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Even though the field of spatial databases is more than forty years old, most
existing logical data models are highly-focused either on spatial objects (vector
data models) or spatial fields (raster data models). Furthermore, spatial index
structures and query algorithms are still proposed for one of the approaches and
little research work has been dedicated to index structures and query algorithms
where both types of information are needed. However, due to the current high
availability of different types of data, it is much more common nowadays that

applications require querying vector and raster data at the same time.
This paper presents a method to perform a spatial query between a vector dataset
represented using an R-tree and a raster dataset represented using a compact
and space-efficient data structure called k

2-tree that saves main memory space.
Therefore, the method described in this paper solves two problems: first, it can be
used to evaluate queries between vector and raster data without having to convert
one of the datasets to the other data model; and second, it saves main memory

space, thus obtaining a more scalable system.
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1. INTRODUCTION

The efficient management of spatial information has
been a field with much research interest over the last
decades that has produced several spatial data models.
On the conceptual level, these models describe the space
using two different approaches: object-based spatial

models and field-based spatial models [1]. Considering
the logical level, spatial data models can be divided into
two categories: vector models that represent geographic
information using finite sequences of points and line
segments, and raster models that represent geographic
information partitioning space into a finite grid of cells
and assigning a value to each cell [2]. Even though
any logical spatial model can be used to represent any
conceptual spatial model, vector models are often used
for object-based models and raster models are often
used for field-based models.
Current trends like the open data movement,

the interoperability programs, and the spatial data
infrastructures have greatly increased the availability
of different types of spatial data. Most national
geographic agencies are using digital cartography and

many are publishing cartography using spatial data
infrastructures. Public and private organizations offer
free and commercial geographic information using
airborne and satellite remote sensing technologies.
Finally, the quality of user-generated geographic
information is increasing and it is becoming an
alternative to the information provided by government
agencies and private industry. These trends result
in high-quality vector and raster information being
readily available to practitioners. Furthermore, current
application scenarios often require querying vector
and raster data at the same time. For instance,
public health management services require retrieving
populated places (vector data) that will exceed 30
degrees celsius (raster data), or the neighborhoods of
a big city (vector data) with levels of nitrogen dioxide
above 40 micrograms/m3 (raster data).

In order to support the increasing complexity and
storage requirements of geographic information and
the new application scenarios, several efficient data
structures, algorithms, and access methods have been
proposed for each category of logical spatial models [3,
4]. However, most of the authors focus their work
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on querying information represented using one of the
spatial models, and little research work has been
dedicated to index structures and query algorithms
where both types of information are used. The
appearance of the new NoSQL systems [5, 6], or the
column databases [7], which try to face many of the
problems of classical database management systems,
bring new ways of storing and managing spatial data
since many of them have been coupled with spatial
information support [8, 9, 10]. However, in many cases,
that support is limited [11]. For example, most of
them support either only vectorial data or only raster
data [12], in the best cases with the data types and
operations of the Simple Features standard of Open
Geospatial Consortium (OGC) [13] and classic index
methods such as R-trees [10, 8].
Another field that has also received much attention

in the last years is the research on compact data
structures [14, 15]. The rationale behind this research
line is that compact data structures can be stored
in upper levels of the memory hierarchy. Moreover,
these structures manage data directly in compressed
form and they can access a given datum without
decompressing the whole dataset from the beginning.
Therefore, it is possible to store large portions or the
entire dataset in main memory, and access times are
reduced by several orders of magnitude. Therefore,
they are suitable for memory-limited scenarios such as
applications with huge datasets (e.g., querying remote-
sensed and meteorological information, or analyzing
the behavior of spatio-temporal objects such as ships,
planes, cars or people using their recorded tracks).
However, research on spatial access methods and query
algorithms focuses on disk-based structures and few
research work has considered compact data structures.
In this paper we present a method to perform a

spatial query between a vector dataset represented
using an R-tree [16, 17] and a raster dataset represented
using a compact data structure called k2-tree [18]. Our
method has two key advantages over existing proposals:
first, it can be used to evaluate queries between vector
and raster data without having to convert one of the
datasets to the other data model; and second, raster
data is represented using a compact data structure
to achieve better access times and a more scalable
system. The usual strategy to manage huge raster
datasets is to use big hardware resources, instead, the
main contribution of this paper is that we use a more
intelligent software approach to make a better usage
of the limited main memory. We still maintain the
classic R-tree for the vector dataset instead of using a
compact data structure, yet this is a pragmatic decision
since nowadays the R-tree is the de facto standard in
the industry to deal with vector information, and it is
difficult to improve its features.
Our method is able to answer several queries

involving vector and raster data. Among them, we can
provide the Minimum Bounding Rectangles (MBRs)

stored in an R-tree that overlap regions of a raster
having values in a range [vb, ve]. In our experiments,
we compare our proposal against two baselines that
compute that query storing the complete input raster
in main memory. We have found that our method
is specially suited for datasets that have a moderate
number of different values (in the order of thousands,
i.e., using integer value of the cells), which is a
reasonable assumption considering the spatial locality
property of spatial data stated by Tobler’s law [19]. Our
results show that our approach uses up to 18 times less
space of main memory and the query time is up to 19
times faster than the baselines.
The rest of the paper is structured as follows.

Section 2 presents related work regarding querying
vector and raster data and the use of compact structures
to represent spatial information. Section 3 presents the
k2-tree data structure in detail. Section 4 shows our
algorithms to query raster datasets. Section 5 presents
our experimental study. Finally, Section 6 analyses the
results of the experiments and presents the conclusions
and future work.

2. RELATED WORK

In this section, we review works that deal with querying
vector and raster data at the same time. The k2-tree
will be presented in the next section. The R-tree is not
described because it is a well-known structure.
It is widely accepted that spatial information is better

represented in systems that are capable of managing
both raster and vector data, since depending on the
type of spatial data, it may be more appropriate to
use one of the two models [20]. The models and
languages described in [21, 22, 23] include data types
and operators to represent and query vector and raster
data in traditional database models. However, these
models force the user to know and use two different
sets of operations, one for vector data and another
one for raster data. In [24], a single data model
and language is used to represent vector and raster
data. However, the model is based on constraints,
and therefore it might not be intuitive and friendly for
many users. Finally, [25] describes a model based on
multidimensional arrays to manage scientific data that
could also manage vector and traditional data using
arrays. However, these proposals only describe data
types and operators to process raster information, and
in some cases, to manipulate jointly raster and vector
information, yet nothing is said about implementation
issues.
Since there is no OGC standard, real systems

supporting raster datasets adopt the de facto standard
called Map Algebra [26, 27]. The Map Algebra defines a
set of primitive operations which have rasters as input.
Examples of real systems including Map Algebra can be
the ArcGis of ESRI, QGIS, GDMS-R [28] or GRASS. In
some systems, as for example ArcGis, QGis, or GRASS,
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the zonal statistics operation of Map Algebra admits as
input one vector dataset. However, at least in ArcGis
and in GRASS, the vector dataset is converted to raster
before running the query [29, 30]. GDMS-R is capable
of homogeneously integrating different data sources,
including vector and raster. This system also provides
a homogeneous way of querying those data sources by
means of an extension of SQL. However, in [28], there
are no implementation details or details on operations
involving raster and vector datasets, yet in an example
shown in the paper, seems that to operate over raster
datasets and vectorial datasets, a previous conversion
of the vector dataset to raster is needed.
To the best of our knowledge the only works that face

the algorithms, data structures, and access methods
needed to process jointly raster and vector information
are [31, 32]. The first one presents five algorithms
for processing joins between an R-tree and a linear
region quadtree [33]. As in our case, these works
deal with the filtering step of the join and they leave
apart the refinement step that requires a computational
geometry algorithm. The second paper [32] faces a
different problem because it studies the predictive join
between regions and moving objects. They use again
a linear region quadtree for the raster information, but
for the moving objects, they need to use a variation
of the R-tree called TPR*-tree. Both works deal with
a binary raster. With respect to these proposals, we
use a compact data structure to represent any raster
data (not only binary data). Using the k2-tree is
conceptually the same as using a region quadtree, yet
it is a compact representation designed to allow the
management of the data in compressed form in order
to save space in main memory.
The use of compact structures to represent spatial

information is not a new idea. Until now, the
best exponent of this new trend is the wavelet tree,
which is succinct-space variant of a classical structure
by Chazelle [34]. In [35], the authors propose a
new point access method based on the wavelet tree
that is competitive in terms of query time efficiency
with a K-d-tree [36] while requiring significantly less
space. In order to perform several data-analysis
queries, [37] designed a structure based on the wavelet
tree [38], which represents a set of points in R

2,
each one with an associated value given by an
integer function. Finally, [39] introduced four new
space-efficient structures for general sets of minimum
bounding rectangles that offer large space reductions
while retaining a time performance that is reasonable
for many applications. However, these approaches do
not deal with the problem of querying vector and raster
data together.

3. THE K2-TREE

The k2-tree [18] is a representative of a new family of
data-structures and techniques that advocate to take

advantage of the higher bandwidth and lower latency
of the upper levels of the memory hierarchy [40, 41, 42].
The target is to keep the data in main memory, avoiding
disk accesses. For this sake, a new research line
proposes to represent the information in a succinct (or
compact) way using compact data structures [14, 15],
which allow to access the data without decompressing
them. Therefore, the k2-tree has three nice features:
it spatially indexes the dataset, it can allocate large
datasets in main memory, and it allows its processing
without decompressing the data structure.
The k2-tree is a data structure for the compact

representation of sparse binary matrices. The k2-tree is
based on a recursive partition of a binary matrix. First,
the matrix is divided into k2 submatrices of equal size,
where k is a parameter. In the next step, each of those
matrices is divided into k2 submatrices, and so on. We
construct a conceptual tree, where each submatrix has
a node; the root node has k2 children, which correspond
to a left to right and top to bottom ordering of its
submatrices. Recursively, each of these nodes has k2

children, and so on. Each node in the tree is represented
using a single bit: 1 if the submatrix has at least one
1, or 0 otherwise. The method continues the partition
recursively adding k2 children to each node with value 1
until the current submatrix is full of 0s or we reach the
cells of the original matrix. Figure 1 shows an example
of k2-tree representation for a binary matrix.

FIGURE 1. A binary matrix and its k
2-tree

representation, with k = 2.
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The tree is conceptual in the sense that it is never
stored as such. Bitmaps (binary sequences) are the
basis of the k2-tree. A bitmap B[1, n] stores a sequence
of n bits and provides efficient solutions for three basic
operations: ranka(B, i) counts the occurrences of the
bit a in B[1, i], selecta(B, i) locates the position for
the ith occurrence of a in B, and access(B, i) returns
the bit stored in B[i]. Several data structures (see
[43] for example) allow to solve these operations in
constant time and using n + o(n) bits of total space,
in practice, around 5% extra space over the original
bitmap. The simplest way is to store at regular intervals
accumulators storing the number of 1s (or 0s) until its
position.
The k2-tree is implemented in a very compact way

using two bitmaps: T stores all levels except the last
one, and L stores the last level. The bits in T are
placed following a levelwise traversal: first the k2 binary
values of the children of the root node, then the values
of the second level, and so on. L stores the last level
of the tree, comprising the cells values in the original
matrix. Observe in Figure 1, the first four bits of T
(1010) correspond to the four children of the root, the
first and third bits are set to one, this means that
the first and third 8 × 8 matrices (from left to right
and top to bottom) have at least one bit set to one.
Recursively, the following four bits (1010) correspond
to the decomposition of the first 8× 8 matrix, whereas
the third set of four bits (1000), corresponds to the third
8× 8 matrix. The process continues until we reach the
last level of the tree, which is represented in L.
This organization allows efficient navigation over the

conceptual tree by performing rank operations on the
bitmap T . Given a value 1 at position p in T , its k2

children will start at position pchildren = rank1(T, p) ·
k2. When the position of the children of a node
returns a position pchildren > |T |, we access instead
L[pchildren−|T |] to retrieve the actual value of the cells.
As an example, observe in Figure 1 the marked bits
in the tree. In the first level, the marked bit is the
third one, which is at position 2, since the bitmap starts
at position 0. Then the four bits corresponding to its
children start at position rank1(T, 2) · 2

2 = 2 · 4 = 8. In
that position, the set of four bits is 1000, the children
of the node represented by the first bit of that sequence
start at rank1(T, 8) · 2

2 = 5 · 4 = 20. The marked bit at
position 21 would have its children at rank1(T, 21)·2

2 =
12 · 4 = 48, that exceeds the 24 values of T , and thus it
points to L[48−24] = L[24], which is the set of four bits
(1011) corresponding to the 4× 4 submatrix shadowed
in the matrix.
The k2-tree supports queries that ask for the value

of a single cell, row/column queries or general range
reporting queries (i.e., report all the 1s in a range of
rows/columns). All the algorithms are similar, and
involve a top-down traversal of the conceptual tree.
Starting at the root (position 0 in T ), we check the
children of the current node whose submatrices intersect

with the region of interest (a single node if we are
asking for a cell, k if we are asking for a row/column,
etc.). If the child is a region of zeros (T [p] = 0) the
current branch is discarded. In other case, we find the
children of the current node using the explained rank
operation and repeat the process recursively. The space
partitioning used allows us to compute easily which of
the submatrices should be explored and to keep track
of the actual row/column for each result found in L.
Different enhancements have been proposed to the

original k2-tree. Among them, there is a dynamic
version of the k2-tree called dk2-tree [44], which
supports all the query algorithms of the k2-tree and
allows us to change the contents of the binary matrix
efficiently.

3.1. k2-tree with compression of ones

The k2-tree was designed for the representation of
sparse matrices. It obtains good compression results
when the matrix has a relatively small number of
ones and they are somehow clustered. However, when
representing raster data the binary matrix representing
the regions is expected to have large regions full of ones.
To better represent matrices with large regions of ones,
k2-tree variants with compression of ones have been
proposed [45].
The k2-tree variants with compression of ones are

based on a change in the matrix decomposition: instead
of stopping the decomposition process only when the
current submatrix is full of 0s, decomposition stops
when the current submatrix is uniform (it is either full
of 0s or full of 1s). This change reduces the number
of nodes in the conceptual tree because the subtrees
that cover regions full of 1s can be simply replaced by
a single node in the new conceptual tree. However,
a single bit does not suffice now to encode each node
because we must distinguish between internal nodes and
two kinds of leaves: those that represent regions of 0s
(white nodes) and those that represent regions of 1s
(black nodes).
In this paper we will work with the 2-bits

variant presented in [45] because it obtains the best
compression and query times in general. In this
representation, each internal node is still encoded with
value 1, and leaf nodes are assigned the value 0.
However, each leaf node (except those in the last level
of decomposition) is assigned a second bit to indicate
whether it represents a region of 0s or a region of 1s. In
the last level of decomposition each node corresponds
to a cell, so a single bit is used to store the actual value
of the cell. The actual k2-tree data structure is stored
in 3 bitmaps: T stores the first bit from each node
except those in the last level, T ′ stores the second bit
of all the leaves, and L stores the bits of the last level
of the conceptual tree. Figure 2 shows a k2-tree with
compression of ones and the bitmaps generated for the
matrix of Figure 1. The k2-tree with compression of
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ones can be navigated as efficiently as the original k2-
tree, just performing an additional check at T ′ when we
find a 0 in T .

FIGURE 2. A k
2-tree with compression of ones.

Observe that the k2-tree with compression of ones
uses the same partitioning of the space as the classic
region quadtree [46, 47], yet the data structures are
different. The k2-tree with compression of ones has
been compared with the linear region quadtree [3]
to represent binary raster images. In real raster
coverages the k2-tree representation has been proved to
require much less space than a classic linear quadtree
implementation. Its access times are also several times
faster than a linear quadtree, even if the linear quadtree
is stored completely in memory [45].

3.2. k2-trees to represent a non-binary variable

With the k2-trees shown until now, we can only
represent binary rasters, like for example, the area
covered by a flood. A structure based on the k2-tree
capable of efficiently storing rasters representing a non-
binary variable was presented in [45]. Assume that the
raster cells can store m different values and that vi
denotes the ith value in ascending order. To represent a
raster dataset, we can use a collection of m−1 k2-trees,
kv1 , kv2 , . . . , kvm−1. In the ith k2-tree, the cells where
the value in the original raster is less than or equal to
vi are set to 1. An example can be seen in Figure 3. In
the upper part we show a raster storing values between
1 and 6 in each cell. The five binary matrices for values
1 to 5, that would be represented using a k2-tree for
each matrix, can be seen in the lower part of the figure.
Observe that we do not need to store the k2-tree for
value 6, since such a tree would have all its cells set to
1.
Using this structure, we can efficiently answer

different queries (there is a detailed analysis of space
and time efficiency in [45]):

• To obtain the value of a given cell, we can binary

FIGURE 3. A collection of binary matrices representing
a raster.

search the first k2-tree that contains the desired
cell set to 1. In our example, if we wish to know
which is the value of the cell in the eighth row and
fourth column, the first k2-tree with that position
set to 1 is the fifth one, so that cell has value 5.

• To obtain the cells with a given value vj , we have
to access two trees, kvj and kvj−1

. The result are
the cells of kvj which are set to 1 while in kvj−1

were set to 0. If we wish to know which cells have
value 3, we take k3 and we subtract k2. That is,
we set to 0 all the cells of k3 where k2 has a 1 (see
Figure 4). Efficient set operations over k2-trees are
described in [48].

FIGURE 4. Cells with value 3.
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• The process to get the cells with values within a
given range [vb, ve] is equal to the previous case, but
we subtract kvb−1 to kve . Observe that by simply
accessing two k2-trees we can obtain the cells with
a given value or with values in a given range.

• We can also obtain the cells with a value higher or
lower than a given value vt. The cells with a value
higher than vt are those set to 0 in kvt , whereas
the cells with values lower than vt are those set to
1 in kvt−1

.

4. QUERYING VECTOR AND RASTER

DATA

In this work we tackle a type of query that we called
range query. By a range query, we mean that we
want to obtain the set of polygons of a vector dataset
that intersect a region of the raster dataset where the
cells have values in a given range [vb, ve]. This query
is a variation of the query Regions Of Interest (ROI)
[49, 50]. ROI only deals with raster datasets and
returns the regions of the dataset that have values in
a query range. Therefore, we add to the ROI another
restriction, we return those ROI that intersect an MBR
stored in an R-tree.
We deal with two variants, the first one returns the

polygons that intersect a region where some of the cells
have values within the given range, also known as weak
semantics, whereas the second one returns the polygons
that intersect a region where all cells have values within
the given range, also known as strong semantics. We
also deal with a variation of the previous query, where
one of the boundaries of the range is not limited. This
transforms the query in: obtain the polygons such that
all the cells they intersect have values higher (lower)
than a given value (strong semantics) or obtain the
polygons such that some of the cells they intersect
have values higher (lower) than a given value (weak
semantics).
The input of the algorithm is an R-tree that indexes

all the minimum bounding rectangles (MBRs) from the
vector dataset and the set of k2-trees that represents the
raster dataset. R-trees are classical indexes in the sense
that they serve to speed up queries over a dataset, but
the actual data must be stored apart, usually in disk.
R-trees only contain the MBRs of the spatial objects
because their actual representation requires a much
larger space and more complex computations, rendering
the index useless. Therefore, the rest of the section
considers the vector dataset as a collection of MBRs.
Regarding the raster dataset, observe that the k2-trees
store the actual data, and therefore it can recover the
original raster. Therefore, in our scenario, the raster
information does not require any other additional data
either in memory or disk, hence saving even more space
and processing time.
The result of the algorithm is composed of two lists:

a list of definitive results and a list of probable results.

The difference is that MBRs in the list of definitive
results fully intersect a region in the raster with values
in the given range, whereas MBRs in the second list
intersect a region in the raster with some values in the
range. Therefore, the elements in the second list have
to go through an additional refinement task that uses
the complete geometric value of the spatial object to
check whether the intersection holds or not. This task
is not considered in the algorithm description and the
experimental evaluation because it is a common task
when spatial indexes are used to solve queries.

4.1. Range queries

4.1.1. Preliminaries

To solve range queries, we use the R-tree and two of the
k2-trees storing the raster dataset, since as explained in
Section 3.2, checking the extremes of a range is enough
to obtain the regions of the raster having values within
that range, and we do not need to process the k2-trees
corresponding to the values inside the range. More
precisely, if our range is [vb, ve], we only need to work
with kvb−1 and kve . This is one of the key features of our
method. The k2-trees are compact data structures, they
are designed to occupy little space combining several
strategies. In any case, the two k2-trees will occupy
much less space than the original dataset, and thus our
technique will save big amounts of main memory space.
Figure 5 shows our running example, it displays two

rasters corresponding to two k2-trees kvb−1
and kve ,

used to solve the range query [vb, ve]. We have also
represented over kvb−1

six polygons and the MBRs of
the R-tree indexing them. The rectangles with dotted
lines are the first level MBRs, whereas the rectangles
with solid lines are the second level MBRs. Finally, we
have also represented over kve the same objects with
their second level MBRs and the divisions of the first
and the second level of the k2-tree. We do not include
the first level MBRs and the third level division of the
k2-tree in order to avoid cluttering the figure. In this
example, the divisions of the space in kvb−1

are the same
as those shown for kve , and thus we do not include them
to simplify the figure.
Given that to know whether there are cells within

an MBR with values in the query range, we have to
subtract the cell values that overlap the MBR in kvb−1

to those in kve , many operations of the algorithm are
based on a check of an MBR in both k2-trees to compute
whether the raster cells overlapped by the MBR are all
0s, all 1s, or a mixture of 0s and 1s. Therefore, we define
the concept of colour to describe the result of checking
the values of all the cells overlapped by an MBR r in a
raster represented by a k2-tree. The colour of an MBR
r can be:

• white if all the cells overlapped by r are 0s.
• black if all the cells overlapped by r are 1s.
• gray if the cells overlapped by r are a mixture of

0s and 1s.
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FIGURE 5. The rasters stored at two k
2-trees corresponding to the values vb−1 and ve and four spatial objects with their

MBRs.

kvb−1
colour kve colour Result

white white the region does not have
values in the given range

white gray the region has some values
in the given range

white black the region has all values in
the given range

gray gray we do not know

gray black the region has some values
in the given range

black black the region does not have
values in the given range

TABLE 1. Possible results based on the colour values.

Comparing the colour of an MBR r in two k2-trees
we can quickly determine the result of subtracting all
the cells in both k2-trees as shown in Table 1. The
algorithm can use this result to decide whether it is
necessary to continue exploring downwards the k2-tree
or whether it can stop now and return a result.
Observe that when the two colours are gray, we

cannot conclude anything. We have to go through a
more detailed analysis that, in a extreme case, can reach
the cells of the raster in order to count the number of
ones in the regions overlapped by r, and if there is an
increment, then r has some values in the given range.
To compute the colour value, the algorithm uses

two functions: getMinMatrix and rangeSearch. The
function getMinMatrix takes an MBR and a reference
of a node in the k2-tree and returns a pair 〈k,colour〉,

where k is the deepest node (descendant of the node of
the k2-tree provided as input) that completely contains
the given MBR, whereas none of its children do. The
operation to determine the colour of that node is simple
because if the node is a leaf (colour = black or colour =
white) the bit representing such a node in T ′ indicates
whether it represents a region of 0s or a region of 1s.
On the other hand, if the node is not a leaf, then colour

is always equal to gray (see Section 3.1 and Figure 2 for
further details).

As an example, if we check in Figure 5 the MBR d
in kve , getMinMatrix returns M3, given that none of its
children completely contain d, and the colour is gray,
since M3 has cells set to 1 and set to 0. If we check the
MBR e, getMinMatrix returns the submatrix M4 and
the colour is white. Finally, if we check b, the result is
m22 with colour black.

The function rangeSearch takes an MBR and a
reference of a node in the k2-tree as well. The function
returns whether the exact cells of the raster that
intersect the MBR are all 0s, all 1s, or a mixture. This
operation is more complex than getMinMatrix because
it must navigate down all the k2-tree branches that
intersect with the MBR and retrieve all the cells in the
k2-tree that intersect the MBR in order to compute the
colour that is returned.

Using the MBR d from the previous example,
rangeSearch inspects the cells of the raster that are
overlapped by the MBR. Therefore, the colour is gray
in the raster kvb−1

, whereas in kve , the colour is black.
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Algorithm 1 R-tree × Raster with a range query
1: Let R be an R-tree
2: Let Ra be a k2-tree based representation of a raster Ra = 〈kv1 , kv2 , . . . , kvm−1

〉
3: Let vb and ve the values delimiting the range
4: Let D and P be lists with pointers 〈MBR, oid〉
5: Let S be a stack with entries 〈〈MBR, ref, oid〉,〈k,x,y,level,offset〉,〈k,x,y,level,offset〉〉
6: kCurb−1 ← 〈kvb−1,0,0,0,0〉
7: kCure ← 〈kve ,0,0,0,0〉
8: for all rRoot ∈ R.ref do

9: push(S, 〈rRoot,kCurb−1,kCure 〉) {Insert in the stack all entries at the root node}
10: while S 6= empty do

11: 〈rCur,kCurb−1,kCure〉 ← pop(S)
12: 〈kNewb−1,colourb−1〉 ← getMinMatrix(rCur.MBR, kCurb−1)
13: 〈kNewe,coloure〉 ← getMinMatrix(rCur.MBR, kCure)
14: if colourb−1 = white and coloure = black then

15: if isLeafNode(rCur) then

16: add(rCur.oid, D) {Adds the objects in that node as definitive}
17: else

18: addDescendants (rCur.ref, D) {Adds all objects in descendant leaves as definitive}
19: else if colourb−1 = white and coloure = gray then

20: 〈S,D,P〉 ← continueSearch(rCur, S, kNewb−1, kNewe, D, P )
21: else if colourb−1 = gray and coloure = black then

22: 〈S,D,P〉 ← continueSearch(rCur, S, kNewb−1, kNewe, D, P )
23: else if colourb−1 = gray and coloure = gray then

24: 〈S,D,P〉 ← continueSearch(rCur, S, kNewb−1, kNewe, D, P )
25: return 〈D,P〉

4.1.2. The algorithm

Algorithm 1 shows the main body of the algorithm.
The two versions of the query can be obtained by using
two variants of the function continueSearch: the one
in Algorithm 2 for weak semantics, and the one in
Algorithm 3 for strong semantics. The algorithm uses a
stack (S in the pseudo-code) containing the branches
of the R-tree that have to be checked. Each entry
has a pointer to an entry of an R-tree node and two
pointers to nodes of the two considered k2-trees, with
the following format:

• Pointers to R-tree nodes: 〈MBR, ref, oid〉. MBR is
the MBR of the entry, ref is a list of references to
children nodes (null in leaf nodes), and oid is a list
of object ids that are included in the MBR (null in
internal nodes).

• Pointers to k2-tree nodes: 〈k,x,y,level,offset〉. k is
the k2-tree, x, y are the coordinates of the top-left
cell of the submatrix corresponding to the k2-tree
node, level is the level of the node, and offset is the
position in T of the bit representing such node.

The algorithm stores the result in two lists: D is
the list of definitive results, whereas P is the list of
probable results. The entries in those lists have the
format 〈MBR, oid〉, where MBR and oid have the
same meaning as in the pointers to the nodes of the
R-tree of the stack. The function add(rCur.oid,D)
adds the objects pointed by rCur.oid to the list D,
whereas add(rCur.oid, P ) adds the objects to the list P .
The function addDescendants(rCur.ref,D) accepts as
a parameter a list of pointers to nodes of the R-tree
(rCur.ref), traverses the subtrees rooted at those nodes
until finding all the leaves of those subtrees, and adds
them to the list D.

The algorithm starts inserting the entries of the
root node into the stack (lines 8-9). Then the main
loop (lines 10-24) proceeds extracting the top of the
stack. Using the extracted MBR, it applies the function
getMinMatrix twice, one for each of the two k2-trees.
Therefore we have two pointers to nodes of kvb−1 and
kve , respectively, and two values of colour: colour b−1

and coloure. These values are managed according Table
1. If one or both are gray, all the possible cases are
managed by the function continueSearch that receives
the pointer to the processed node of the R-tree (rCur),
the stack S, the two pointers to nodes of the two k2-
trees (kNewb−1 and kNewe), and the two lists D and
P .
The continueSearch for the weak semantics is shown

in Algorithm 2. First, if the pointer rCur points to an
internal node of the R-tree, then we introduce in the
stack its descendants (with the same pointers to k2-
trees), in order to be processed later (lines 3-4), and
the flow returns to the main loop. If the pointer to the
R-tree is to a leaf node, then the algorithm uses the
rangeSearch function to inspect the nature of the cells
intersecting the processed MBR in both k2-trees (lines
6-7). Again, we have two values of colour (colour b−1,
coloure) managed according Table 1. This finishes the
process of the processed R-tree node, and then the flow
returns to the main loop. The strong semantics version
of continueSearch is shown in Algorithm 3. It is a
simplified version of the Algorithm 2 since we only add
a result when the pair white/black is obtained.
In order to illustrate the algorithm, we are going to

follow the algorithm with weak semantics using Figure
5. The processing of the root of the R-tree (lines 8-
9) inserts in the stack the entries corresponding to the
MBRs A, B, and C. In the case of A, getMinMatrix
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returns the whole 16 × 16 matrices in both kvb−1
and

kve , and the colour is gray in both trees. According
to Table 1, nothing can be concluded, and then the
algorithm inserts in the stack the descendant MBRs of
A (a and b). In the case of B, getMinMatrix returns the
submatrix M3 in both trees, with colour gray in both
cases, so again, the descendants of B are inserted in the
stack. When processing C, getMinMatrix returns M4

and colour white in both trees. Therefore, according
to Table 1, it is sure that none of the descendants of
C will overlap cells with values in the given range, and
thus we can prune the R-tree branch corresponding to
C. Observe that here is the biggest gain, since already
in the first level of the R-tree and in the second level of
the k2-trees, we find that there is no need to inspect the
subtree rooted at C. Here, we can see the index effect
of the k2-tree since we stop the search without checking
the details of the raster.
Now, we analyze the MBRs that remain in the stack

(a, b, c, and d). When b is processed, getMinMatrix

returns m22 and colour black in both trees, so it can be
discarded without further inspect.
The case of d is a bit more complex, getMinMatrix

returns M3 and colour gray in both trees, therefore
getMinMatrix did not help, and since d is in a leaf of
the R-tree, we have to use rangeSearch, which examines
the exact cells of the raster that overlap d. The colour

is gray in kvb−1
and black in kve , then we can add it as

a probable result.
Something similar occurs with a, getMinMatrix

returns M1 and colour gray in both trees. rangeSearch
gives white in kvb−1

and black in kve , then this a
definitive result.
The case of c is the worst one. Even using

rangeSearch, the result is gray in both trees, then in
this case we have to count the number of black cells in
both rasters intersecting it. Given that in this case the
number of ones increases from 1 to 2, we have a probable

case.
Observe that when we add a descendant MBR to

the stack, we add the three pointers indicating the
point where we can resume the search in the three
trees. Following our example, after the first application
of getMinMatrix, we concluded that B should be
substituted by c and d. Then for each of those MBRs,
we add a pointer to that MBR and two pointers to M3

in kvb−1
and kve . The pointers to the k2-trees nodes

include, in addition to the offset of the node in the
T bitmap, the coordinates of the top-left cell of the
submatrix and the level of the node in order to be able
to resume the search in that node.

4.2. Range queries with only one boundary

Algorithm 4 shows the main body of the algorithm.
To solve this query we only have to check the k2-tree
corresponding to the query value (vt), thus saving even
more main memory. If the query is the version higher,

Algorithm 2 ContinueSearch for weak semantics
1: continueSearch(rCur, S, kNewb−1, kNewe, D, P )
2: if isInternalNode(rCur) then

3: for all rNew ∈ rCur.ref do
4: push(S, 〈rNew, kNewb−1, kNewe 〉)
5: else

6: colourb−1 ← rangeSearch(rCur.MBR, kNewb−1)
7: coloure ← rangeSearch(rCur.MBR, kNewe)
8: if colourb−1 = white and coloure = black then

9: add(rCur.oid, D) {Definitive}
10: else if colourb−1 = white and coloure = gray then

11: add(rCur.oid, P) {Probable}
12: else if colourb−1 = gray and coloure = black then

13: add(rCur.oid, P) {Probable}
14: else if colourb−1 = gray and coloure = gray then

15: if nOfOnes(rCur.MBR,kNewb−1) <
nOfOnes(rCur.MBR,kNewe) then

16: add(rCur.oid, P) {Probable}
17: return 〈S,C,P〉

Algorithm 3 ContinueSearch for strong semantics
1: continueSearch(rCur, S, kNewb−1, kNewe, D, P )
2: if isInternalNode(rCur) then

3: for all rNew ∈ rCur.ref do
4: push(S, 〈rNew, kNewb−1, kNewe 〉)
5: else

6: colourb−1 ← rangeSearch(rCur.MBR, kNewb−1)
7: coloure ← rangeSearch(rCur.MBR, kNewe)
8: if colourb−1 = white and coloure = black then

9: add(rCur.oid, D) {Definitive}
10: return 〈S,D,P〉

we use kvt , whereas in the case of lower, we use kvt−1.
The rest of the algorithm is very similar to the previous
one, but we only deal with one k2-tree and thus only
one colour value.
When the output of getMinMatrix is gray, we

have to call again the function continueSearch, which
again has two versions: Algorithm 5 shows the weak
semantics version, whereas Algorithm 6 shows the
strong semantics version. The search is solved according
to Table 2.

4.3. Discussion

In this article we focus on the description of
the algorithm for a classic single-processor machine.
However, we give a few pointers on an parallel version
of our algorithm that could be used a multiprocessor
machine. Different proposals exist to work with R-
trees in this environment [51, 52], focusing mainly on
improving times in range queries. Join operations
between multiple R-trees have also been studied [53].
Distributed query processing using k2-trees has also

colour kvt/kvt−1
higher lower

white Definitive No
black No Definitive
gray Probable Probable

TABLE 2. Values of the different operations depending on
the colour obtained for a given MBR.



10 N. Brisaboa, G. de Bernardo, G. Gutiérrez, M. Luaces, and J. Paramá

Algorithm 4 R-tree × Raster with a range query with
only one limit
1: Let R be an R-tree
2: Let Ra be a k2-tree based representation of a raster Ra =
〈kv1 , kv2 , . . . , kvm〉

3: Let vt the value delimiting the range
4: Let Hi/Lo be a parameter indicating ’higher’ or ’lower’
5: Let D and P be lists with pointers 〈MBR, oid〉
6: Let S be a stack with entries 〈〈MBR, ref,

oid〉,〈x,y,level,offset〉〉
7: if Hi/Lo=’>’ then
8: kCur ← 〈kvt ,0,0,0,0〉
9: else

10: kCur ← 〈kvt−1,0,0,0,0〉
11: for all rRoot ∈ R.ref do
12: push(S, 〈rRoot,kCur 〉) {Insert in the stack all entries at

the root node}
13: while S 6= empty do

14: 〈rCur,kCur 〉 ← pop(S)
15: 〈kNew,colour〉 ← getMinMatrix(rCur.MBR, kCur)
16: if (colour = white and Hi/Lo=’>’) or (colour = black and

Hi/Lo=’<’) then

17: if isLeafNode(rCur) then

18: add(rCur.oid, D) {Adds the objects in that node as
definitive}

19: else

20: addDescendants (rCur.ref, D) {Adds all objects in
descendant leaves as definitive}

21: else if colour = gray then

22: 〈S,D,P〉 ← continueSearch(rCur, S, kNew, D, P, Hi/Lo)
23: return 〈D,P〉

Algorithm 5 ContinueSearch for the weak semantics
(ranges of only one limit)

1: continueSearch(rCur, S, kNew, D, P, Hi/Lo )
2: if isInternalNode(rCur) then

3: for all rNew ∈ rCur.ref do
4: push(S, 〈rNew, kNew, 〉)
5: else

6: colour ← rangeSearch(rCur.MBR, kNew)
7: if (colour = white and Hi/Lo=’>’) or (colour = black and

Hi/Lo=’<’) then

8: add(rCur.oid, D) {Definitive}
9: else if colour = gray then

10: add(rCur.oid, P) {Probable}
11: return 〈S,C,P〉

been studied for classic k2-trees [54]. This analysis
is designed for Web graph or social networks, but the
techniques to distribute data among the nodes and the
general steps in the algorithms can be directly applied
to our case.
We consider a multiprocessor architecture and a

packing of the data among the nodes following a grid-
like pattern in the k2-trees, that was studied in [54].
This partition of the space is similar to the Hilbert curve
used in different distributed R-tree representations. A
simple distribution of the vector data, either in multiple
R-trees or specific data structures, could be matched by
an equivalent distribution of the raster data generating
the corresponding subtrees for each region of the space.
This would keep locality of the data and also keep in
each node the relevant fragment of the raster and vector
datasets. Our algorithm can then use a master node to

Algorithm 6 ContinueSearch for strong semantics
(ranges of only one limit)

1: continueSearch(rCur, S, kNew, C, P, Hi/Lo )
2: if isInternalNode(rCur) then

3: for all rNew ∈ rCur.ref do
4: push(S, 〈rNew, kNew 〉)
5: else

6: colour ← rangeSearch(rCur.MBR, kNew)
7: if (colour = white and Hi/Lo=’>’) or (colour = black and

Hi/Lo=’<’) then

8: add(rCur.oid, C) {Definitve}
9: return 〈S,C,P〉

distribute the subqueries according to the MBRs in the
R-tree among the processors, running in each processor
appropriate range subqueries to locate the appropriate
paths and child nodes in the k2-tree and R-tree. The
returned values would be treated as candidate results,
where MBRs that span across multiple nodes can be
joined as shown in Table 1. Assuming sufficiently large
contiguous regions of the data are assigned to each
processor, the size of the k2-trees should not increase
significantly, and even if we use partial or full replication
of the k2-tree data in all the processors the memory
size of the k2-trees should still be small enough in each
processor.

A note on complexity

In general, worst-case analysis for window queries
(spatial join among others) processed using spatial data
structures such as R-tree are very far from what actually
happens in practice because the performance depends
on the size (in the case of window query) and on the
intersection level of the areas or zones in each level of
the spatial structure [55]. Note that our problem can
be modeled as a spatial join between an R-tree and a
raster whose spatial predicate is the intersection of two
areas or zones. In order to get closer to the actual
performance of the structure, cost models have been
proposed in the literature to estimate their efficiency,
proving that they are more useful. For example, [56]
proposes a cost model to estimate the cost of a window
query using a R-tree and in [57] a cost model to estimate
the time consumed by a spatial join considering two
R-trees. The development of a cost model for our
algorithm is beyond the scope of this paper, because
it corresponds to a result in itself. However, in order
to establish a preliminary analysis, we next study the
performance of our algorithm in both favorable and
unfavorable scenarios.
Let M be the number of MBRs in the last level of

the R-tree and let n be the number of rows/columns
of the raster. A simple baseline approach to solve the
query should obtain the MBRs in the leaves of the R-
tree, and then, for each one, inspect all cells of the raster
that overlap that MBR. The number of cells overlapping
an MBR is bounded by the size of the raster, that is,
O(n2). Therefore the time complexity of that baseline
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approach is Θ(M) + Θ(M · n2).3

Now, let us analyze our algorithm. Instead of
considering the two k2-trees needed to solve the query in
our algorithm, let us consider only one k2-tree having
a 1 in the cells that match the query and a 0 in the
rest. Inspecting that k2-tree is conceptually the same
as inspecting the two k2-trees. Let li, 0 ≤ i < ⌈logkn⌉,
be the levels of that k2-tree. The (k2)i nodes at level li
represent regions of size (n/(k · i)) · (n/(k · i)). Let ri be
the percentage of the regions represented by li having
all 0s or all 1s. For those ri ·(k

2)i regions of li, the search
ends there, while the rest should continue. Observe that
when the search ends in a level before the last one, the
rest of the k2-tree is not inspected downwards for that
MBR, but in addition, that MBR is probably in a non-
leaf node of the R-tree and if the MBR overlaps a region
of 0s, then the traversal of the R-tree downwards also
stops in that node without reaching the descendants of
that MBR. That is, in our approach, it is possible that
our algorithm does not process all leaf nodes of the R-
tree.
Let us consider the MBRs in the last level of the

R-tree such that in some step of the tree traversal,
the search ended before reaching them, let us denote
R = r1 + r2 + . . . + r⌈logkn⌉−1 the percentage of those
MBRs. For such MBRs, the search is bounded by the
height of the tree, that is O(logkn). For the rest of
MBRs, the search must reach the last level and inspect
the cells (the leaves of the k2-tree) overlapping that
MBR and thus, the cost is O(logkn) +O(n2) = O(n2).
Therefore, the overall cost of our algorithm is O(M)+

O(M · n2), that is, the worst case is the same as the
baseline, but for those MBRs that overlap uniform
regions, we remove the quadratic cost, and instead, we
have a logarithmic search. This is shown by the above
and below bounds in the cost of the baseline, whereas
in our cost, both terms have an upper bound.
Therefore, the question is the size of R, that is, the

percentage of regions of the space that at some level of
the tree have an uniform region of 0s or 1s. By Tobler’s
law, we expect that in real examples, the size of R will
be big enough to obtain an average complexity better
than that of the baseline approach.

5. EXPERIMENTS

In order to evaluate the performance of the algorithms
described in Section 4, we have performed several
experiments using real data. The raster datasets
are digital terrain models obtained from the Spanish
Geographic Institute4 that represent the spatial
elevation of the terrain. The vector datasets are the
California Roads (vecca) and Tiger Streams (vects)
datasets from the ChoroChronos.org5 web site. Figure 6

3Although Θ(M) +Θ(M · n2) = Θ(M · n2), we keep the term
Θ(M) with the purpose of giving more precision in the analysis.

4http://www.ign.es
5http://chorochronos.datastories.org/?q=node/17

R-tree size
Dataset # MBRs (nodes)

vects 194,971 3,130
vecca 2,249,727 33,754

TABLE 3. MBR sets used in the experiments.

shows the distribution of the MBRs in the two datasets
using a representative fraction of the MBRs. The raster
and vector datasets were scaled and translated in such
a way that they cover the same space.
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FIGURE 6. MBR distributions of the vector datasets.

Table 3 describes the two sets of minimum bounding
rectangles that represent the vector spatial objects. For
each MBR dataset, the table describes the number of
MBRs in the set, and the number of nodes of the R-tree
that indexes the set.
As baselines, we compare our algorithms against

two approaches that process a raster dataset which is
completely stored in main memory. The first one uses
16-bit integers to represent the value of each cell in the
raster, enough to represent all rasters of our experiment.
The second baseline uses ⌈log(v)⌉ bits to represent the
cells of the raster, where v is the number of different
values in the raster. In both cases, the layout of the
cells in main memory is a simple fill curve traversing
the original raster row by row.
We used two different sets of raster coverages to

test the performance of our technique in two scenarios,
which we call scenario 1 and scenario 2. The scenario
1 tries to replicate a real world example: the vector
dataset represents spatial objects (e.g., populated
places) and we try to find those objects in a given
range of elevations. The raster data (i.e., the elevation)
has been discretized removing the decimal part of the
numbers (i.e., each cell of the raster stores the elevation
of that geographic location in meters). Furthermore, we
have used five different raster datasets of increasing size.
Table 4 describes the five raster coverages of scenario 1.
For each raster, the table describes its size in pixels
(or cells), the size of the representations that use 16-bit
integers and ⌈log(v)⌉ bits (in parenthesis the number
of bits used to represent each cell), the size of the
set of k2-trees representing that dataset, the average
size of individual k2-trees, and the number of different
values in the dataset. The most important value for our
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method is the average size of a k2-tree, since to solve our
queries, we only need, at most, two of them. Therefore,
to solve a query over the dataset of size 16384× 16384,
we only need 2 ∗ 88.6 = 177.2 KB on average.
To obtain compression, all methods take advantage

of some characteristic of the data. For example, text
compressors use the skewed distribution of frequencies
of words in human languages [58], or video compression
uses the gradual change of colors in adjacent pixels [59].
The k2-tree follows the same strategy as quadtrees to
obtain compression, which requires regions having the
same value. Therefore, the discretization of the raster
data reduces the number of different values, it increases
the chances of having regions with the same value, and
thus, it reduces the size of the k2-tree and it improves
the query times. However, it also changes the original
dataset. The scenario 2 analyzes the way in which the
number of different values affects the performance of
our technique. We take a raster file of size 4096× 4096
from the same source and we vary the number of
different values (by considering different precisions of
the spatial elevation values). The second set of rasters
is shown in Table 5. The first column gives the size of
the representation that uses 16-bit integers, the second
column presents the size of the representation that uses
⌈log(v)⌉ bits (in parenthesis the number of bits used to
represent each cell), the third one gives the size of the
collection of k2-trees, the fourth one shows the average
size of the k2-trees, and the last one the number of
different values.
From the tables, we can observe that the number

of different values has a big impact in the size of the
collection of k2-trees representing the raster. The set
of rasters of scenario 1 has a low number of different
values, and then the quadtree strategy achieves a good
compression, around 10% of the original size. However,
observe that in the scenario 2, as the number of different
values increases, the size of the k2-tree representation
grows rapidly, reaching a point where the k2-tree
representation starts to be larger than the original one.
Nevertheless this is a problem for disk space, where the
collection is located, whereas the size of an individual
k2-tree is small in all cases. Observe that even when we
have a large number of different values, the average size
of a tree is much less than the size of the dataset, and
thus, since we only need to load into main memory two
k2-trees to solve a query, we still have big main memory
savings.
The tests were run on an isolated Intel R© Xeon R©-

E5520@2.26GHz with 72 GB DDR3@800MHz RAM
with a SATA hard disk model Seagate R© ST2000DL003-
9VT166. It ran Ubuntu 12.04.5. All algorithms were
implemented using Java and Marios Hadjieleftheriou’s
Java implementation of an R∗-tree. 6 The R∗-tree was

6The author changed his implementation to C++
http://libspatialindex.github.com/, however, a slightly
modified version of the original Java implementation can be
found at https://github.com/felixr/java-spatialindex.

configured to use 4KB nodes and 100 entries on each
node, and it is the result of a bulk loading.
We measure the values (memory consumption and

running time) needed to check whether an MBR is
a solution, but in the case of probable solutions, as
it is common when presenting spatial indexes, we
do not compare the exact geometry to give a final
solution neither in the baselines nor in our algorithm.
For the memory consumption, we measured the
values provided by java.lang.Runtime.getRuntime()

during the computation, and we report the maximum
value. All structures reside on disk at the beginning
of the experiment, this means that the running
times include the load of the R-tree and the raster
representation. However, the result of running the
queries (the output) is not written to disk.
As explained in Section 3, in k2-trees, to obtain the

child node of a given node we have to perform a rank
operation and a multiplication. When the algorithm
is processing a part of the tree, it is likely that it will
compute the child of the same node several times. As an
enhancement, to avoid performing repetitively the same
multiplications and rank operations, our algorithms
used a hash table of constant size, which contains
pointers to the last 1,000 computed children.
The k parameter of the k2-trees used in the

experiment is 2. The ranges of the queries cover 5%
of the possible values. The size of the query range
is not important, since as we have already shown, a
query is always solved accessing the R-tree and two
k2-trees. What really matters is whether one or both
boundaries are represented by k2-trees that are not
sparse. In a non-sparse k2-tree, when the algorithm
applies getMinMatrix over an MBR, in many cases the
colour will be gray, which does not allow to prune parts
of the R-tree, and thus the search should continue. The
problem can be attenuated if one of the boundaries is
sparse, but if both suffer this problem, the times can be
affected. The sparser k2-trees are those at the beginning
of the range of possible values, as the 0s will dominate
the raster, and those at the end of the range of possible
values, as the 1s will dominate the raster (see Figure 3),
whereas the values in the middle display a mixture of 0s
and 1s that will harm the search times. Another way of
seeing the same effect is that, since the k2-trees follow
a quadtree strategy, the sparser trees will be smaller,
and thus they will allow faster searches, whereas, the
trees corresponding to values in the middle of the range
will have the opposite behaviour. Therefore, having
queries with random ranges covering 5% of the possible
values will produce faster and smaller queries, but the
displayed times are the average value of 100 queries,
where the boundaries of the range are randomly chosen.

5.1. Main memory consumption

Figure 7 shows the main memory consumption during
the computation of range queries using the set of rasters
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baselines size (MB) k2-tree avg size of # diff.
Cells 16-bit int ⌈log(v)⌉ bits size(MB) a tree(KB) values
1024 × 1024 2 1.0 (8) 0.3 1.5 208
2048 × 2048 8 4.5 (9) 1.5 3.7 413
4096 × 4096 32 20.0 (10) 5.8 8.4 704
8192 × 8192 128 80.1 (10) 25.6 26.9 974
16384 × 16384 512 352.0 (11) 148.5 88.6 1,715

TABLE 4. A set of rasters of increasing size (scenario 1).

baselines size (MB) k2-tree avg size of # diff.
16-bit int ⌈log(v)⌉ bits size (MB) a tree (KB) values

32 16 (8) 3.2 14.6 224
32 20 (10) 51.0 58.7 890
32 24 (12) 666.7 192.2 3,552
32 28 (14) 3,636.7 264.5 14,197

TABLE 5. A set of rasters of size 4096 × 4096 and increasing number of different values (scenario 2).

of scenario 1, strong semantics, and query ranges (that
is, with two boundaries). The values of weak semantics
and only one boundary do not differ at all. As expected,
our technique uses much less main memory space, up
to 18 times less. This memory savings yield a much
more scalable system, or if we have to process a raster
by pieces, it is likely that we will obtain better running
times. However, if we have a high number of different
values in the dataset, regions with the same value will be
rare, and thus the quadtree strategy to compress of the
k2-tree will fail, in other words, the branches of the k2-
tree cannot stop the decomposition, and they will reach
the individual cells. This implies that the trees will be
taller, and thus they will occupy more space. This can
be seen in Table 5, where the average size of the k2-
trees grows as the number of different values increases.
The effect over the main memory consumption can
seen in Figure 8, that displays the values of the set
of rasters of scenario 2. At the beginning, the memory
consumption of our approach grows rapidly, but as the
number of different values continues to grow, the curve
stabilizes at values below the memory consumption of
both baselines. This is expected, as the height of the
trees for a given raster size is bounded by ⌈logk n⌉,
where k is the parameter used by the k2-trees and n
the number of rows/columns of the dataset.

The increment in the main memory consumption is
not caused by the increment of different values. It is
caused by the increment in the average size of the k2-
trees. To show this fact, the next experiment uses a
range covering the 99% of the range, this forces to use
two trees in the extremes of the range. Since at the
beginning of the range the k2-trees are dominated by 0s
and at the end of the range the k2-trees are dominated
by 1s, then it is likely that they will have a similar height
(and this height will be small). The results are shown
in Figure 9. Clearly, we can see that the number of
different values (and thus, the number of k2-trees in the
dataset) does not affect to the memory consumption.
Instead, the size of the k2-trees does affect, and this
size increases with the number of different values as it

was shown in Table 5.

5.2. Running times

Considering that the main goal of the experiments
is to measure the memory savings of our technique,
we have ignored that the computation times of the
baseline are favored by the fact that accessing a plain
raster in main memory is really fast, and it is difficult
to overcome. Furthermore, the baseline algorithm is
provided with all the memory it needs. However, with
the following experiments we will show that our method
is not penalized by the fact that we are using compact
data structures. Instead, we show that query times are
better than the baseline with our method most of the
times. Furthermore, our proposal is able to fit larger
raster datasets in memory that could not be processed
by the baseline algorithm.

5.2.1. Ranges with two boundaries

Figure 10 shows the processing time for range queries
with strong semantics in the scenario 1. The values
with weak semantics are practically equal and thus they
are not shown. With the vecca dataset our approach
is between 2.5 to 5.5 times faster. In the case of
the vects dataset the improvements are much smaller,
between 6% and 34% in the case of the integer-based
baseline, and between 61% and 11 times faster in the
case of the bit-based baseline. The differences between
the two vector datasets is due to the distribution of
the MBRs. If the R-tree indexes a distribution that
covers most of the space, like in the case of the vects

dataset, our algorithm has to traverse the two k2-trees
completely and therefore, it has to perform several
top-down traversals. A similar phenomenon occurs in
common indexes, like in B+-trees, where searching a
value that it is present in most of the records can worsen
the search times because the index will not help in the
search.
Figure 11 shows the results of the experiment using

the rasters of the scenario 2. As explained, the
average size of the k2-trees increases with the number
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FIGURE 7. Memory consumption with rasters of scenario 1.
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FIGURE 8. Memory consumption with rasters of scenario 2.

of different values. If the original raster has more
different values, then the quadtree strategy is much less
successful, as it is more difficult to find regions having
the same value, and thus this implies we obtain taller
trees, which yield larger top-down traversals during the
application of our algorithm. Therefore, the times are
harmed by this parameter. However, this is a worst-
case scenario that shows that the number of different
values in the raster dataset affects the performance of
our proposal as can be seen in Table 5 and Figure 11.

5.2.2. Ranges with only one boundary

Figure 12 shows the performance of our algorithms and
the baselines, considering strong semantics and rasters
of the scenario 1. Again, the values of the query
threshold were completely random. We can see that
with vecca dataset, our approach is between 50% and
2.2 times faster than the integer-based baseline, and

between 70% and 4.2 times in the bit-based baseline.
The strange shape of the curve in the vecca dataset is
probably due to the size of the output (list of MBRs
which overlap regions with the query range) which is
larger in the smaller rasters. In the case of the vects

dataset, times range from being on a par to 2.25 times
faster in the case of the integer-based baseline, and from
28% to 19 times faster in the bit-based baseline.

6. CONCLUSIONS

We have presented in this paper a method to perform
a spatial query between a vector dataset represented
using an R-tree and a raster dataset represented using
k2-trees. The method solves two problems: first, it
can be used to evaluate efficiently queries between
vector and raster data without having to convert one
of the datasets to the other data model; and second, it
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FIGURE 9. Memory consumption with with rasters of scenario 2 and a query range covering 99% of the possible values.
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FIGURE 10. Processing time with strong semantics with rasters of scenario 1.

is space-efficient and can be used for memory-limited
scenarios like applications with huge datasets.

Few conceptual data models support both the object-
based and the field-based views of space. Even
international standards for geographic information
separate both views [60, 61]. The same happens at
the logical level with vector and raster spatial data
models. International standards [62, 63] separate both
views and do not provide languages, data structures
and algorithms to perform queries that use information
from both approaches. GIS tools, with few exceptions,
force users to convert data form one data model to the
other to operate over them.

However, with the current high availability of data, it
has become more common to have application scenarios
that require queries over vector and raster data. We
have mentioned two in this paper, disaster management
and weather analysis, but many other scenarios arise

where natural information captured by sensors (which
is best represented using raster models) is used together
with man-made structures (which is best represented
using vector models). Our proposal helps to bridge this
gap by defining an algorithm that solves efficiently this
type of queries using two spatial access structures: an
R-tree and a k2-tree and without having to convert one
of the datasets to the other data model.

We have shown that our technique obtains important
main memory savings compared with two baselines,
which store the raster in plain form in main memory.
Even more, if the number of different values in the raster
is small, our method is even faster than those powerful
baselines, a typical phenomenon when using compact
data structures. The main drawback of our method is
the performance when the dataset has a large number
of different values, which probably implies a big disk
space consumption and a degradation in the running
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FIGURE 11. Processing time of range queries with rasters of scenario 2.
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FIGURE 12. Processing time of queries with strong semantics and only one boundary.

times.
There are also compact structures for vector data

(e.g., [39]). We plan to explore algorithms with
the vector data represented using compact structures
and with both datasets represented using compact
structures. We also plan to explore the implementation
of other spatial query algorithms using compact data
structures. Finally, we plan to explore other compact
data structures to improve the disk space consumption
and the query performance when processing datasets
with a large number of different values.
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