts per edge. Pareto

distributions were generated with α = 1.2, whereas for the uniform distributions, we created graphs with

5, 50, and 1000 contacts per edge.

Even though TGCSA allows us to deal with datasets where contacts could have overlapping times, in

order to allow the comparison with EdgeLog and CET, the datasets above have contacts with no time

overlapping. Yet, these datasets still allow us to show the behavior of TGCSA.

Our tests were run on a machine with two Intel(R) Xeon(R) Intel(R) E5620 CPUs @ 2.40GHz. They

sum eight-cores (sixteen siblings), yet our experiments run in a single core. The system has 64GB DDR3

RAM @ 1066Mhz. The operating system was Ubuntu 12.04 (kernel Linux version 3.2.0-79-generic), and the

compiler used was gcc 4.6.3 (option -O3). Time measures refer to CPU user-time.

In the following sections, we include experiments to compare both the space and time performance of

15Downloaded from http://dumps.wikimedia.org/enwiki/.

28

CET, EdgeLog, and TGCSA. In particular, we compare the time performance for the following queries:

directNeighbor, reverseNeighbor, activatedEdge, deactivatedEdge, and snapshot at a given time instant.

For EdgeLog and CET we used the same source code as in [8]. Therefore, EdgeLog uses an implementa-

tion in C of PForDelta from the PolyIRTK project,16 and the best space was obtained by tuning PForDelta

block-size to 32 (rather than the usual 128 value). In addition, when the number of elements to compress

is smaller than the block size, PForDelta is replaced either by the word-wise Simple16 coding [51], when

τ < 228, or by Rice codes [49] when τ ≥ 228 (both are also available in the PolyIRTK project).

The Interleaved Wavelet Tree in CET is implemented as a Wavelet Matrix [11], which keeps a good

space/time trade-off for sequences with large alphabets. Compressed bitmaps [37, 10] included in CET can

be found in the Compact Data Structures Library (libcds17).

The implementation of TGCSA is an adaptation of the implementation of iCSA18 [14]. The bitmap

representation used by D is exactly the same than in iCSA, whereas bitmap B uses the same libcds im-

plementation of Raman et al. [37] in CET. In addition, TGCSA uses huff-rle-opt strategy to represent Ψ.

We will show results including three different configurations by setting the sampling parameter on Ψ to

values tΨ ∈ {16, 64, 256}. Note that tΨ = 16 (Ψ16 in advance) corresponds to the densest sampling and

Ψ256 to the most sparse one. We have also included results for TGCSA-VB, the variant of TGCSA that

uses the vbyte-rle strategy to represent Ψ. Again, we set tΨ ∈ {16, 64, 256} for the second-level sampling in

TGCSA-VB.

A further detail is related to the Flickr-Data dataset. In this case, the ending time of all the contacts

is set to the same value (the last time instant in the timeline). Therefore, we could avoid representing this

value explicitly. We have adapted TGCSA, and also used adapted versions of CET and EdgeLog [8], in order

to index only the first three elements of the contacts. This reduces (rather slightly) the size of the resulting

structures, and also improves their overall performance. We will include both the regular TGCSA and the

TGCSA built over 3-element contacts (TGCSA-3R) when showing time performance on the Flickr-Data

dataset.

4.1. Space comparison

Table 3 shows the comparison of TGCSA and TGCSA-VB against CET, EdgeLog, and a plain baseline

representation using 2⌈log ν⌉+ 2⌈log τ⌉ bits. Finally, we also include gzip in that table (run over the source

plain-text-wise datasets) because this will allow us to compare the compressibility obtained by iCSA in

our datasets with that originally obtained when dealing with text [14]. Note that for the Flickr-Data

dataset we include two rows. The first one refers to the space obtained by the structures when we assume

16Available at http://code.google.com/p/poly-ir-toolkit/.
17Available at https://github.com/fclaude/libcds
18Available at http://vios.dc.fi.udc.es/indexing/wsi

29

Dataset TGCSA TGCSA-VB CET EdgeLog plain gzip

Ψ16 Ψ64 Ψ256 Ψ16 Ψ64 Ψ256 bit-wise def

I.Comm.Net 69.36 61.17 59.17 91.68 77.17 73.34 52.28 82.48 56.00 66.13

Flickr-Data 82.90 77.60 76.29 139.12 132.80 131.34 49.71 187.39 79.00 –

89.65 81.01 78.84 – – – – – 102.00 97.89

Powerlaw 81.66 73.85 71.92 103.88 90.69 87.50 67.97 129.88 60.00 70.01

Wikipedia-Links 78.02 67.73 65.14 104.69 94.51 92.34 57.75 137.08 108.00 50.67

ba100k10u1000 74.62 64.47 61.93 96.52 79.65 75.18 43.63 18.22 68.00 49.88

ba1M10p12 87.42 79.51 77.54 109.03 93.96 92.04 56.35 65.77 80.00 69.63

ba1M10u5 92.74 85.10 83.22 115.70 100.68 98.82 61.37 67.98 80.00 72.34

ba1M10u50 89.20 80.18 77.98 112.41 95.97 91.51 56.56 37.26 80.00 68.24

Table 3: Space comparison shown as number of bits per contact (bpc). For Flick-Data the first row assumes contacts with no

ending time.

contacts containing only three elements, hence excluding the final time instant (the plain baseline uses only

2⌈log ν⌉ + ⌈log τ⌉ bpc = 79bpc). In the case of TGCSA, this corresponds to the variant TGCSA-3R. The

space needs are shown as the number of bits needed to represent each contact (bpc).

Even tough an iCSA-based self-index built on English text typically reached the compression of gzip

[14], the compressibility of temporal graphs is not so good. Actually, the large number of 1-runs that

appear in Ψ when dealing with text is now much smaller in the TGCSA, and we are not able to reach the

compression levels of gzip in most cases. As expected, taking into account the experiments regarding the

vbyte-rle representation of Ψ that we showed in Section 3.4, we typically obtain that TGCSA-VB requires

around 20-30% more space than TGCSA. With the Flickr-Data dataset, the space usage of TGCSA-VB

is huge due to the non-parameterizable first-level sampling and the large vocabulary in such dataset.

Focusing on EdgeLog, we see that it is also unsuccessful when the number of contacts per edge is very

small. However, when there are few edges and the number of contacts per edge grows, it becomes very

interesting because its inverted lists become highly compressible. TGCSA shows a more stable behavior,

with reasonable space needs in most cases. It does not require as much space as EdgeLog when the number

of contacts per edge is small, but it cannot cope with many contacts per edge because Ψ is irregular, as

discussed above.

With respect to CET, we can see that CET obtains always a more compact representation than TGCSA,

and becomes the best overall alternative if one aims at obtaining little space cost (with the exception of

ba100k10u1000 and ba1M10u50 datasets). Yet, in the following sections we will show that TGCSA typically

performs faster.

4.2. Time comparison: Direct and Reverse neighbors operations

This section presents the evaluation of the time performance to retrieve the set of direct and reverse

neighbors that were active at a given time instant. To evaluate these operations, we generated 2, 000 queries

30

 10

 100

 1000

 10000

 40 50 60 70 80 90

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

I.Comm.Net

 0.1

 1

 10

 100

 40 60 80 100 120 140 160 180 200

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

Flickr Data

 0.1

 1

 10

 100

 1000

 60 70 80 90 100 110 120 130

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

powerlaw

 1

 10

 100

 1000

 10000

 50 60 70 80 90 100 110 120 130 140

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

Wikipedia Links

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba100k10u1000

 1

 10

 100

 1000

 10000

 50 60 70 80 90 100 110

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba1M10p12

 0.1

 1

 10

 100

 60 70 80 90 100 110 120

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba1M10u5

 1

 10

 100

 1000

 30 40 50 60 70 80 90 100 110 120

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba1M10u50

TGCSA
TGCSA-3R

TGCSA-vbyte
CET

EdgeLog

Figure 16: Space/time trade-off for directNeighbor queries.

by randomly choosing 2, 000 contacts from each graph dataset. For each selected contact (u, v, ts, te), we

took the pairs (u, ts) and (v, ts) to create the query patterns to use for directNeighbor and reverseNeighbor,

respectively. The time performance is measured in µs per contact reported and the space usage in bits per

contact (as in Table 3).

Figures 16 and 17 show the results. Despite the fact that TGCSA uses always more space than CET

to represent our temporal graphs, we can see that both techniques have similar performance at solving

directNeighbor queries when the number of contacts per vertex is small. The only exception is the synthetic

dataset ba100k10u1000 where there are 1, 000 direct neighbors for each vertex, which forces TGCSA to

sequentially check a lot of probably unsuccessful direct neighbors. We can see that in the Powerlaw and

Flickr-Data datasets, TGCSA clearly overcomes CET. Considering TGCSA-VB, it is typically faster

(around 3-5 times) than TGCSA when using the densest sampling setup. Yet, assuming that we could tune

TGCSA-VB and TGCSA to use similar space, TGCSA-VB would always be slower than TGCSA because

it would use a very sparse sampling.

Finally, in the plot corresponding to the Flickr-Data dataset, we show the gain in both space and time

that TGCSA-3R obtains with respect to TGCSA. As shown, it is worth not to explicitly represent the

31

 100

 1000

 10000

 40 50 60 70 80 90

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

I.Comm.Net

 1

 10

 100

 40 60 80 100 120 140 160 180 200

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

Flickr Data

 1

 10

 100

 1000

 60 70 80 90 100 110 120 130

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

powerlaw

 1

 10

 50 60 70 80 90 100 110 120 130 140

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

Wikipedia Links

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba100k10u1000

 1

 10

 100

 50 60 70 80 90 100 110

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba1M10p12

 1

 10

 100

 60 70 80 90 100 110 120

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba1M10u5

 1

 10

 100

 1000

 30 40 50 60 70 80 90 100 110 120

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba1M10u50

TGCSA
TGCSA-3R

TGCSA-vbyte
CET

EdgeLog

Figure 17: Space/time trade-off for reverseNeighbor queries.

32

fourth component (ending-time) of the contacts for incremental graphs. When comparing TGCSA-3R with

EdgeLog, results show that solving directNeighbor queries is indeed one of the main strengths of EdgeLog,

because EdgeLog only needs to traverse the corresponding adjacency list.

With respect to reverseNeighbor queries, we can see similar results as for directNeighbor queries when

comparing CET with TGCSA. Yet, now we can see that TGCSA (and TGCSA-VB) are clearly faster to

solve reverse- instead of direct-neighbors operations, whereas the results of CET are very similar for both

types of operations.

It is easy to understand why TGCSA is faster at reverseNeighbor queries than at directNeighbor operations.

Note that the time instants are the third and forth elements of the contacts, and the source vertex and

target vertex are, respectively, the first and second elements. Therefore, in the case of directNeighbor

operations TGCSA must traverse a range [l, r] of source vertexes i ∈ [l, r] and it has to apply ΨΨ[i] and

Ψ3[i], respectively, to reach the starting and ending time instants (in order to either accept or discard the

contact due to the time constraints). In the case of reverseNeighbor operations, the traversal starts in the

range of the target vertexes, and we save one application of Ψ to reach the time components of the contact

(we apply Ψ[i] and Ψ[Ψ[i]], respectively, to reach the starting and ending time instants of the contact). Recall

that in these operations, the first application of Ψ to obtain Ψ[i] is performed over a range of consecutive

positions i ∈ [l, r], which benefits from the buffered access to Ψ. From there on, obtaining ΨΨ[i] or ΨΨΨ[i]

requires, respectively, one or two (slower) additional random accesses to Ψ.

As expected, EdgeLog performance drastically worsens in reverseNeighbor queries. Yet, the use of the

reverse aggregated graph still allows a good performance in most cases. The exception is in the I.Comm.Net

graph, where the number of edges per vertex is high. In the other cases, the number of edges per vertex is

relatively small (from 10 to 30) and the time performance does not degrade in excess.

4.3. Time comparison: Activation and deactivation at a given time instant

This section shows the performance of activatedEdge and deactivatedEdge queries; that is, retrieving the

set of edges that have been either activated or deactivated at a given time instant. For the evaluation, we

generated 2, 000 random time instants, uniformly distributed over the lifetime of the corresponding graph.

Again, time measures are shown as the average time in µs per contact reported.

Figures 18 and 19 show the results. We can see that these types of operations are probably the best

scenario for TGCSA because they are solved by a single binary search to find the given time instant.

For example, in the case of deactivatedEdge queries at time t, the binary search returns an interval [lt, rt]

corresponding to all the contacts that are deactivated at time t. Therefore, for each i ∈ [lt, rt], we apply Ψ

circularly to recover the corresponding source vertex (u ← Ψ[i]) and target vertex (v ← ΨΨ[i]). Similarly,

for activatedEdge queries at time instant t, we apply Ψ circularly from a starting interval within the third

part of the suffix array in TGCSA.
33

 1

 10

 100

 1000

 40 50 60 70 80 90

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

I.Comm.Net

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 40 60 80 100 120 140 160 180 200

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

Flickr Data

 1

 10

 100

 60 70 80 90 100 110 120 130

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

powerlaw

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 50 60 70 80 90 100 110 120 130 140

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

Wikipedia Links

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba100k10u1000

 1

 10

 100

 1000

 10000

 100000

 50 60 70 80 90 100 110

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba1M10p12

 1

 10

 100

 1000

 10000

 100000

 60 70 80 90 100 110 120

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba1M10u5

 1

 10

 100

 1000

 10000

 30 40 50 60 70 80 90 100 110 120

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba1M10u50

TGCSA
TGCSA-3R

TGCSA-vbyte
CET

EdgeLog

Figure 18: Space/time trade-off for activatedEdge operations.

Note that the time per contact reported of TGCSA for these operations is much better than for the

directNeighbor and reverseNeighbor operations because now the traversal of the starting range and the ap-

plication of Ψ always recover one contact. For the directNeighbor and reverseNeighbor operations, however,

many checks (that implied applying Ψ to reach a starting or ending time instant) could discard a candi-

date contact and, consequently, TGCSA was doing unsuccessful work that increases the reported time per

occurrence.

As expected, TGCSA reports the best time performance for activatedEdge and deactivatedEdge opera-

tions. With the densest configuration, TGCSA slightly overcomes TGCSA-VB (being 0-40% faster). Yet,

when we set tΨ = 256, TGCSA-VB becomes around 2− 4 times faster than TGCSA.

CET still draws good results, yet it is is clearly overcome by TGCSA. We can also see that EdgeLog is

by far the slowest technique. Finally, it is interesting to note that in the Flickr-Data graph, TGCSA-3R

improves the times of TGCSA by around one third in activatedEdge queries. This is clearly expectable

because TGCSA has to apply Ψ three times to recover the source and target vertexes of the edge, whereas

TGCSA-3R requires only two Ψ applications.

34

 0.1

 1

 10

 100

 1000

 40 50 60 70 80 90

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

I.Comm.Net

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 40 60 80 100 120 140 160 180 200

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

Flickr Data

 1

 10

 100

 60 70 80 90 100 110 120 130

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

powerlaw

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 50 60 70 80 90 100 110 120 130 140

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

Wikipedia Links

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba100k10u1000

 1

 10

 100

 1000

 10000

 100000

 50 60 70 80 90 100 110

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba1M10p12

 1

 10

 100

 1000

 10000

 100000

 60 70 80 90 100 110 120

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba1M10u5

 1

 10

 100

 1000

 10000

 30 40 50 60 70 80 90 100 110 120

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

space (bpc)

ba1M10u50

TGCSA
TGCSA-3R

TGCSA-vbyte
CET

EdgeLog

Figure 19: Space/time trade-off for deactivatedEdge operations.

35

4.4. Time comparison: Snapshot operation

We studied the performance obtained when retrieving the set of all the active edges at a certain time

instant (snapshot operation). We compared the average retrieval time at five instants of the lifetime of the

temporal graphs: the first and last ones, and those at the 25%, 50%, and 75% of the lifetime in each graph.

Table 4 provides the average number of active edges per time instant, that is, the expected output size.

Timeline 0% 25% 50% 75% 100%

I.Comm.Net 19,997 19,991 19,997 19,999 19,996

Flickr-Data 2 17,428 2,313,193 17,586,575 71,345,977

Powerlaw 2,914,527 2,925,980 2,931,495 2,934,810 2,931,023

Wikipedia-Links 1 5,360,597 80,291,698 206,020,758 307,690,159

ba100k10u1000 18,847 470,948 470,824 18,786 470,061

ba1M10p12 90 4,121,832 4,866,245 4,121,871 95

ba1M10u5 90 4,864,776 4,866,275 4,863,160 94

ba1M10u50 988 4,866,241 4,866,821 4,866,351 937

Table 4: Number of contacts reported at each instant of the timeline for snapshot operations per each temporal graph.

Note that EdgeLog computes the snapshot operations with the application of directNeighbor queries over

all the vertexes in the graph. CET computes this operation as a rangeReport operation in the underlying

Wavelet Matrix [11] and its cost is logarithmic with respect to the total number of edges in the graph.

TGCSA, instead, must check which contacts match the time constraints of the query for all the candidate

contacts. As shown, this is done with a binary search to find the ranges within the suffix array with possible

both valid starting and ending time instants. That is followed by a traversal of the valid starting times

(buffered access to Ψ) to check if the end-time constraint is matched. In that case, we recover the source

and target vertexes with one and two applications of Ψ, respectively.

Figure 20 shows the results. The time measures are shown in µs per edge reported. Overall, the re-

sults show that TGCSA overcomes CET in most cases and, in particular, in the non-synthetic datasets.

TGCSA-VB draws also very good performance for snapshot operations and, as expected, it excels in

ba100k10u1000dataset due to its small vocabulary (few vertexes and short lifetime). This allows TGCSA-VB

to exploit the faster sequential decoding of vbyte-rle when compared with the huff-rle-opt that is used in

TGCSA. Note that, in this particular dataset, where CET clearly overcomes TGCSA, now TGCSA-VB is

able to reach the same performance as CET.

For these types of queries, EdgeLog has a fast decoding of posting lists based on the use of PForDelta,

but it must traverse all these lists for each source vertex. This leads to a very fast snapshot performance

when the number of retrieved contacts is high, but it becomes very slow when we recover only a few contacts.

36

 1

 10

 100

 1000

 0 25 50 75 100

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

percent of lifetime

I.Comm.Net

 0.01

 0.1

 1

 10

 100

 1000

 0 25 50 75 100

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

percent of lifetime

Flickr Data

 0.1

 1

 10

 0 25 50 75 100

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

percent of lifetime

powerlaw

 0.1

 1

 10

 100

 1000

 0 25 50 75 100

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

percent of lifetime

Wikipedia Links

 1

 10

 100

 1000

 0 25 50 75 100

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

percent of lifetime

ba100k10u1000

 0.1

 1

 10

 100

 1000

 10000

 0 25 50 75 100

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

percent of lifetime

ba1M10p12

 0.1

 1

 10

 100

 1000

 10000

 0 25 50 75 100

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

percent of lifetime

ba1M10u5

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 25 50 75 100

t
i
m
e

(
m
i
c
r
o
s
e
c
/
o
c
c
)

percent of lifetime

ba1M10u50 ba1M10u50

TGCSA Ψ256
TGCSA Ψ64
TGCSA Ψ16

TGCSA-vbyte Ψ256
TGCSA-vbyte Ψ64
TGCSA-vbyte Ψ16

CET
EdgeLog

Figure 20: Performance of snapshot operations at different time instants (percent of lifetime).

37

5. Conclusions and future work

We presented TGCSA, a new representation for temporal graphs based on the well-known CSA. We

showed how we can adapt the temporal graph so that it can be indexed with an iCSA self-index. Then, we

proposed a modification of the regular Ψ structure in iCSA in such a way that it allows us to move circularly

from one term to the other within each contact. This modification solves queries using the CSA mechanism

to search for one or more terms of the contacts. This is both fast and flexible.

In addition, we explored a new way to increase the performance of iCSA based on replacing its traditional

huff-rle-opt compressed representation of Ψ by a new representation that we called vbyte-rle. To improve

access to Ψ values, our new technique uses byte-aligned codewords instead of bit-oriented Huffman (other

traditional representations used delta and gamma codes, see [14] for more details). We also avoided sampling

Ψ at regular intervals because it is done in traditional compressed representations of Ψ. In our case, since

many operations in TGCSA imply recovering a sequence of consecutive values Ψ[lc, rc] related to a given

symbol c, we sampled the starting positions of Ψ (Ψ[lc]) for all the different symbols c. We ran experiments

that verified that our new representation is typically much faster than huff-rle-opt when we want to retrieve

a buffer with consecutive values from Ψ. Yet, it is not so advantageous when accessing values at random

positions. We created a variant of TGCSA, named TGCSA-VB, that uses the vbyte-rle approach to represent

Ψ. TGCSA-VB is up to 5 times faster than TGCSA in some operations; however, it uses around 20-30%

more space. Finally, we also adapted TGCSA to the particular case of temporal graphs where contacts have

only three terms (an edge is never deactivated). This is the particular case of the Flickr-Data dataset.

The resulting variant (referred to as TGCSA-3R) improved the results of TGCSA in both space and time.

The experimental results showed that TGCSA behaves reasonably well in space. In general, space needs

are between 50-90 bits per contact. With respect to time performance, TGCSA is very successful for queries

that can filter out many contacts from the dataset with an initial binary search in the TGCSA. This avoids

the need for sequentially checking a large number of contacts.

We compared TGCSA with CET and EdgeLog. In directNeighbor and reverseNeighbor queries, EdgeLog

is a hard rival because it is an inverted index designed to answer directNeighbor queries in a very efficient

way and it also uses a reverse aggregated graph to support reverseNeighbor queries efficiently. However,

even in this case, TGCSA solves most queries in less than 1 millisecond per contact reported. For queries

about events (i.e., activatedEdge or deactivatedEdge), in constrast, EdgeLog performs poorly and TGCSA is

clearly the fastest alternative. With respect to CET, we have shown that, even though CET typically uses

less space than TGCSA, it is also usually slower. In particular, in activatedEdge and deactivatedEdge queries

CET is around one order of magnitude slower than TGCSA.

An important feature of TGCSA is its expressive power. We can use it to represent any set of contacts

without any limitation. For example, we could deal with contacts of an edge with overlapping time intervals.

38

Also, as it was indicated above, the indexing capabilities of the CSA allow us to perform most operations

following the same structure: (i) performing an initial binary search in CSA to obtain one range (or more)

[l, r] corresponding either to the vertexes or the times in the contacts, and (ii) for all the entries in such

range (each one corresponding to a different contact), we can apply Ψ circularly to either recover the other

terms of the contacts, or to check a constraint about them.

As future work, we consider that there are two interesting lines we would like to explore in the scope

of temporal graphs. On the one hand, our new vbyte-rle allows us to improve the performance of previous

Ψ representations [14], but it requires a large amount of extra space. Likewise, the variant vbyte-rle-select

uses less space but it also shows to be slower. Since Ψ is the most important structure in TGCSA (it uses

around 80-90% of its space, and it is accessed profusely during searches), we still want to try other ways to

represent Ψ. On the other hand, we are also interested in studying the applicability of other self indexes to

the scope of this paper.

Finally, the variant of CSA shown in this paper is not only of interest in the field of temporal graphs,

but it has also opened new opportunities for the application of suffix arrays in other fields. For example, it

has obtained very good results when representing RDF datasets [4, 9]. In the future we are also planning to

study its applicability to represent other types of networks. For example, we have obtained promising results

when using a CSA-based approach to represent trajectories of moving objects constrained to a network [5].

We would expect that the flexibility of our approach could make it successful in other contexts.

References

[1] Albert, R., Barabási, A.-L., 2002. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97.

[2] Bannister, M. J., DuBois, C., Eppstein, D., Smyth, P., 2013. Windows into Relational Events: Data Structures for

Contiguous Subsequences of Edges. In: Proc. Symposium on Discrete Algorithms (SODA). pp. 856–864.

[3] Brisaboa, N. R., Caro, D., Fariña, A., Rodŕıguez, M. A., 2014. A compressed suffix-array strategy for temporal-graph

indexing. In: Proc. 21st International Symposium on String Processing and Information Retrieval (SPIRE). LNCS 8799.

pp. 77–88.

[4] Brisaboa, N. R., Cerdeira, A., Fariña, A., Navarro, G., 2015. A compact RDF store using suffix arrays. In: Proc. 22nd

International Symposium on String Processing and Information Retrieval (SPIRE). LNCS 9309. pp. 103–115.

[5] Brisaboa, N. R., Fariña, A., Galaktionov, D., Rodŕıguez, M. A., 2016. Compact trip representation over networks. In:

Proc. 23rd International Symposium on String Processing and Information Retrieval (SPIRE). LNCS 9954. pp. 240–253.

[6] Buin-Xuan, B.-M., Ferreira, A., Jarry, A., 2003. Computing shortest, fastest, and foremost journeys in dynamic networks.

Int. J. Found. Comput. Sci. 14 (02), 267–285.

[7] Caro, D., Rodŕıguez, A., Brisaboa, N. R., Fariña, A., 2016. Compressed kd-tree for temporal graphs. Knowl Inf Syst.

49 (2), 553–595.

[8] Caro, D., Rodŕıguez, M. A., Brisaboa, N. R., 2015. Data structures for temporal graphs based on compact sequence

representations. Inf. Syst. 51, 1–26.

[9] Cerdeira-Pena, A., Fariña, A., Fernández, J., Mart́ınez-Prieto, M., 2016. Self-indexing RDF archives. In: Proc. Data

Compression Conference (DCC). pp. 526–535.

39

[10] Claude, F., Navarro, G., 2009. Practical rank/select queries over arbitrary sequences. In: Proc. 15th International Sym-

posium on String Processing and Information Retrieval (SPIRE). LNCS 5280. pp. 176–187.

[11] Claude, F., Navarro, G., Ordóñez, A., 2015. The wavelet matrix: An efficient wavelet tree for large alphabets. Inf. Syst.

47, 15–32.

[12] de Bernardo, G., Brisaboa, N. R., Caro, D., Rodŕıguez, M. A., 2013. Compact data structures for temporal graphs. In:

Proc. Data Compression Conference (DCC). p. 477.

[13] Demetrescu, C., Eppstein, D., Galil, Z., Italiano, G. F., 2010. Algorithms and Theory of Computation Handbook. Chapman

& Hall/CRC, Ch. Dynamic Graph Algorithms, pp. 9:1–9:27.

[14] Fariña, A., Brisaboa, N. R., Navarro, G., Claude, F., Places, A. S., Rodŕıguez, E., 2012. Word-based self-indexes for

natural language text. ACM Trans. Inf. Syst. 30 (1), 1:1–1:34.

[15] Ferreira, A., Viennot, L., 2002. A Note on Models, Algorithms, and Data Structures for Dynamic Communication Net-

works. Tech. rep., MASCOTTE - INRIA Sophia Antipolis / Laboratoire I3S , HIPERCOM - INRIA Rocquencourt.

[16] Grossi, R., Gupta, A., Vitter, J. S., 2003. High-order entropy-compressed text indexes. In: Proc. Symposium on Discrete

algorithms (SODA). pp. 841–850.

[17] Grossi, R., Vitter, J., 2000. Compressed suffix arrays and suffix trees with applications to text indexing and string matching.

In: Proc. ACM Symposium on Theory of Computing (STOC). pp. 397–406.

[18] Grossi, R., Vitter, J. S., Xu, B., 2011. Wavelet trees: From theory to practice. In: Proc. International Conference on Data

Compression, Communications and Processing (CCP). pp. 210–221.

[19] Holme, P., Saramäki, J., 2012. Temporal networks. Phys. Rep. 519 (3), 97–125.

[20] Huffman, D. A., 1952. A method for the construction of minimum-redundancy codes. Proc. IRE 40 (9), 1098–1101.

[21] Hulovatyy, Y., Chen, H., Milenković, T., 2015. Exploring the structure and function of temporal networks with dynamic

graphlets. Bioinformatics 31 (12), i171–i180.

[22] Jacobson, G., 1989. Space-efficient static trees and graphs. In: Proc. Symposium on Foundations of Computer Science

(FOCS). pp. 549–554.

[23] Khurana, U., Deshpande, A., 2013. Efficient snapshot retrieval over historical graph data. In: Proc. International Confer-

ence on Data Engineering (ICDE). pp. 997–1008.

[24] Kosmatopoulos, A., Giannakopoulou, K., Papadopoulos, A. N., Tsichlas, K., 2016. An overview of methods for handling

evolving graph sequences. In: Revised Selected Papers of the 1st International Workshop on Algorithmic Aspects of Cloud

Computing (ALGOCLOUD). LNCS 9511. pp. 181–192.

[25] Krogh, B. B., Pelekis, N., Theodoridis, Y., Torp, K., 2014. Path-based queries on trajectory data. In: Proc. 22nd ACM

SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL). pp. 341–350.

[26] Labouseur, A. G., Olsen, Jr, P. W., Hwang, J.-H., 2013. Scalable and Robust Management of Dynamic Graph Data. In:

Proc. International Workshop on Big Dynamic Distributed Data (BD3@VLDB). pp. 43–48.

[27] Liu, Y., Nie, L., Han, L., Zhang, L., Rosenblum, D. S., 2016. Action2activity: Recognizing complex activities from sensor

data. CoRR http://arxiv.org/abs/1611.01872.

[28] Liu, Y., Nie, L., Liu, L., Rosenblum, D. S., 2016. From action to activity: Sensor-based activity recognition. Neurocom-

puting 181, 108–115.

[29] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., Czajkowski, G., 2010. Pregel: A system for

large-scale graph processing. In: Proc. of the International Conference on Management of Data. (SIGMOD). pp. 135–146.

[30] Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D. W., 2004. Mining, indexing, and querying

historical spatiotemporal data. In: Proc. 10th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (SIGKDD). pp. 236–245.

[31] Manber, U., Myers, G., 1993. Suffix arrays: a new method for on-line string searches. SIAM J. Comput. 22 (5), 935–948.

40

[32] Michail, O., 2016. An introduction to temporal graphs: An algorithmic perspective. Internet Math. 12 (4), 239–280.

[33] Munro, I., 1996. Tables. In: Proc. Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS). LNCS 1180. pp. 37–42.

[34] Navarro, G., 2014. Wavelet trees for all. J. Discrete Algorithms 25, 2–20.

[35] Navarro, G., Mäkinen, V., 2007. Compressed full-text indexes. ACM Comput. Surv. 39 (1), article No. 2.

[36] Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., Latora, V., 2013. Temporal Networks. Springer Berlin

Heidelberg, Ch. Graph Metrics for Temporal Networks, pp. 15–40.

[37] Raman, R., Raman, V., Satti, S. R., 2007. Succinct indexable dictionaries with applications to encoding k-ary trees, prefix

sums and multisets. ACM Trans. Algorithms 3 (4), article No. 43.

[38] Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R., 2011. On Querying Historical Evolving Graph Sequences. In: Proc. Very

Large Databases Endowment (VLDB). pp. 726–737.

[39] Sadakane, K., 2003. New text indexing functionalities of the compressed suffix arrays. J. Algorithms 48 (2), 294–313.

[40] Samet, H., 1984. The quadtree and related hierarchical data structures. ACM Comput. Surv. 16 (2), 187–260.

[41] Samet, H., 2006. Foundations of Multidimensional And Metric Data Structures. Morgan Kaufmann.

[42] Semertzidis, K., Pitoura, E., 2016. Durable graph pattern queries on historical graphs. In: Proc. International Conference

on Data Engineering (ICDE). pp. 541–552.

[43] Semertzidis, K., Pitoura, E., 2016. Time traveling in graphs using a graph database. In: Proc. International Conference

on Extending Database Technology (EDBT).

[44] Shao, B., Wang, H., Li, Y., Jun. 2013. Trinity: A Distributed Graph Engine on a Memory Cloud. In: Proc. International

Conference on Management of Data. (SIGMOD). pp. 505–516.

[45] Shmueli, E., Altshuler, Y., Pentland, A., 2014. Temporal dynamics of scale-free networks. In: Proc. 7th International

Conference on Social Computing, Behavioral-Cultural Modeling and Prediction (SBP). LNCS 8393. Springer, pp. 359–

366.

[46] Sizemore, A. E., Bassett, D. S., 2017. Dynamic graph metrics: Tutorial, toolbox, and tale. NeuroImage, In press .

[47] Tang, J., Leontiadis, I., Scellato, S., Nicosia, V., Mascolo, C., 2013. Applications of Temporal Graph Metrics to Real-World

Networks. Springer Berlin Heidelberg, Berlin, Heidelberg, Ch. 7, pp. 135–159.

[48] Williams, H., Zobel, J., 1999. Compressing integers for fast file access. Comput. J. 42, 193–201.

[49] Witten, I., Moffat, A., Bell, T., 1999. Managing Gigabytes, 2nd Edition. Morgan Kaufmann.

[50] Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y., May 2014. Path problems in temporal graphs. Proc. VLDB

Endowment 7 (9), 721–732.

[51] Zhang, J., Long, X., Suel, T., 2008. Performance of compressed inverted list caching in search engines. In: Proc. Interna-

tional Conference on World Wide Web (WWW). pp. 387–396.

[52] Zukowski, M., Heman, S., Nes, N., Boncz, P., 2006. Super-scalar RAM-CPU cache compression. In: Proc. International

Conference on Data Engineering (ICDE). p. 59.

41

