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Abstract

Even though different applications based on Geographic Information Systems (GIS) provide different

features and functions, they all share a set of common concepts (e.g., spatial data types, operations, ser-

vices), a common architecture, and a common set of technologies. Furthermore, common structures appear

repeatedly in different GIS, although they have to be specialized in specific application domains. Multilevel

modeling is an approach to model-driven engineering (MDE) in which the number of metamodel levels is not

fixed. This approach aims at solving the limitations of a two-level metamodeling approach, which forces the

designer to include all the metamodel elements at the same level. In this paper, we address the application

of multilevel modeling to the domain of GIS, and we evaluate its potential benefits. Although we do not

present a complete set of models, we present four representative scenarios supported by example models.

One of them is based on the standards defined by ISO TC/211 and the Open Geospatial Consortium. The

other three are based on the EU INSPIRE Directive (territory administration, spatial networks, and facility

management). These scenarios show that multilevel modeling can provide more benefits to GIS modeling

than a two-level metamodeling approach.

Keywords: Model-driven engineering, multilevel software modeling, geographic information systems

1 Introduction

Geographic Information Systems (GIS) support the processes of capturing, managing, visualizing, and analyzing

data with a geospatial component [30]. GIS are used in many application domains, such as the management

of transportation networks, logistics, supply infrastructures, or territory administration, among many others.

Although in their beginnings GIS were used mainly by public administrations and engineering companies, the

evolution of technologies for GIS development and the appearance of cheap mobile devices with GPS capabilities

has extended the use of GIS to companies in very different domains.

Despite the differences in their functional scope, most GIS applications share a common set of concepts,

standards, architecture, components, and technologies. For example, all GIS deal with spatial data types

(such as points, lines, polygons, or variants of these basic types), coordinate systems, maps, layers (used to

organize the information shown in maps), and operations to process spatial data. All these elements are defined

in different standards from the ISO committee on geographic information/geomatics (ISO/TC 2111) and the

Open Geospatial Consortium (OGC2), hence existing technologies for GIS development support them in the

1https://committee.iso.org/home/tc211
2http://www.opengeospatial.org/
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same (or very similar) way. Therefore, two different GIS are modeled and developed similarly, even if they

have a different purpose and functional requirements. Also, due to the nature of the information managed in

these application domains, some common structures appear repeatedly, such as, for example, network structures

(e.g., in domains such as road networks, telecommunications, or energy supply), or hierarchical decomposition

of entities at different spatial levels (e.g., territory administration or facility management).

In model-driven engineering (MDE), models play a central and active role in the software development

process, far beyond just describing the system. Models describe the software system, and they are artifacts that

can be processed to be successively and automatically transformed into models at lower levels of abstraction,

and, finally, into the source code of the system [10, 24]. In MDE, a metamodel describes the elements that can

be used in the models that conform to that metamodel. The traditional approach to MDE considers a fixed

number of metamodeling levels. Typically, objects are described by models that define their state, behavior,

and relations, and these models use concepts defined in a metamodel at a higher level of abstraction. At the

same time, at the metamodel level, we can use elements defined in a meta-metamodel defined at a higher

level. A common approach to MDE is based on the OMG’s3 model-driven architecture (MDA)4, which defines

four layers for software modeling: computational independent models, platform-independent models, platform-

specific models, and system code. The OMG also defined a standard for meta-object facility (MOF), that defines

the way to create domain-specific modeling languages (DSML), usually, through meta-modeling based on two

levels of abstraction.

Working in one metamodel level implies balancing the scope of the metamodel and the flexibility of the

solution. On the one hand, a simple metamodel would only define basic elements that could be potentially

used in any other model. This solution would be simple but would force us to repeat the same information

structures in different systems. On the other hand, creating a complex and rich metamodel that tries to define

those information structures may be too rigid since it would be difficult to adapt to the particularities of a

specific model. In [2,11,12], for example, we opted for creating a simple metamodel with just the basic elements

common to any GIS (basic entities with a spatial component, layers, and maps). The resulting metamodel is

very flexible, but it forces the designer to repeat many elements in different models.

A recent trend in MDE is multilevel modeling [3, 4, 21]. The idea of multilevel modeling is that the number

of metamodeling levels is not fixed, so the designer can use the number of levels that better fit a particular

domain. This approach aims at simplifying the complexity of the models through the separation of specific

domain concepts that can be modeled at different levels. Multilevel modeling solves some drawbacks and

restrictions that can occur in the traditional two-level modeling, which forces the description of the application

domain in one level, something that can lead to an unnecessary complexity [21]. Despite the attention multilevel

modeling is attracting, few works focus on its application to real scenarios. This has already been pointed out

by de Lara et al., that mention in [21] that “there are scarce applications of multilevel modeling in realistic

scenarios”, and by Frank who also pointed out in [14] that “only little attention has been paid to applying

multilevel modeling to particular domains”.

In this work, we address the modeling of geographic information systems with a multilevel approach. Our

main goal was to determine if a solution for GIS based on multilevel modeling could solve the drawbacks of a two-

level solution, considering the following requirements: (R1) Scope: the set of models should be rich and include

the typical elements in most GIS models; (R2) Reuse of common structures: the set of models must support

the definition and reuse of common structures appearing in many GIS application domains; (R3) Flexibility:

the solution must allow the designer to adapt high-level designs to the particularities of an application, and be

easily extensible to incorporate new elements; (R4) Realistic: the solution must consider (not necessarily in an

exhaustive way) scenarios extracted from existing proposals for the modeling of GIS; and (R5) Generality: the

solution must not be limited to one particular case.

We present a proposal with a set of models that are based on international standards for geographic informa-

tion systems. The first scenario applies multilevel modeling to the conceptual standards defined by ISO TC/211

3Object Management Group: http://www.omg.org
4Model Driven Architecture: http://www.omg.org/mda
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and the implementation standards defined by the OGC to bridge the gap between these two sets of standards.

The following three scenarios were extracted from the data specifications of the European Union INSPIRE Di-

rective, which defines a set of models for information regarding resource and environmental management so that

EU member countries can follow them to ensure interoperability. We have selected the application domains of

territory administration, spatial networks, and facilities management. The four scenarios show the advantages

that multilevel modeling may bring when compared with a two-level approach.

The motivation and contribution of this article are twofold. First, the models of the INSPIRE Directive of the

UE provide a general design of GIS for different purposes in the public administration. That approach is based

on well-known international standards and tries to provide a general solution to different GIS problems that

may fit the needs of administrations and companies in different countries of the Union. However, that solution

is based on deep and complex hierarchies of classes, which, based on our experience, should be extended even

more to adapt them to the particularities of each country. In this article, we present an alternative solution

using multilevel modeling and show that it is more flexible and easily adaptable to those particularities than

a traditional solution based on two levels. Second, we believe the solution we present also provides a real

application scenario for an emerging modeling approach as multilevel modeling, that allows us to compare it

with an existing design based on a traditional two-level approach, and that can contribute to understanding the

advantages of this modeling technique in a real scenario.

The rest of the article is structured as follows: Section 2 presents background and related work on GIS,

applications of multilevel modeling, and previous applications of MDE to GIS. In Section 3 we present our pro-

posal for developing GIS under a multilevel modeling approach. We describe four scenarios with problems that

appear in real-world GIS applications, we then present example metamodels based on international standards

for each scenario, and we describe the advantages of using multilevel modeling. Section 4 presents a discussion

and evaluation of the solution presented in Section 3. Finally, Section 5 presents the conclusions of the paper,

the work we are currently undertaking, and lines for future work.

2 Background & Related Work

In this section, we first introduce GIS and describe the main features of these systems. Then, we review existing

works on the application of multilevel modeling. Finally, we present previous applications of MDE and software

product lines engineering (SPLE) to the GIS domain.

2.1 Geographic Information Systems

The main characteristic of Geographic Information Systems (GIS), which is also their main difference from

regular information systems, is that they manage entities with a geo-spatial dimension. That is, an entity is

defined by a set of attributes, each one being of a particular type. Commonly used data types, such as String or

Integer, store alphanumeric information. In a GIS, there are specific data types to store a geometric structure

in the space, like a point or a surface in a specific position in the world. The attributes of geographic data types

can store, for example, the location of a building or a meteorological station, the paths of a road network, or the

area covered by a forest. Having entities with such attributes allows an application to visualize them with maps

instead of typical alphanumeric listings, but it also allows an application to make certain operations or analysis

with these geographic data, such as getting the ten closest entities to a user position, or the most efficient path

across a set of entities. Summing up, GIS have particular features and use specific technologies that allow us

to collect, store, process, and visualize spatial information [30].

GIS were traditionally used by public institutions for administering the territory and managing public

resources. Lately, the major advances in communication technologies and the technologies used in GIS devel-

opment have increased the availability of GIS applications, and organizations from many domains are adopting

GIS software. Moreover, the appearance of smartphones with GPS capabilities marked an important milestone

in the development of GIS because gathering geospatial information is now cheap and easy for any company.
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This context has made it mandatory in some application domains to use a GIS-based solution to be compet-

itive. For example, in warehouse logistics, GIS are needed to plan transportation routes in the most efficient

way; in public transportation, to know which lines are overused or underused, and to decide how to change

them accordingly; or even in social networks and advertisement, since knowing the position of the users and

their publications enhance the information they collect to improve their algorithms or to enrich the data that

afterward is used by ad services. Regardless of the application area or the purpose of each GIS, there are a

set of features that are very common among them, such as digitizing geographic data, representing geo-located

data in map viewers, the common tools related to these map viewers (from panning and zooming to measuring

dimensions or objects within the map, or sorting the different layers), route calculation, etc.

GIS have changed a lot since they first appeared many decades ago [29]. At first, for a long time, each GIS

application was developed ad-hoc, totally independent from any other GIS application. The problem of that

approach is that interoperability between GIS was not addressed in any way. Nowadays, that situation has

changed thanks to two organizations, the ISO committee on geographic information/geomatics (ISO/TC 2115)

and the Open Geospatial Consortium (OGC6), which have defined a set of evolving standards related to all

levels of GIS. Most GIS software assets follow these standards and, therefore, GIS applications are quite similar,

geographic data can be used in different GIS, and GIS components are, in general, interoperable.

2.2 Multilevel modeling and its applications

The traditional approach to MDE considers two metamodeling levels. In the metamodel level, the designer

defines the main concepts of the domain. At a lower level, a domain-specific modeling language can be defined

from the metamodel to allow the designer to create models of the system. A promising trend within MDE is

that of multilevel software modeling [4, 6, 7]. In contrast to a more “traditional” approach, multilevel modeling

does not fix the number of metamodeling levels, so the designer could use the number of levels that better fit

a particular domain. This approach aims at simplifying the complexity of the models through the separation

of specific domain concepts that can be modeled at several levels. Multilevel modeling solves some drawbacks

and restrictions that can occur in the traditional two-level modeling [21]. As explained in [15], many modeling

languages for this purpose have been proposed and, although they are different in some elements, they all share

common features, such as considering that all classes at any level are also objects, and allowing for deferred

instantiation of attributes.

Few works have presented applications of multilevel modeling in real scenarios: for example, Al-Hilank

et al. [1] applied multilevel modeling in the context of development process improvement in the automotive

industry to model the mappings between the concepts that describe the software development process and

different quality standards. In Al-Hilank’s work, multilevel modeling allowed to model the relations between

domain concepts at different levels of abstraction. Frank [14] applied multilevel modeling in the development of

systems and models to support IT management, so the concepts of the IT domain could be refined in successive

levels. Similarly, Benner [9] applied it to model-based development of user interfaces. Benner’s proposal allows

to model elements of user interfaces in different levels of abstraction without using deep inheritance hierarchies.

Nesic and Nyberg [23] applied multilevel modeling to data integration in the context of software product lines.

In [25], multilevel modeling was applied by Rodriguez et al. to the modeling of colored Petri nets. In [26], Rossi

et al. presented a multilevel modeling solution to the modeling of IoT applications for the detection of tourism

flows, so different aspects and concerns of the system’s architecture can be modeled at different levels. All these

works share a common motivation: the need to represent abstract concepts in more than two metamodeling

levels. Since the area of multilevel modeling is relatively new, some of these works have also mentioned issues

such as the lack of tools.

de Lara et al. present in [21] a research work focused on “When and how to use multilevel modelling”. The

authors mention that “unfortunately, there are scarce applications of multilevel modeling in realistic scenarios

5https://committee.iso.org/home/tc211
6https://www.ogc.org/
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[. . . ]”. After analyzing a large set of metamodels from different sources, they identified many domains in which a

multilevel approach could be more beneficial than a two-level approach, and they also identified a set of patterns

where multilevel modeling may bring advantages. Frank also pointed out in [14] that “only little attention has

been paid to applying multilevel modeling to particular domains”.

2.3 Applications of MDE to GIS

Although most GIS applications are based on a common set of standards, technologies, and assets, they are

usually developed “from scratch” with the help of these tools and libraries. This results in low productivity,

long time-to-market projects, and high costs, especially in the maintenance and evolution stages. However,

it remains clear due to all the exposed above that GIS is a more than adequate field to apply techniques of

semi-automatic software development.

Some previous works have applied elements of MDE to GIS development. Regarding modeling and develop-

ment, Lisboa-Filho et al. [22, 27] proposed a UML profile to support GIS-related concepts in UML conceptual

models that was used in [27] to generate spatial database. That UML profile was also used in an MDA ar-

chitecture to generate the SQL DDL code for spatial databases [13]. Many GIS standards from ISO, OGC,

and INSPIRE include metamodels covering different parts of a GIS. Kutzner [19] addressed the model-driven

transformation of geospatial data according to different metamodels that can present differences between them.

In [11,12] we have already considered the application of automated software development to the GIS domain

and we proposed an architecture and a tool for this purpose combining SPLE and MDE approaches. We

analyzed the features of a generic family of GIS products and the components implementing these features, we

designed a feature model [8] to represent this set of features, and we defined a traditional two-level metamodel

to specify how the data model of the products of our family can be described. Afterward, we implemented a

tool supporting the automatic generation of GIS products from these models. In [2], that metamodel was used

to define a DSL for GIS development.

Even though our tool and the metamodels it handles are very flexible and complete, this design following

the two-level modeling approach has some caveats. First, it forces us to define all possible elements of a GIS

in a single metamodel. This does not allow us to reflect in the model common structures in this domain, such

as defining entities that refine other entities at higher levels of abstraction. Second, since GIS manage entities

with a spatial component in the real world, it is relatively common that some structures appear repeatedly with

some adaptations and particularities. Working with a two-level approach does not easily allow us to take any

advantage of this scenario. Defining those structures in the metamodel would allow us to use them directly, but

they would be difficult to adapt to the particularities of a specific application.

As we will explain in Section 3, these disadvantages can be addressed by applying multilevel modeling. For

example, let us assume we need to develop a GIS that allows a city manager to handle the road networks,

the public transportation networks, and also the electricity, water, and telecommunication supply networks.

As we will see in the next section, all these networks share the same structure, although they may differ in

specific attributes of the network elements. Our proposal shows that applying a multilevel approach allows us

to metamodel, at an intermediate level, the most common GIS structures, but allowing us to easily extend and

adapt them, so we can use these structures to make simpler models in the lower level.

3 Multilevel modeling of GIS

We have identified four scenarios in which multilevel modeling provides a clear advantage over the traditional

two-level modeling approach. In each of the scenarios we describe how they are currently modeled in international

standards from ISO, OGC, and the EU INSPIRE Directive, then we present our proposal for modeling those

scenarios with multilevel modeling, and we end with a discussion of its advantages compared with a two-level

approach.
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@0@1@2

made by

Product

vat@1: double

price: double

Book: ProductNewspaper:
Product

GoF: Book

price= 35

pages= 349

Manufacturer

Editorial:
Manufacturer

published by: made by

Add. Wesley:
Editorial

:published by

*

*

authors Author

name: String :Author

name= "E. Gamma"

*

*
authors

Publication: Product

vat= 4.0

price: double

pages: int

Figure 1: Example models showing the notation used for multilevel modeling and common multilevel modeling
patterns. Inspired by examples from [21].

3.1 Multilevel notation and patterns

Before describing our proposal, we introduce the notation used in the multilevel models and a set of recurring

patterns that will be addressed during the discussion of our multilevel proposals.

There is not a standard language for multilevel modeling yet. Lately, there has been an attempt to identify

the most common characteristics of the existing proposals, or the requirements that these proposals target [15].

Tooling support for creating multilevel models is scarce, and the existing prototypes have certain limitations.

Given that we have to represent several large models, for convenience we decided to use a standard UML tool

to create them.

In this work, we express the multilevel models using the notation presented in [20]. We show an example of

the notation in Figure 1, inspired by examples from [21]. We use the symbol “@” to indicate the potency of the

meta-classes or clabjects [5]. The potency of an element represents the number of meta-levels a property needs

to be instantiated before we get a plain instance and hence we have to assign it a value [5]. If an element does not

have an explicit potency indicated, it takes the potency of its container. Each element, class, or relationship that

instantiates a higher-level element is underlined, and the instantiated element is indicated after the symbol “:”.

For our explanations along this section, we will use the concepts potency and classification level indistinctly,

and when we refer to a meta-level with a particular potency assigned we use also the symbol “@” in the text

(e.g., meta-level @5 means the level assigned potency 5, or the set of elements with potency 5 ). As an example,

we describe Figure 1, where we can see three meta-levels, assigned to potency 2 to 0. In meta-level @2, or

meta-level assigned potency 2, we have a meta-class Product without any explicit potency. Therefore, it has

potency @2, which is the one assigned to the meta-level. Its attribute vat has potency 1. Therefore, it must

be assigned a value one meta-level below, when the meta-class Product is instantiated into Publication and vat

takes the value “4.0”. We can also see that the relationship published by, with potency 1, is an instance of the

relationship made by, with potency 2.

When designing meta-level models there are patterns that appear often, the same way that in traditional

two-level modeling there are a well known set of design and architectonic patterns. An effort to identify and

describe these patterns was done in [21], where each pattern is shown with examples and compared to other

two-level solutions. These recurring patterns appear on situations where multilevel modeling is adequate, and

therefore we will identify them in the example models we present in this section. The patterns are briefly

described next, referring to elements shown in Figure 1 to illustrate them:

• Type-object pattern: modeling types and instances of these types dynamically (e.g., the meta-classes

Publication or Book).

• Dynamic features pattern: adding a feature to a dynamic type, and to all the instances of this new type

(e.g., the attribute vat).

• Dynamic auxiliary domain concepts pattern: adding domain related entities that have relationships with
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existing dynamic types (e.g., the meta-class Author and the relationship authors).

• Relation configurator pattern: allowing the configuration of a relationship (e.g., the relationship published

by).

• Element classification pattern: dynamically create hierarchies of elements, allocating the features that are

inherited by the child types (e.g., the hierarchy descending from the abstract meta-class Publication).

Finally, the classes that define geographic data types in the international standards are used as UML data

types in the models (e.g., Figure 3). Just like we can use String or Integer as the class of an attribute, we

use geographic data types such as Geometry or Point. It may seem that if a class includes an attribute of a

geographic type, this should be modeled as a relationship between the class and the class that represents the

geographic type. However, we decided not to represent such relationships in that way for three reasons: 1)

ISO/OGC UML models consider geographic classes as data types, even though they do not use the stereotype

«dataType»; 2) in the logical and physical levels of a GIS, a geographic class works as a data type: it is not

implemented using an association between objects in Java, but as a data type, and it is not represented using a

foreign key to a table of geographic values in the database, but in the same row of the database; 3) the geographic

attribute of the SpatialEntity meta-class is used and redefined in many other models, so if we represent it as a

relationship it would worsen the legibility of these models.

3.2 Bridging the gap between conceptual and implementation standards in GIS

3.2.1 Overview

In recent years, there has been a great effort of standardization in the field of GIS. Two international organiza-

tions (ISO/TC 211 and OGC) have defined around a hundred standards for GIS that cover a multitude of aspects

(e.g., conceptual models, logical models, physical models, web services). ISO/TC 211, being an organization

composed of the standardization agencies of the member countries, has focused on the definition of conceptual

standards aimed at providing solutions for general problems. On the other hand, OGC, being an organization

composed of companies in the GIS sector, has focused on the definition of implementation standards aimed at

solving problems of interoperability between tools and datasets. This has created a gap between the two sets of

standards. Although the two sets of standards are focused on the same sector, they are not formally connected

and they just have textual references between them. Multilevel modeling would allow to build a bridge between

both sets of standards and have a more consistent and reusable domain description.

Consider as an example the standards that define a model for describing the spatial characteristics of

geographic entities using vector geometries. The ISO standard ISO 19107: Geographic Information - Spa-

tial Schema [17] defines primitive data types such as GM Point, GM Curve, and GM Surface, aggregate data

types such as GM MultiPoint, GM MultiCurve, and GM MultiSurface, as well as many other data types. The

data types are structured in a hierarchy that allows application schemas to use data types from the higher levels

of the hierarchy to represent spatial entities whose spatial component can be of any of the data types. The

schema described in ISO 19107 is conceptual, and it provides no implementation details. OGC Simple Feature

Access (OGC SFA) [28], which is also an ISO standard (ISO 19125 [18]), offers the most popular implementation

of ISO 19107, describing a common architecture for simple feature geometry. In practice, most GIS data models

use the spatial data types from OGC SFA, like Point, LineString, or Polygon (some data types from OGC

SFA match the names of ISO 19107 without the namespace prefix). Even though ISO and OGC have worked

together on the definition of the standards (in fact, OGC SFA is also an ISO standard, ISO 19125 [18]), the

connection between the standards is limited to an informative annex in ISO 19125 that “identifies similarities

and differences” with textual descriptions without formal models (e.g., Annex A ISO 19125 [18] states that

“MultiPoint in SFA-CA corresponds to GM MultiPoint in Spatial Schema” but it does not provide a UML

model).
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@6
GM_Object

GM_Primitive

GM_Point

SpatialEntity

geometry: GM_Object

@5

Geometry:
GM_Object

Point: GM_Point

Figure 2: Excerpt from the multilevel solution to bridge the ISO conceptual model and the OGC implementation
model. Figure 14 and Figure 15 in Appendix A show the extended models

GM_Object

GM_Primitive

GM_Point

Geometry

Point

SpatialEntity

geometry: GM_Object

Figure 3: Two-level solution to bridge the ISO conceptual model and the OGC implementation model

3.2.2 Multilevel modeling solution

Figure 2 shows an excerpt of the metamodels that bridge the gap between the ISO conceptual model and the

OGC implementation model. The complete models are included in Appendix A (Figure 14 and Figure 15). The

left part of the figure shows part of the model for meta-level @6 that corresponds to the ISO GM Point data

type (a geographic point). The right part shows part of the model for the metal-level @5 that corresponds to

the OGC Point data type. The OGC data types defined in meta-level @5 instantiate the data types defined

by ISO at meta-level @6. We have also defined a class in meta-level @6 (SpatialEntity) that we use in the

following models (Section 3.3, Section 3.4, and Section 3.5) to describe geographic attributes without specifying

the specific type of geographic object until the application schema.

3.2.3 Discussion

If the ISO and OGC standards were defined following a multilevel approach, the connection between the models

would be explicit and based on a model, rather than implicit and based on a textual explanation. New imple-

mentation standards based on the ISO conceptual standard could be defined (e.g., an implementation model

that used Bézier curves instead of line segments in the definition of geometries). These new standards would

remain connected with the ISO conceptual model, which would allow applying MDE techniques to all ISO and

OGC standards (e.g., using model transformation techniques to convert data between the models).

Furthermore, defining a SpatialEntity class at meta-level @6 would allow the decision of the specific data type

of an attribute to be deferred until the definition of the application data model. This would allow intermediate

models (such as those defined by INSPIRE, see Section 3.3, Section 3.4, and Section 3.5) to be independent of

the implementation, and hence allowing developers to design applications without selecting the implementation

technology.

Figure 3 shows a two-level model similar to the one presented in Figure 2. The connection between ISO

19107 and OGC-SFA datatypes has to be made through inheritance, which would reduce the readability of

the model. Furthermore, multiple inheritances would cause difficulties in languages that do not support it,

in addition to all the traditional difficulties of multiple inheritance in object-oriented programming languages.

Furthermore, the SpatialEntity class would have to be associated with GM Object, and although a particular
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application might use a subclass of GM Object, it cannot be explicitly reflected in the application schema.

Regarding the complexity of the models, the number of classes in the multilevel models and the 2-level models

is the same because the goal is to replicate the same set of data types. However, the number of associations

is much lower because in the multilevel models we instantiate the ISO conceptual model data types into OGC

conceptual model data types instead of using inheritance relationships. In particular, we avoid 8 inheritances.

There are 6 other inheritances that would be avoided, but they are not shown in our models because we have

not included the complete ISO 19107 model because it is a 239 page document in which a large number of

data types are defined. As an example, GM Curve is the root of a hierarchy of specialization that includes 17

children classes. The classes LineString, Line and LinearRing from the OGC-SFA model would inherit from

some of these classes.

3.3 Ensuring interoperability in spatial data infrastructures

3.3.1 Overview

The European Parliament and the Council of The European Union approved on 2007 the Directive 2007/2/EC

establishing an Infrastructure for Spatial Information in the European Community (INSPIRE), to create “a

European Union spatial data infrastructure for the purposes of EU environmental policies or activities which

may have an impact on the environment”. This directive is a promising initiative in the management of spatial

data in different countries regarding the interoperability and sharing of data.

One of the main parts of INSPIRE is the technical guidelines (called data specifications7) that specify com-

mon data models to achieve interoperability of spatial data sets and services across Europe. Figure 4 describes

the organization of these data specifications. The bottom layer of Figure 4 contains the 34 data specifications

that provide UML application schemas for the themes of interest for public administrations regarding resource

management and information needed to monitor and define environmental policies. Some example data spec-

ifications are Administrative Units, Transport Network, or Production and Industrial Facilities. The middle

layer of Figure 4 contains the UML application schemas defined by INSPIRE that are reused across the 34 data

specifications. As an example, INSPIRE defines a generic application schema for Networks that provides basic

types that are extended in other data specifications such as the data specification for transport networks (it

covers road networks and rail networks among others), or the data specification for Utility and Governmental

Services (it covers water networks and electrical networks, among others). The top layer of Figure 4 contains

UML application schemas defined by third parties that are used by INSPIRE data specifications. For example,

it contains the ISO standard ISO 19107: Geographic Information - Spatial Schema [17].

Considering the characteristics of INSPIRE we have mentioned, this is a clear example of a problem where

multilevel modeling is well-suited. One of the drawbacks of INSPIRE is its complexity. Across the 34 technical

guidelines, we can find many elements that share a set of common attributes and relationships. Sometimes these

common elements are not reflected in the technical guidelines, which can lead to repeating the same structures

and patterns in different domains. In other cases, those commonalities are identified and considered in the

technical guidelines, but through complex and deep inheritance hierarchies that can be difficult to specialize

and adapt to the particularities of a specific country.

Consider as an example the application domain of territory administration. Its main responsibility is rep-

resenting the boundaries of spaces and territories, both rural and urban. Typically, the administration of the

territory divides the geographic space into administrative units, that can be composed of other administrative

units, and so on. For example, Spain is divided into 17 autonomous communities and 2 autonomous cities. Each

autonomous community is further divided into provinces that are divided into municipalities. Autonomous cities

are not divided into provinces and they contain a single municipality. On the other hand, Portugal is divided

into 18 districts and 2 autonomous regions, both of them are divided into municipalities, which are themselves

divided into parishes. Hence, each country has its own structure for its territory, with its own names, levels and

restrictions.

7https://inspire.ec.europa.eu/data-specifications/2892
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Administrative Units Transport Networks Production Facilities Other models

Figure 4: Overview of the INSPIRE Data Specifications. The top layer are ISO/OGC international standards,
the middle layer are INSPIRE common models, the bottom layer contains the 34 INSPIRE data specifications.

To support all this variability, INSPIRE has defined a generic model8 that can be applied to all of them,

independently of their particularities, shown in Figure 5.

The class called AdministrativeUnit represents any part of the territory, from a whole country to a small

village. The administrative hierarchy level is stored with a generic enumerated, where values go from 1stOrder

(country) to 6thOrder (smallest administrative level of a country). Other attributes are the name (or names),

the INSPIRE identification (a unique identifier within all Europe), and the geometry representing the surface

of the territory. This class also stores information about the country to which it belongs, and an identifier

within this country. Finally, there are some optional attributes to represent the version of each instance of the

class, to store the residence of authority (usually, a capital city), or the name of the administration level of the

instance within the country (for example, in Spain the administrative units of 3rd level are called Provincias).

The ResidenceOfAuthority has its own representation, which is very simple, just the name of the place and its

geometry. Each administrative unit can aggregate a series of administrative units of a lower level. For example,

a country and the regions of this country are related, being the former the upperLevelUnit and the latter the

lowerLevelUnit of the relationship we can see in Figure 5.

Given that the INSPIRE data specifications are abstract, each member country of the European Union is

expected to adapt them to their particularities. Even though the model in Figure 5 can be used to represent

the hierarchical division of the territory of a country, it has some drawbacks. First, the semantics of the

administrative division of a country are missing. For instance, it is possible that objects from an upper level

(e.g., an autonomous community in Spain, a 2nd order division) aggregate objects from the wrong lower level

(e.g., municipalities in Spain, a 4th order division). Second, a member country may require that objects from

each level of the administrative division have additional attributes. For example, autonomous communities and

municipalities in Spain have specific legislation but provinces do not. Hence, the classes for the 2nd and 4th

level in Spain require attributes describing the legislation but the class for the 3rd level does not require the

attribute.
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Figure 5: INSPIRE Administrative Units Overview, from https://inspire.ec.europa.eu/data-model/

approved/r4618-ir/html/index.htm?goto=2:1:2:1:7106
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Figure 6: Modeling multilevel Territory Administration - Meta-level @2

3.3.2 Multilevel modeling solution

In order to solve these drawbacks, we use multilevel modeling. We define a meta-level @2 in Figure 6 that is

similar to the one defined by INSPIRE. This meta-level @2 model can be instantiated in each member country

in such a way that it describes the semantics of its administrative division.

In Figures 7 and 8 we show the model for the meta-level @1 of two particular countries: Spain and Portugal.

Being both of the territorial structures very similar, there are certain particularities in the administration of these

countries that are specified in these levels. Spain (Figure 7) is composed by AutonomousCommunities, that are

composed by Provinces, and these ones by Municipalities. There are also AutonomousCities, composed each one

by a single Municipality. Regarding the residence of authority linked to the administrative units, all have exactly

one PopulatedPlace (that represents a city or village) as capital, except in the case of AutonomousCommunities

because some of them can have more than one capital (e.g., the capital of the Canary Islands is shared by Santa

Cruz de Tenerife and Las Palmas de Gran Canaria).

The territorial division of Portugal (Figure 8) is a bit different. The first level of the administrative division

(2nd order from the EU point of view) consists of Districts and Autonomous Regions (i.e. Azores and Madeira).

Both of them are composed by Municipalities, which are themselves composed by Parishes.

The particularities of each country are explicit in the meta-level @1 metamodels by redefining the rela-

tionships between administrative units and residences of authority. Of course, any extra attribute required for

modeling the administrative divisions of these countries could be added at this level (e.g., we have added a

few attributes to PopulatedPlace), and many attributes are instantiated at this level, such as countryCode or

nationalLevelName, simplifying meta-level @0 models. In Figure 9 there is an example of the meta-level @0

model of an application based on the metamodel for Spain.

3.3.3 Discussion

The main advantage of applying multilevel modeling in this scenario is that the model of meta-level @2 can be

instantiated in such a way that it can capture the semantics of each member country. Hence, the application

schema of each member country forbids that objects from an upper level (e.g., an autonomous community

in Spain, a 2nd order division) aggregate objects from the wrong lower level (e.g., municipalities in Spain,

8INSPIRE Data Specification on Administrative Units – Technical Guidelines: https://inspire.ec.europa.eu/Themes/114/

2892
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Figure 7: Modeling multilevel Territory Administration - Meta-level @1 for Spain

a 4th order division). The same goal could have been achieved in a traditional two-level approach using

inheritance, but it would require a complex inheritance hierarchy and the redefinition of the association between

administrative units defined in the INSPIRE data specification. This solution would be less reusable and flexible

than the multilevel solution that we propose.

Another advantage is that member countries may now easily add additional attributes to specific levels of the

administrative division modifying the meta-level @1 as desired. Again, the same goal could have been achieved

using an inheritance hierarchy, but the resulting model would not be as clear.

Finally, the advantages described in Section 3.2.3 also apply in this scenario. First, the models of the member

countries would be explicitly and formally connected, and hence data transformation techniques could be used

to achieve interoperability of the applications. Second, using the SpatialEntity class from meta-level @6 would

make INSPIRE Data Specifications independent of the implementation and it would still be easy to select a

data type from the implementation model in the application schema.

In the example models described we can find several common patterns of multilevel modeling (see Sec-

tion 3.1):

• Type-object pattern: e.g., AdministrativeUnit is instantiated into different types in lower meta-levels, such

as Country or Municipality (see Figure 7).

• Dynamic features pattern: e.g., the attributes included in meta-classes of the meta-level @1, such as

population or nationalCode in PopulatedPlace (see Figure 7). Also, almost every instance of SpatialEntity

in all the examples include new attributes, since the meta-class SpatialEntity is very generic. For example,

inspireId, name or countryCode in AdministrativeUnit of the meta-level @2 (see Figure 6).

• Relation configurator pattern: both the relationships parent and residenceOfAuthority defined in the

meta-level @2 (see Figure 6) are configured or redefined in the meta-level @1, changing the cardinality
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Figure 8: Modeling multilevel Territory Administration - Meta-level @1 for Portugal
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Figure 9: Modeling multilevel Territory Administration - Example of Level 0 for Spain
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and the end classes in every case. For example, in the case of the association between Province and

AutonomousCommunity (see Figure 7).

Regarding the complexity of the models, the number of classes is the same in the INSPIRE models and in

our proposal. However, the INSPIRE models would require a large number of inheritance associations (i.e., one

for each administrative division of each member country) that are represented as instantiations in our models.

Furthermore, the INSPIRE models would not easily represent the semantics of the administrative divisions of

each member country because UML does not provide simple notation to specify that an association is specialized

in a inheritance hierarchy (i.e., constraints must be used).

As a conclusion, the solution based on multilevel modeling is more expressive, flexible and simple. It also

ensures interoperability between member countries because it ensures that the model of each country remains

formally connected to the INSPIRE model while allowing the addition of country-specific semantics.

3.4 Modeling common GIS structures

3.4.1 Overview

Spatial networks are one of the most common data model structures in GIS. Many domains require modeling

and processing different types of networks. Two of the most common domains are transport networks, such

as those representing roads, railways, or flight routes, and resource distribution networks, such as electricity

supply, telecommunications, or water supply networks.

From the most abstract point of view, a network is composed of nodes and edges. When a GIS is used to

model networks, both nodes and edges of a spatial network are spatial entities because they represent real-world

geographic features. Each node has a location, which is usually a point in the space (a GM Point geometry).

The edges of the network are defined by the two nodes they connect. If the edge is directed, one node plays the

role of the source, and the other plays the role of the target. In most cases, edges are defined in the space by a

line or curve (a GM Curve geometry). Even though the data model for spatial networks is clearly understood

(it was already defined in [16]), each GIS application schema has to redefine the same classes for networks

composed of edges and nodes instead of referencing the spatial network definition as a common structure.

The idea of reusing the model that defines spatial networks was applied by the designers of the INSPIRE

data specifications. Given that spatial networks are required by three data specifications in INSPIRE (namely,

transport networks, hydrography, and utility and government services), they have defined a generic network

model as part of its base models9. Then, each data specification extends the classes in the Generic Network

Model to define a common set of base classes for transport networks10, hidrography11, and utility networks12.

Finally, each data specification defines classes for specific network types extending the classes of the common

model (e.g., the specification for transport networks defines classes for road railway, air, water, and cable

transport networks, and the specification for utility networks defines classes for electricity, oil-gas-chemicals,

water, sewer, and thermal networks). The result is a set of quite complex models with a very deep inheritance

hierarchy that makes the model quite difficult to understand.

3.4.2 Multilevel modeling solution

Figure 10 shows a simple example of a multilevel solution for modeling networks with four levels. The upper

level (not shown) consists of the meta-level @6 of spatial entities defined in Figure 2. The meta-level @3 is

used to model the generic structure for a network, independently of the nature of either the nodes or edges.

Nodes are spatial entities for which the geometry is a point. Besides, all nodes must have an identifier and a

9INSPIRE Data Specifications – Base Models – Generic Network Model: https://inspire.ec.europa.eu/documents/

inspire-data-specifications-%E2%80%93-base-models-%E2%80%93-generic-network-model
10INSPIRE Data Specification on Transport Networks – Technical Guidelines: https://inspire.ec.europa.eu/Themes/115/2892
11INSPIRE Data Specification on Hidrography – Technical Guidelines: https://inspire.ec.europa.eu/Themes/116/2892
12INSPIRE Data Specification on Utility and Government Services – Technical Guidelines: https://inspire.ec.europa.eu/

Themes/136/2892
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Figure 10: Modeling multilevel Spatial Networks - A simple example
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Figure 11: Modeling multilevel Spatial Networks - Overview

description. Edges are spatial entities too, but their geometry is a line. In addition, edges have two associated

nodes (source and target). All these attributes are instantiated in meta-level @0.

The meta-level @2 shows the model of an specific type of network, an Electricity Supply Network. As we

can see in the figure, the edges need to store data regarding the voltage they transport (which can be low,

medium, or high) and the safety distance they must keep to buildings or trees. For each node, we must know

the input and output voltages (which can be different, as it happens in the case of transformation centers).

Other attributes to store for each electric node can be the model or the producer.

The design we have presented is extended in the next level, in which we define specific classes for specific types

of nodes of the network that instantiate some of the attributes. For example, we define a TransformationCenter

which is a special type of node that transforms medium-voltage electricity into low-voltage electricity, and

a class ElectricalSubstation, which transforms high-voltage electricity into medium-voltage electricity. In this

case, these classes instantiate the attributes voltageIn and voltageOut, since it is not be necessary to do it in the

meta-level @0.

Figure 11 shows the overview of our multilevel modeling approach to the INSPIRE models. The topmost

level (i.e. meta-level @6) is the level of ISO 19107 and the class SpatialEntity described in Section 3.2. The meta-

level @4 corresponds to the generic network model defined by INSPIRE. The meta-level @3 corresponds to the

common data models defined in INSPIRE for transport networks and utility networks. Finally, the meta-level

@2 corresponds to the data models defined by INSPIRE for road and railway networks in the data specification

for transport networks, and electricity and water networks in the data specification for utility networks. The

INSPIRE data specifications include additional data models for networks that we have not included here for

the sake of clarity (e.g., water transport networks, or sewer networks). The meta-level @1 is also left undefined

in this paper because it should be defined by each member country with its specific requirements.

Figure 12 shows the meta-level @4 of our multilevel metamodel for modeling spatial networks that replicates

the INSPIRE Generic Network Model13. A Network is composed by NetworkElements, which can be Nodes

and Links (edges), both of them being SpatialEntities with geometries. A NetworkElement can also be a set

of Links (to represent collections of related edges) or a sequence of Links (to represent ordered collections of

related edges). NetworkProperty can be used to reference a collection of NetworkElements to apply properties

to sections of the network. The reference can be applied to the whole NetworkElement or a part of it using a

point and an offset, or using an offset and a length (i.e., the traditional concept of linear referencing in GIS).

13INSPIREDataSpecifications\T1\textendashBaseModels\T1\textendashGenericNetworkModel:https://inspire.ec.europa.

eu/documents/inspire-data-specifications-%E2%80%93-base-models-%E2%80%93-generic-network-model
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Figure 12: Modeling multilevel Spatial Networks - Meta-level @4
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This is a design that allows, for example, to specify in a road network that the maximum speed for the first half

of a road link is different than the one for the second half).

Figure 17 (in Appendix A) shows the meta-level @3 model corresponding to the INSPIRE model for transport

networks14 (see Figure 16 in Appendix A), adapted to multilevel approach. As we can see, it redefines some

meta-classes from the previous metamodel (Figure 12), adding the specific elements of the transport networks

such as the typeOfTransport, an attribute that defines the network nature that is instantiated in the next

meta-level (@2), or the properties MaintenanceAuthority, TrafficFlowDirection and OwnerAuthority.

The INSPIRE specifications define a more specific model for each kind of transport network (see Figures 18

and 20 in Appendix A). We have represented them as the metamodels of the meta-level @2, shown in Figures 19

and 21 (in Appendix A). These models instantiate meta-classes of meta-level @3 as concrete meta-classes of

level @2 (e.g., a Road class, a ERoad class, or a RailwayLine as an instance of TransportLinkSet). They also

add new attributes when necessary (e.g., the European route number of an ERoad or the railway line code of a

RailwayLine).

We have followed a similar approach for the case of utility networks15 (see Figure 22 in Appendix A). The

model at meta-level @3 (Figure 23, in Appendix A) defines the common set of classes used in INSPIRE for

utility networks, namely an UtilityLinkSet as an instantiation of a LinkSet of the meta-level @4, and classes to

represent cables, pipes and ducts as specializations of an UtilityLinkSet. The model at meta-level @3 also defines

a class to represent appurtenances of the utility network as an instance of the a Node from meta-level @4. Then,

the model at meta-level @3 for water networks (Figure 25, which replicates the INSPIRE data specification

of Figure 24, both in Appendix A) instantiates the classes from meta-level @2 adding additional attributes to

better describe the objects (e.g., the pipe diameter or the pressure). The same occurs with the meta-level @2

model for electricity networks (Figure 27, which replicates the INSPIRE data specification of Figure 26,both in

Appendix A) that adds attributes to describe information such as the operating voltage or the nominal voltage

of an electricity cable.

The proposal stops at meta-level @2 because it corresponds with the INSPIRE specification. A member

country is expected to define a level @1 model that takes into consideration the specific requirements for its

networks. Furthermore, if we take into account that the electricity networks of a country are built and operated

by different companies, it would be possible to define an additional level below the INSPIRE level (that is,

raising all the levels from Figure 11 one level up), adding a new meta-level @2 with elements like those used

in Figure 10. This way, each company that operates an electricity network could define a meta-level @1 model

compliant with @2 but taking into consideration the specific needs and functionalities of its information system.

3.4.3 Discussion

The advantages of multilevel modeling in this scenario are similar to those presented in Section 3.2 and Sec-

tion 3.3: the multilevel model is simpler, it is more flexible, it ensures interoperability between INSPIRE member

countries, and it can be easily extended to additional domains. Regarding the complexity of the models, the

number of classes is similar because we have tried to replicate the models in the INSPIRE data specifications.

However, the number of associations is much lower. In fact, the UML models in the INSPIRE data specifi-

cation for transport networks uses non-standard UML notation to avoid cluttering the diagram with multiple

inheritances (e.g., the class TransportArea inherits both from NetworkArea and TransportObject, but this is

represented as a small italic text above the UML stereotype instead of displaying the parent classes and the

associations).

The following common patterns of multilevel modeling appear in the example models for networks (see

Section 3.1):

• Type-object pattern: e.g., the different types that instantiate Node or Edge in lower meta-levels, such as

TransportNode or Appurtenance (see Figures 17 and 23 in Appendix A).

14INSPIRE Data Specification on Transport Networks – Technical Guidelines: https://inspire.ec.europa.eu/Themes/115/2892
15INSPIRE Data Specification on Utility and Government Services – Technical Guidelines: https://inspire.ec.europa.eu/

Themes/136/2892
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• Dynamic features pattern: e.g., the attributes added to meta-level @2 ElectricalNode, such as model,

voltageIn or voltageOut (see Figure 10).

• Dynamic auxiliary domain pattern: e.g., in Figure 10, there is a new meta-class in meta-level @3, Net-

work, and a new association between it and instances of SpatialEntity. More examples of this pattern

appear in the more complex example shown in Figure 12, where instances of SpatialEntity have differente

relationships with domain-related elements such as LinkSequence or Network.

• Element classification pattern: e.g., the hierarchy descending from the meta-class RailwayNode, with its

subclasses RailwayYardNode and RailwayStationNode, which are all of them instances of TransportNode

from the superior meta-level (see Figures 17 and 21 in Appendix A).

As a conclusion, the multilevel models are general enough to be used outside the INSPIRE domain and to

be applied in any domain that needs the definition of spatial networks. Hence, the multilevel model can be

considered and used as a common structure.

3.5 Using common structures in unrelated domains

3.5.1 Overview

In the previous Section, we have applied multilevel modeling in a domain that uses a common structure in the

field of GIS. There are other application domains that are related but that are not usually modeled using the same

common structure. The INSPIRE data specifications provide an example for this scenario. INSPIRE defines

some data specifications in the domain of facilities management (e.g., environmental management facilities,

agricultural and aquaculture facilities, production and industrial facilities, and buildings). In this domain, it is

very common to have a hierarchy of facilities that contain lower-level facilities. For example, a manufacturing

plant is usually divided into different facilities. Each facility may consist of different buildings and installations,

each one may be in turn divided into different parts. Another example may be an agricultural installation

divided into different units with different objectives. Unlike the approach taken with networks, the authors

of the INSPIRE data specifications did not consider to provide a generic model for hierarchies of facilities.

Therefore, each data specification takes a different approach to model this hierarchy.

3.5.2 Multilevel modeling solution

Figure 13 presents a multilevel solution to the problem that allows us to define a hierarchy of facilities using

a composite design pattern that is then instantiated in different models that are able to capture the specific

semantics of the INSPIRE data specifications.

The meta-level @4 (Figure 13) of our solution defines a generic composite pattern to represent hierarchies

of facilities using as base class of the composite the ActivityComplex class defined by INSPIRE as part of its

base models16 (see Figure 28 in Appendix A). This class includes an identifier, a geometry (which we include

instantiating the SpatialEntity class form meta-level @6) and one or several thematic identifiers and functions.

It also includes some voidable attributes related to life-cycle and validity information of the instances, which

can be used at the object level (meta-level @0) for convenience if the actual application requires them. Then,

we define a composite pattern of facilities inheriting from ActivityComplex that can be used by models in lower

meta-levels to represent the hierarchy of facilities for each specific domain.

Figure 30 (see Appendix A) shows our solution to model environmental management facilities that are used

to handle environmental material flows, such as waste or wastewater flows, which is based on the INSPIRE data

specification on utility and government services17 (see Figure 29 in Appendix A). The meta-class Environmen-

talManagementFacility instantiates ComplexFacility and redefines its relation since one of these facilities can

16INSPIRE Data Specifications – Base Models – Activity Complex: https://inspire.ec.europa.eu/documents/

inspire-data-specifications-%E2%80%93-base-models-%E2%80%93-activity-complex
17INSPIRE Data Specification on Utility and Government Services – Technical Guidelines: https://inspire.ec.europa.eu/

Themes/136/2892
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Figure 13: Modeling multilevel Facilities Management - Meta-level @4.

manage a set of facilities itself. Some attributes of this domain are added, such as a facilityDescription, or the

serviceHours.

In Figure 32 (see Appendix A) we have applied the pattern defined in Figure 13 to the specification of

agricultural facilities18 (see Figure 31 in Appendix A). The meta-class Holding represents the whole area and

the infrastructures within it under the control of an operator to perform agricultural activities. Each Holding

is composed by individual Sites. Holding instantiates the meta-class ComplexFacility, while Site instantiates

SimpleFacility, being this a very straightforward example of the ActivityComplex composite.

A much more complex metamodel is the one for production facilities, as we can see in Figure 34 (see Ap-

pendix A). The data specification for this domain by INSPIRE19 (see Figure 33 in Appendix A) defines a

class ProductionSite representing the surface where one or several ProductionFacilities are located. Each Pro-

ductionFacility is composed itself by a set of ProductionPlots (land or water portions destined to functional

purposes), ProductionBuildings (artificial constructions within the production facility), and ProductionInstalla-

tions. The latter are composed themselves by ProductionInstallationParts, which are single engineered facilities

that perform specific functionalities.

The last example is related to the representation of buildings in INSPIRE. The INSPIRE specification for

this domain20 (see Figure 35 in Appendix A) is a bit more complex than the previous examples because it

contemplates two different models to represent buildings: 2D or 3D. Therefore, the data specification defines in

a first data model the generic attributes of constructions and buildings, which are then specialized in a 2D model

by classes that represent buildings using 2D geometries and in a 3D model by classes that represent buildings

18INSPIRE Data Specification on Agricultural and Aquaculture Facilities – Technical Guidelines: https://inspire.ec.europa.

eu/Themes/137/2892
19INSPIRE Data Specification on Production and Industrial Facilities – Technical Guidelines: https://inspire.ec.europa.eu/

Themes/121/2892
20INSPIRE Data Specification on Buildings – Technical Guidelines: https://inspire.ec.europa.eu/Themes/126/2892
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using 3D geometries with different levels of detail. In our proposal (Figure 36, see Appendix A), we have defined

a model at meta-level @3 to represent the generic attributes of constructions (i.e., class AbstractConstruction)

and buildings (i.e., class AbstractBuilding). Then, we have represented the composition of building parts into

buildings instantiating the classes SimpleFacility and ComplexFacility from meta-level@4 respectively. Our

proposal for the 2D version of the data specification is shown in Figure 37 (see Appendix A). The class Building

is instantiated into a class Building2D and the class BuildingPart is instantiated into a class BuildingPart2D.

Both of them are associated with a class BuildingGeometry2D.

3.5.3 Discussion

The main advantage of our solution is that we apply a well-known design pattern in meta-level @4 (i.e., a

composite pattern, see Figure 13) that is instantiated in the models of four different application domains. The

use of the design pattern allows software engineers to take advantage of all its advantages (e.g., reusability

and flexibility), while multilevel modeling allows software engineers to express the specific restrictions of each

application domain.

The authors of the INSPIRE data specifications (almost) applied the composite pattern in the definition

of the data specification for administrative units (Figure 5). Hence, the model in the data specification is

flexible enough to accommodate the specific administrative divisions of all member countries, but using a two-

level solution prevents each member country from defining specific restrictions while conforming to the model

in the INSPIRE data specification. However, the authors of the INSPIRE data specifications related to the

management of facilities decided not to use a design pattern because they considered that representing the

precise semantics of each domain was more important than using common and well-known structures. This

decision makes the models more difficult to understand.

Our solution has the advantages of both alternatives. On the one hand, the model at meta-level @4 uses

a composite pattern that provides flexibility and reusability. On the other hand, each of the models of each

domain captures the semantics of the domain, in particular:

• The meta-level @2 for environmental management facilities does not define any specific restrictions on the

composition, just like the data specification does.

• The meta-level @2 for agricultural facilities restricts the composition to two levels (i.e., holdings and sites)

retaining the semantics of the data specification.

• The meta-level @2 for production facilities defines a hierarchy (i.e., nested containment) with four levels,

just like the data specification does.

• Our proposal for buildings shows two advantages. First, the composite pattern of meta-level @4 is reused

while keeping the semantics of the INSPIRE data specification. Second, while the INSPIRE data specifi-

cation has to use a UML constraint to represent that the part of a 2D building has to be a 2D building

part (because the inheritance hierarchy would allow any building part to be part of any building), our

proposal explicitly represents the constraint by redefining the association in meta-level @2.

Regarding common patterns of multilevel modeling (see Section 3.1), the following appear in the examples

of this section:

• Type-object pattern: e.g., the different types that instantiate ComplexFacility or SimpleFacility in Fig-

ure 34 (see Appendix A).

• Dynamic features pattern: besides the attributes added in the meta-class ActivityComplex, that instanti-

ates SpatialEntity (see Figure 13), we have new attributes for example in EnvironmentalManagementFa-

cility with respect to ComplexFacility (see Figure 30 in Appendix A).

• Dynamic auxiliary domain pattern: e.g., new associations are created between instances of Building and

BuildingPart, and a new meta-class that instantiates SpatialEntity (see Figure 37 in Appendix A).
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• Relation configurator pattern: e.g., in Figure 30 (see Appendix A), the association between

Facility and its subclass ComplexFacility is redefined since EnvironmentalManagementFacility can be

composed of instances of the same class.

The number of classes in these modes is similar to the models in the INSPIRE data specifications because

we have tried to replicate them. Regarding the number of associations, our model does not require inheritance

associations to ActivityComplex, thus reducing the complexity. The number of association between the classes

is not reduced in our models, but considering that we have included a composite design pattern, we can say

that we have improved reusability and flexibility without adding complexity.

4 Discussion and evaluation

In this section, we evaluate the proposal presented in Section 3 with respect to the requirements we described

in Section 1 for the modeling solution: (R1) Scope, (R2) Reuse of common structures, (R3) Flexibility, (R4)

Realistic, and (R5) Generality. Also, we summarize the multilevel metamodeling patterns that occur in the

solution and the advantages that we have identified. Finally, we summarize the advantages of the multilevel

modeling solutions with respect to their two-level counterparts.

Scope (R1), flexibility (R3) and generality (R5) As we explained in previous sections, working with one

metamodel level requires balancing the trade-off between the scope of the metamodel and its flexibility. Adding

common elements and structures to the metamodel would enforce all the models to use those elements and

common structures as they were defined, and updating them would require updating the metamodel.

As an example, in the case of networks with a spatial component, in a two-level metamodeling solution, all

our models would have to conform to the network definition at the metamodel level, and adding new features

or admitting potential modifications on that network definition would force us to redefine the metamodel and,

probably, add unnecessary complexity to it. Trying to consider all those particularities in one meta-model would

be far from flexible. Moreover, the adaptations needed for two different applications could be contradictory,

which would pose a problem to the usability of the metamodel. This is the reason why metamodels such as the

one presented in [2, 11,12] leaves out of the metamodel some elements of the domain that are interesting.

Something similar happens in the case of territory administration. In the metamodel level, we may define

that a hierarchical decomposition of the territory follows a composite pattern. While this is the general case,

the specific legal context of two countries may specify a more specific structure. For example, the territory can

be structured in autonomous communities, provinces, and municipalities in Spain, but it may follow a slightly

different schema in other countries. Trying to reflect all those specificities in the same metamodel would lead

to an artificially complex solution. We can find similar problems in the scenario of facility management.

A multilevel modeling solution allows us to define common elements that may be necessary for different

applications while having the flexibility and generality to adapt them to the particularities of each project in

other metamodel levels.

The solution presented in Section 3 defines at each level elements at a specific level of abstraction that can

be refined or adapted in metamodels at lower levels. For example, in the case of networks we were able to first

define a generic network structure, then refine it to the case of transportation networks, and then adapt it again

to the particular case of road and railway networks. In territory administration, we considered a scope that

can be adapted to the particular case of any country, and in the case of facilities management, we were able

to consider different types of facilities (environmental, agricultural, industrial, and buildings). Therefore, the

solution based on multilevel modeling allowed us to address a wider scope. In the multilevel solution, extending

the scope of the metamodel does not necessarily imply less flexibility. Therefore, in the multilevel solution, the

flexibility and the generality of the metamodel is not determined by the scope of the metamodel (R1, R3 and

R5).
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Scope (R1), reuse of common structures (R2), and generality (R5) The reuse of common structures may not be

relevant in other application domains, but it is especially convenient in GIS. The common information structures

we have modeled emerge naturally from the information managed in these systems and its organization in the

real world. In the four scenarios we considered in our proposal, we were able to identify those information

structures and to model them in a general way that was then adapted to the particularities of specific cases.

More specifically, our solution covers the following common structures of the GIS domain:

• ISO conceptual model and OGC implementation model: we propose in our solution to apply multilevel

modeling to the defintion of international standards in GIS. This is a very ambitious proposal since ISO

and OGC have proposed 81 and 70 standards each (although not all are related to each other, and there

is overlap between the standards). However, it cannot be denied that carrying out this task would meet

the requirements of scope, reuse of common structures and generality.

• Territory administration: our solution models a general decomposition of the territory for administration

purposes (just like the INSPIRE solution does) but allows us to specialize it to the particular territory

administration of different countries (in our case, Spain and Portugal).

• Networks: from an abstract definition of a network, our solution considers the cases of transportation

networks (in our case, road and railway networks), and also utility networks (in our case, electricity and

water pipes networks). The solution could be easily extended to consider other types of networks.

• Facilities: as in the previous examples, an abstract facility information structure was then refined for

managing environmental, agricultural, industrial, and building facilities.

Scope (R1) and Realistic (R4) We consider the solution we have presented realistic (R4) and covers a wide

scope (R1) based on existing proposals for GIS that are currently being used in the industry. One of our goals

in this work was to create a model solution according to real existing proposals for GIS modeling. Thus, we

considered the INSPIRE Directive, a very complete set of models that cover the most typical application areas

of GIS. INSPIRE defines 34 data specifications, and our goal was not to model INSPIRE completely. Therefore,

we focused on selecting representative examples that show in a real example the benefits of a solution with

multiple meta-modeling levels.

As we have seen in Section 2, the INSPIRE data definitions support a large set of concepts and many of the

relationships among them. However, the models of INSPIRE can be quite complex. The multilevel models we

presented in Section 3 provide a much simpler solution, with each level concerning one level of abstraction that

can be easily adapted to specific needs of applications at lower levels.

Considering the purpose of INSPIRE and that it is thought to be used in different countries, one of the

benefits we appreciate in a multilevel modeling solution in GIS is that it allows us to instantiate attributes,

operations, and relationships at different levels. This is particularly important in complex model structures

such as the one proposed by INSPIRE.

One of the advantages of multilevel modeling is the capability of deferring instantiation. This is very adequate

to our context since certain elements of the models need to be defined depending on the particularities of the

application context. For GIS applications based on INSPIRE specifications, the application context depends

not only on the requirements of a specific application but also on the country. With our multilevel approach,

the particularities of the country can be expressed in a meta-level lower than INSPIRE, but there is still a place

for expressing the actual application requirements in the data model of the application, in meta-level @1.

Multilevel metamodeling patterns We analyzed the presence of the different multilevel metamodeling patterns

described in [21]: type-object, dynamic features, dynamic auxiliary domain, relation configurator, and element

classification. Table 1 shows the patterns that occur in each of the scenarios, we are using all the patterns at

some point of the solution, and all the scenarios use at least two multilevel metamodeling patterns.
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Patterns GIS Scenarios
Administration Networks Facilities

Type-object x x
Dynamic features x x x
Dynamic auxiliary domain x x
Relation configurator x x x
Element classification x

Table 1: Occurrence of multilevel metamodeling patterns in the scenarios.

Summary of the advantages The advantages of multilevel modeling in the GIS domain can be summarized as

follows:

• Many organizations are defining models for many aspects of GIS that are strongly related between them.

However, these models are completely independent and they are disconnected. If a multilevel modeling

approach were used, the models would be formally connected enabling many advantages related to MDE

(e.g., applying model transformation techniques).

• Multilevel modeling reduces inheritance in the models. This improves the readability of the models and

reduces the probability of requiring multiple inheritance and hence avoiding its problems.

• Interoperability can be improved using multilevel modeling because the organizations that define standards

can propose metamodels that can later be instantiated in a more precise metamodel at a lower-level

standard organization. The INSPIRE directive is a paradigmatic example in which the European Union

would define a metamodel for each of the themes of the European spatial data infrastructure, that would,

in turn, be instantiated in a new metamodel in each of the member countries, that would finally be

instantiated in an application schema (or even in a new metamodel at a lower-level administrative division

of the member country).

• Well-known common structures of GIS applications could be proposed as metamodels that could later

be instantiated in the metamodel of specific GIS development tools to be finally instantiated in specific

application schemas.

• Software engineering design patterns (e.g., the composite or the strategy design patterns) could be applied

to application domains that are currently unrelated to transfer the benefits of the design patterns to

the application domain. This would add flexibility to the application domains and it would reduce the

complexity of the models and the learning curve of engineers and developers, facilitating the use of standard

models instead of ad-hoc solutions for each problem.

• Some modeling constraints can be modeled as first-class entities in multilevel modeling instead of being

external expressions in a different language or simple annotations.

5 Conclusions and future work

Geographic information systems manage entities with a geospatial component that plays a central role in the

system. Even if two GIS applications have different functional scopes, they will share a set of common concepts,

data types for representing geometries, spatial structures (such as territory decompositions or spatial networks),

and a set of technologies based on international standards published by different organizations, such as ISO or

OGC. These characteristics make GIS a suitable application domain for MDE.

In this work, we have addressed the modeling of GIS following a multilevel modeling approach. More specif-

ically, we have presented a multilevel modeling solution for GIS considering different scenarios: harmonization

of basic conceptual and implementation models from ISO and OGC, territory administration, spatial networks,

and facilities management. These scenarios have been selected from the European Union’s INSPIRE Directive,
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which defines a set of models for information regarding resource and environmental management so that EU

member countries can follow them to ensure interoperability. In each of these scenarios, we have shown how

typical elements and structures present in many GIS applications can be modeled in abstract levels to be refined

and instantiated at lower levels. We have used these examples to show how multilevel modeling can be applied

to bridge the gap between conceptual and implementation standards in GIS, ensuring interoperability in spatial

data infrastructures, modeling common GIS patterns, and applying common structures to unrelated domains.

Based on that previous experience and the analysis presented in the discussion sections of this work, and

although the set of models presented in this article does not pretend to be exhaustive and is just a part of all

the potential elements included in a GIS, we consider that it shows that the application of multilevel modeling

in this domain can lead to simpler, more flexible, and more expressive solutions when compared with a two-level

approach. The multilevel solution allows us to define metamodels with a larger scope and richness that can

be later adapted. It also allows us to model common information structures that appear repeatedly in GIS in

a way that allows us to redefine or adapt them to the particular needs of an application. The models defined

by INSPIRE provide a solution following a traditional modeling approach, but extending and adapting those

models to the particular needs of each country or organization would not always be possible, or it would imply

extending inheritance hierarchies that are already very complex. Also, the solution we have presented is based

on existing standard models for GIS, which shows that multilevel modeling can lead to a good solution in a

realistic view of the domain of geographic information systems. Furthermore, by using INSPIRE models to

create a multi-level model for GIS, we have shown that international standards for information systems are a

promising application domain for multilevel modeling approaches.

The scope of this work does not include aspects related to model transformation, code generation, or other

implementation aspects, which remain as future work.
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A Appendix - Complete models

@6
GM_Object

GM_Primitive GM_Complex GM_Aggregate

GM_MultiSurface

GM_Point GM_MultiPrimitive

GM_Curve

GM_OrientableCurve

GM_OrientablePrimitive

GM_OrientableSurface

GM_Surface

GM_MultiPoint GM_MultiCurve

SpatialEntity

geometry: GM_Object

N Figure 14: ISO 19107: Geographic Information - Spatial Schema

@5 Geometry:
GM_Object

GeometryCollection:
GM_MultiPrimitive

Point:
GM_Point

Curve:
GM_Curve

Surface:
GM_Surface

MultiLineString

Polygon

0..* SpatialReferenceSystem

MultiPoint:
GM_MultiPoint

MultiCurve:
GM_MultiCurve

1..*

LineString
MultiSurface:

GM_MultiSurface

MultiPolygon
Line

1..*

LinearRing

1..*

1..*

2..*

N Figure 15: OGC Simple Feature Access (OGC SFA)
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N Figure 16: INSPIRE Network Base Model and Common Transport Elements Overview, from https://

inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:6:759031

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:6:7590
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:6:7590


@3

INSPIRE
includes many
more network
properties
ommited here for
clarity

TransportProperty:
NetworkProperty

inspireId: Identifier

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

MaintenanceAuthority

authority: CI_Citation

TrafficFlowDirection

direction: LinkDirectionValue

OwnerAuthority

authority: CI_Citation

<<enumeration>>
TransportTypeValue

air

cable

rail

road

water

TransportNetwork: Network

inspireId: Identifier

typeOfTransport@1: TransportTypeValue

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

geographicalName: GeographicalName [0..*]

TransportArea: Area

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

TransportNode: Node

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

TransportLink: Link

geometry: GM_Curve

ficticious: Boolean

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

TransportLinkSet: LinkSet

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

TransportObject

<<voidable>>

geographicalName: GeographicalName [0..1]

TransportLinkSequence:
LinkSequence

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

N Figure 17: Modeling multilevel Spatial Networks - Meta-level @3 for transportation networks
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N Figure 18: INSPIRE Road Transport Network, from https://inspire.ec.europa.eu/data-model/

approved/r4618-ir/html/index.htm?goto=2:1:9:7:762733

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:7:7627
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=2:1:9:7:7627


@2

INSPIRE
includes many
more transport
properties
ommited here for
clarity

RoadName: TransportProperty

inspireId: Identifier

name: GeographicalName

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RoadWidth: TransportProperty

inspireId: Identifier

width: Measure

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RoadNetwork: Network

inspireId: Identifier

typeOfTransport = road

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

geographicalName: GeographicalName [0..*]

Road: TransportLinkSet

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

localRoadCode: CharacterString [0..1]

nationalRoadCode: CharacterString [0..1]

ERoad: TransportLinkSet

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

europeanRouteNumber: CharacterString [0..1]

RoadArea: TransportArea

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RoadLink: TransportLink

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RoadLinkSequence:
TransportLinkSequence

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RoadNode: TransportNode

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

N Figure 19: Modeling multilevel Spatial Networks - Meta-level @2 for roads networks
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N Figure 20: INSPIRE Railway Transport Network, from https://inspire.ec.europa.eu/data-model/

approved/r4618-ir/html/index.htm?goto=2:1:9:4:7508
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@2
INSPIRE
includes many
more transport
properties
ommited here for
clarity

RailwayUse:
TransportProperty

inspireId: Identifier

use@1: RailwayUseValue

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayLinkSequence:
TransportLinkSequence

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayLink: TransportLink

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayYardNode: TransportNode

RailwayStationNode: TransportNode

numberOfPlatforms: Integer

RailwayArea: TransportArea

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayYardArea:
TransportArea

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayStationArea:
TransportArea

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayLine: TransportLinkSet

<<voidable>>

railwayLineCode: CharacterString

RailwayNetwork: Network

inspireId: Identifier

typeOfTransport = rail

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

geographicalName: GeographicalName [0..*]

RailwayType:
TransportProperty

inspireId: Identifier

type@1: RailwayTypeValue

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

RailwayNode: TransportNode

formOfNode: FormOfRailwayNodeValue

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

N Figure 21: Modeling multilevel Spatial Networks - Meta-level @2 for railway networks
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N Figure 22: INSPIRE Common Utility Network Elements, from https://inspire.ec.europa.eu/

data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:3:1:8887
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@3

0..* 0..*

pipescables

Cable
Duct

<<voidable>>

ductWidth: Length

0..*ducts

<<enumeration>>
AppurtenanceTypeValue

UtilityLinkSet: LinkSet

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

utilityDeliveryType: UtilityDeliveryTypeValue [0..1]

warningType: WarningTypeValue

Pipe

<<voidable>>

pipeDiameter: Measure

presure: Measure [0..1]

pipes 0..*

UtilityNetwork: Network

inspireId: Identifier

utilityNetworkType@1: UtilityNetworkTypeValue

authorityRole: RelatedParty [1..*]

<<voidable>>

geographicalName: GeographicalName [0..*]

utilityFacilityReference: ActivitiyComplex [0..*]

disclaimer: PT_FreeText [0..*]

Appurtenance: Node

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

appurtenanceType: AppurtenanceTypeValue

specificAppurtenanceType: SpecificAppurtenanceTypeValue [0..1]

N Figure 23: Modeling multilevel Spatial Networks - Meta-level @3 for utility networks
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N Figure 24: INSPIRE Water Network, from https://inspire.ec.europa.eu/data-model/approved/

r4618-ir/html/index.htm?goto=2:3:20:3:7:8933
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@2

WaterPipe: Pipe

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

utilityDeliveryType: UtilityDeliveryTypeValue [0..1]

warningType: WarningTypeValue

pipeDiameter: Measure

presure: Measure [0..1]

waterType: WaterTypeValue

WaterAppurtenance: Appurtenance

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

appurtenanceType: WaterAppurtenanceTypeValue

specificAppurtenanceType: SpecificAppurtenanceTypeValue [0..1]

<<enumeration>>
WaterAppurtenanceTypeValue:

AppurtenanceTypeValue

anode

clearWell

controlValve

many more types ommited for clarity

N Figure 25: Modeling multilevel Spatial Networks - Meta-level @2 for water pipes networks
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N Figure 26: INSPIRE Electricity Network, from https://inspire.ec.europa.eu/data-model/approved/

r4618-ir/html/index.htm?goto=2:3:20:3:2:8910
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@2

ElectricityCable: Cable

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

utilityDeliveryType: UtilityDeliveryTypeValue [0..1]

warningType: WarningTypeValue

operatingVoltage: Measure

nominalVoltage: Measure

ElectricAppurtenance: Appurtenance

inspireId: Identifier [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

validFrom: DateTime

validTo: DateTime [0..1]

appurtenanceType: ElectricAppurtenanceTypeValue

specificAppurtenanceType: SpecificAppurtenanceTypeValue [0..1]

<<enumeration>>
ElectricAppurtenanceTypeValue:

AppurtenanceTypeValue

capacitorControl

connectionBox

correctingEquipment

many more types ommited for clarity

N Figure 27: Modeling multilevel Spatial Networks - Meta-level @2 for electricity networks
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N Figure 28: INSPIRE Activity Complex Base Model, from https://inspire.ec.europa.eu/data-model/

approved/r4618-ir/html/index.htm?goto=3:1:4:1:899043

https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=3:1:4:1:8990
https://inspire.ec.europa.eu/data-model/approved/r4618-ir/html/index.htm?goto=3:1:4:1:8990


N Figure 29: INSPIRE Environmental Management Facilities, from https://inspire.ec.europa.eu/

data-model/approved/r4618-ir/html/index.htm?goto=2:3:20:2:8857
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@2

1..*

:parent

:children

EnvironmentalManagementFacility: 
ComplexFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Object

function: Function [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

type: EnvironmentalManagementFacilityTypeValue [0..*]

serviceHours: PT_FreeText [0..1]

facilityDescription: ActivityComplexDescription [0..1]

physicalCapacity: Capacity [0..*]

permission: Permission [0..*]

status: ConditionOfFacilityValue

N Figure 30: Modeling multilevel Facilities Management - Meta-level @2 for environmental management facili-
ties.
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N Figure 31: INSPIRE Agricultural and Aquaculture Facilities, from https://inspire.ec.europa.eu/

data-model/approved/r4618-ir/html/index.htm?goto=2:3:3:1:7925
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@2

1..*

:parent :children

Holding: ComplexFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Object

function: Function [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

Site: SimpleFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Object

function: Function [1..*]

activity: EconomicActivityNACEValue [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

includesAnimal: FarmAnimalSpecies [0..*]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

N Figure 32: Modeling multilevel Facilities Management - Meta-level @2 for agricultural facilities.
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N Figure 33: INSPIRE Production and Industrial Facilities, from https://inspire.ec.europa.eu/

data-model/approved/r4618-ir/html/index.htm?goto=2:3:15:1:8641
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@2

1..*

:parent

:children

1..*

:parent

:children

1..*

:parent

:children

1..*

:parent

:children

1..*

:parent

:children

ProductionSite: ComplexFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Multisurface [0..1] {redefines geometry}

function: Function [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

sitePlan: DocumentCitation [0..1]

description: CharacterString [0..1]

status: StatusType [0..1]

ProductionFacility: ComplexFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Surface [0..1] {redefines geometry}

function: Function [1..*]

riverBasinDistrict: RiverBasinDistricValue [0..1]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

status: StatusType [0..1]

ProductionBuilding: SimpleFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..*]

geometry: GM_Object [0..1]

function: Function [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

typeOfBuilding: TypeOfProductionBuildingValue [0..1]

status: StatusType [0..1]

ProductionPlot: SimpleFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Surface [0..1] {redefines geometry}

function: Function [1..*]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

status: StatusType [0..1]

ProductionInstallation: ComplexFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Surface [0..1] {redefines geometry}

function: Function [1..*]

pointGeometry: GM_Point [0..1]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

description: CharacterString [0..1]

status: StatusType [0..1]

type: InstallationTypeValue

ProductionInstallationPart: SimpleFacility

inspireId: Identifier

thematicId: ThematicIdentifier [0..*]

geometry: GM_Surface [0..1] {redefines geometry}

function: Function [1..*]

pointGeometry: GM_Point [0..1]

<<voidable>>

name: CharacterString [0..1]

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

description: CharacterString [0..1]

status: StatusType [0..1]

type: InstallationPartTypeValue

technique: PollutionAbatementTechniqueValue

N Figure 34: Modeling multilevel Facilities Management - Meta-level @2 for production and industrial facilities.
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N Figure 35: INSPIRE Buildings Base and Core 2D, from https://inspire.ec.europa.eu/data-model/

approved/r4618-ir/html/index.htm?goto=2:3:2:2:7911
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@3

1..*

:parent :children

AbstractConstruction: ActivityComplex

inspireId: Identifier

thematicId: ThematicIdentifier [0..1]

geometry: GM_Object

function: Function [1..*]

<<voidable>>

name: GeographicalName [0..*] {redefines name}

validFrom: DateTime

validTo: DateTime [0..1]

<<voidable, lifeCycleInfo>>

beginLifespanVersion: DateTime

endLifespanVersion: DateTime [0..1]

<<voidable>>

conditionOfConstruction: ConditionOfConstructionValue

dateOfConstruction: DateOfEvent [0..1]

dateOfDemolition: DateOfEvent [0..1]

dateOfRenovation: DateOfEvent [0..1]

elevation: Elevation [0..*]

heightAboveGround: HeightAboveGround [0..*]

Building: ComplexFacility BuildingPart: SimpleFacility

AbstractBuilding: Facility

<<voidable>>

buildingNature: BuildingNatureValue [0..*]

currentUse: CurrentUse [0..*]

numberOfDwellings: Integer [0..1]

numberOfBuildingUnits: Integer [0..1]

numberOfFloorsAboveGround: Integer [0..1]

N Figure 36: Modeling multilevel Facilities Management - Meta-level @3 for building facilities.

@2

1..*

:parent :children

1

geometry2D1

1

geometry2D1..*

BuildingGeometry2D: SpatialEntity

geometry: GM_Object

referenceGeometry: Boolean

horizontalGeometryReference: HorizontalGeometryReferenceValue

verticalGeometryReference: ElevationReferenceValue [0..1]

<<voidable>>

horizontalGeometryEstimatedAccuracy: Length

verticalGeometryEstimatedAccuracy: Length [0..1]

Building2D: Building BuildingPart2D:
BuildingPart

N Figure 37: Modeling multilevel Facilities Management - Meta-level @2 for building facilities.
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