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Memory-Efficient Assembly using Flye
Borja Freire, Susana Ladra, and José R. Paramá

Abstract—In the past decade, next-generation sequencing (NGS) enabled the generation of genomic data in a cost-effective,
high-throughput manner. The most recent third-generation sequencing technologies produce longer reads; however, their error rates
are much higher, which complicates the assembly process. This generates time- and space- demanding long-read assemblers.
Moreover, the advances in these technologies have allowed portable and real-time DNA sequencing, enabling in-field analysis. In these
scenarios, it becomes crucial to have more efficient solutions that can be executed in computers or mobile devices with minimum
hardware requirements. We re-implemented an existing assembler devoted for long reads, more concretely Flye, using compressed
data structures. We then compare our version with the original software using real datasets, and evaluate their performance in terms of
memory requirements, execution speed, and energy consumption. The assembly results are not affected, as the core of the algorithm
is maintained, but the usage of advanced compact data structures leads to improvements in memory consumption that range from
22% to 47% less space, and in the processing time, which range from being on a par up to decreases of 25%. These improvements
also cause reductions in energy consumption of around 3–8%, with some datasets obtaining decreases up to 26%.

Index Terms—compact data structures, genome assembly, long-reads assembly, memory efficiency, third-generation DNA sequencing
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1 INTRODUCTION

S INCE the 50s, we are attending to a rapid increase in
the scale of the treated bioinformatics datasets [1]–[3].

Current databases, such as the Sequence Read Archive [4],
contain a large number of datasets; moreover, they are also
growing in size, making old techniques unable to process
them. Genomics poses unique challenges in terms of data
acquisition, storage, distribution, and analysis [5], which
require new innovative approaches.

Nowadays, the most common approach for facing com-
putationally very expensive processes is to use some sort of
parallel computing [6]–[10]. This is due to the availability
of techniques, useful tools, and cheap hardware. However,
another, less frequent, way to obtain scalable systems is
to use more efficient methods or data structures in order
to reduce the memory consumption and/or time [11]–[13].
Despite now being an unusual approach, in the early days
of computer science, it was common to spend considerable
effort to obtain more efficient software, as the hardware was
expensive and had low computational power. In addition
to their intrinsic benefits, these techniques are completely
compatible with parallel computing strategies, thus, we can
join the advantages of both approaches.

In-memory databases [14] constitute an example of this.
Instead of using the traditional setup, where data reside
in disk and portions are translated to main memory when
needed, these database management systems keep all data
in main memory all the time. Obviously, this is a challenge
that requires complex procedures and data structures, in-
cluding compression techniques. Another example is the
so-called compact data structures [15], [16]. The idea is
basically the same as in in-memory databases, data are
stored in the upper levels of the memory hierarchy by using
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compression. The difference is that this field faces all types
of data.

Many compact data structures use bitmaps as the main
basic block to build complex data structures. Given a bitmap
B[1 . . . n] storing a sequence of n bits, there are three basic
operations: access(B,i), which obtains the bit at position i
of B; ranka(B, i), which counts the occurrences of bit
a ∈ {0, 1} in B[1 . . . i]; and selecta(B, i) locates the position
for the ith occurrence of a ∈ {0, 1} in B.

Several data structures (see [17] for example) allow solv-
ing these operations in constant time and using n+o(n) bits
of total space. There exist implementations that enable fast
rank and access operations in only 5% extra space over the
original bit array.

By using bitmaps, we present a modification of the well-
known assembler Flye [18], aimed at decreasing the amount
of main memory used when creating the draft genome
assembly and the subsequent assemblies during the rest of
phases of the process. Furthermore, the execution time is not
affected, but improved in most cases.

Flye was recently compared with five state-of-the-art as-
semblers, obtaining better or comparable assemblies, while
it is an order of magnitude faster [19]. Moreover, Flye
obtains longer contigs as it doubles the NGA50 metric.
Therefore, taking as a starting point such an efficient as-
sembler in terms of speed as Flye, we decided to face the
other relevant parameter for an efficient implementation, its
memory consumption.

Decreasing the memory footprint of assembly processes
is crucial for new DNA sequencing technologies that aim at
offering portable and real-time genome sequencing [20]. In-
field analyses are now possible thanks to the development
of mobile and affordable devices, such as the pocket-sized
Oxford Nanopore Technologies’ (ONT) MinION. The main
advantage of these mobile genomic labs, which can be
deployed for in situ DNA extraction and sequencing, is the
possibility of shortening the time from the collection of the
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sample to the data analysis. This approach has been recently
used, for instance, during the Nigeria 2018 Lassa fever
outbreak, where real-time analysis allowed a better under-
standing of its molecular epidemiology [21]. Currently, most
bioinformatics pipelines are executed on high-performance
computing cluster or powerful computers, most of the time
on the cloud. Thus, data must be transferred and queued
into those systems, which slows down the whole process.
Moreover, it is possible that these analyses involve personal
and sensitive data, such as genetic data; therefore transfer-
ring the data to external facilities can be problematic. Thus,
due to privacy issues or immediateness, there exist scenarios
where the analysis of genomic data in the same place where
the data is extracted, is of vital importance. In these scenar-
ios, it is necessary that these real-time analyses can be done
not only using portable DNA sequencers but also portable
computing devices, such as laptops or smartphones, which
have memory limitations.

1.1 Long error-prone reads assemblers

The expected outcome of an assembly process is a set of safe
contigs that belong to the genome of interest, hopefully cov-
ering as much of it as possible. The traditional way of doing
this is to build a de Bruijn graph [22] from k-mers1 or an
Overlap-Layout-Consensus (OLC) graph [23] and then look
for safe paths within these graphs [24]. Nowadays, there are
several algorithmic ways to discover these paths, and even
graph transformations that lead to longer paths like Y-to-V
transformation [25], EULER [26], or using omnitigs [27].

Although all these techniques are well-known and they
are widely used in practice when working with short reads
obtained from second-generation sequencing2 platforms,
they are not as useful with third-generation sequencing
reads, i.e. PacBio SMRT, or Oxford NanoPore sequencing.
The reason is that, due to the high error rate of the reads, the
de Bruijn graphs built with a standard k-mer size (between
25–30 bp) are extremely tangled and the OLC graphs need
an extremely large coverage to work properly.

The first attempts of long error-prone assemblers were
based on Overlap-Layout-Consensus or on similar string
graph approaches [28], but these methods have quadratic
complexity. Another way to face the problem is to return
to the de Bruijn graph, or more precisely, to a variation
called the A-Bruijn graph, which was originally designed
to assemble a rather long Sanger reads [29].

Based on the A-Bruijn graph, Lin et al. presented Flye
[18], which is able to obtain good results with a rather
efficient process. Our work is based on this approach, which
is better explained at Section 2.2.

2 BACKGROUND

2.1 Compact data structures

Compact data structures have been extensively used in
bioinformatics. The best example is the FM-Index [30],

1. k-mers are subsequences of length k contained within a biological
sequence. In our work, they are sequences of k nucleotides (i.e. A, T, G,
and C).

2. Second-generation sequencing is also known as next-generation
sequencing (NGS).

which is able to store a text using roughly the space required
for representing that text in compressed form and, at the
same time, is able to locate any substring in sublinear time. It
is the main data structure of the majority of short-read align-
ers including Bowtie [31], BWA [32], and SOAP2 [33]. More
specific tasks, such as k-mer counting and k-mer indexation,
have also been addressed by using compact data structures.
Välimäki and Rivals [34] used a FM-Index-like structure,
called compressed suffix array [35] for this. Claude et al.
[36] used techniques coming from the field inverted indexes.
There are many succinct versions for de Bruijn graphs [37]–
[40] that use different compact data structures techniques,
among others, the FM-index. An important recent research
line in compact data structures is to represent and index
genomes of different individuals in very little space [41]–
[43]. There is a large list of works in this field, just to cite a
few [44]–[48].

As explained, many compact data structures use bitmaps
combined with fast rank and select operations. Jacobson [49]
proposed a solution able to compute rank in constant time.
Given a bitmap B of size n, it uses a two-level directory
structure. The first-level directory stores rank1(B, p) for
every p multiple of s = blog ncb(log n)/2c. For every p
multiple of b = b(log n)/2c, the second-level directory keeps
the relative rank value from the previous multiple of s. By
using these data structures, rank1(B, i) can be computed
in constant time by accumulating the values from both
directories. The first-level directory returns the rank value
until the previous multiple of s. The second-level directory
gives the value of rank from that position until the previous
multiple of p. Finally, the number of 1s from that position
until position i is computed using a precomputed table that
stores the rank values for all possible byte values. The sizes
s and p are carefully chosen so that the auxiliary dictionary
structures use o(n) additional space.

Although n + o(n) representations are asymptotically
optimal for incompressible binary sequences, it is possible
to obtain better space when the binary sequence is com-
pressible, for example when the number of 1s (alternatively
the 0s) is small. In that case, the bitmaps are usually called
sparse bitmaps. For instance, Raman et al. [50] presented two
representations for sparse bitmaps with nH0(B) + o(`) +
O(log log n) and nH0(B) +O(n log log n/ log n) bits, where
H0(B) is the zeroth-order entropy of B and ` is the number
of 1-bits in B.

The constant time solution for select is significantly
more complex than that of rank. Clark [51] presented
a solution based on a three-level directory that requires
3n/dlog log ne + O(

√
n log n log log n) bits of extra space.

For example, in case n = 230, the additional data structures
occupy 60% of the original bitmap. Practical implementa-
tions of select [17] reuse the same directories used for rank,
although this yields O(log n) time. The simple solution is to
binary search in B a position i such that rank1(B, i) = j
and rank1(B, i− 1) = j − 1. Real implementations, instead
of using the rank operation as a black box, binary search
the directories Ds and Db to speed up the query, yielding a
O(log log n) cost.
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2.2 Flye assembler
Most single-molecule or third-generation sequencing assem-
blers spend much time making sure that the created contigs
are correctly assembled. Flye, in contrast, does not waste
time on making sure that the created contigs are correct. Ac-
tually, Flye intentionally builds misassembled contigs and,
from them, it builds accurate and longer contigs. Briefly,
Flye constructs an assembly graph and, starting from a
given read, it creates random walks on that graph. Once a
random walk is built, all reads that map with that walk are
found, and a consensus contig is built from the whole set of
reads. Obviously, this new consensus contig is legit because
it is supported by several reads. Once all contigs have been
created, they are glued into an accurate assembly graph
which is untangled, and unbridged repetitions are solved
by using the number of reads that traversed consecutive
edges in the accurate assembly graph. More precisely:

1) Building a draft genome assembly and generating
consensus contigs. To deal with the drawbacks of
long reads, Flye corrects them before building the
assembly. This stage computes an A-Bruijn graph
that uses only solid k-mers3 instead of all the k-
mers from the reads. Furthermore, the value stored
in an edge between nodes X and Y of the graph
corresponds to the distance between them in a given
read Z , unlike traditional de Bruijn graphs, which
store the char following node X .
Once the graph is built, Flye generates arbitrary
paths in the graph4 creating inaccurate contigs.
Then, a consensus process is carried out using all
the reads that contribute to the contig. Finally, these
new “accurate” contigs are used to build an accu-
rate assembly graph, which can be traversed like a
regular de Bruijn graph.

2) Treating repetitive regions. One of the biggest chal-
lenges when assembling NGS data is to deal with
genome repetitive regions, which are the result
of recombination, transposons and/or mini/micro-
satellites. The success of the de Bruijn graphs in the
genome assembly field is mainly due to their ability
to represent repeat families as mosaics of ideally
error-free5, sub-repeats [29].
Furthermore, overlap graphs scale quadratically
with the number of reads, thus, they become unfea-
sible for NGS. The direct application of the classic
de Bruijn graph does not obtain accurate assembles
from long reads, and thus OLC graphs with high-
coverage reads are the usual choice to obtain an
accurate assembly. However, with OLC, it is not
possible to define repeat families, thus much re-
search efforts have been devoted to adapt de Bruijn
graphs to be useful for long reads.

3. A solid k-mer is a k-mer that appears at least t times in the reads,
being t a threshold.

4. Instead of looking for the best one, Flye extends the paths selecting
an arbitrary read. Therefore, it does not lose time assaying every single
overlapping read and selecting the most promising one.

5. Note that de Bruijn graphs work for “perfect” repetitions but
unfortunately DNA repeat families are usually full of gaps and mis-
matches. Therefore, even with de Bruijn graphs, treating repeat regions
remains messy.

Flye is able to treat repetitive regions using a de
Bruijn graph because the reads have been corrected
in the previous step. Therefore, using previous con-
sensual reads, an unravelled repeat graph6 is built.
Since the idea behind repeat graphs is actually the
same as that of the de Bruijn graph, Flye is able to
transfer the power of de Bruijn graphs to long reads
without losing accuracy or demanding extremely
high levels of coverage throughout repeat graphs.

3) Polishing the final genome. Once the contigs are ob-
tained, most NGS assemblers are capable of increas-
ing their length by using paired-end information
to add topological knowledge. These extended con-
tigs are then referred to as scaffolds. Furthermore,
this step also allows polishing the obtained contigs
removing those which are misassemblies, namely
chimaeras, and thus increasing the veracity of the
assembly.

All of these three steps are critical and need to be treated
carefully. Even though all the steps are equally relevant, the
most memory demanding phase is the first one, since it has
to quickly process all k-mers in reads and build consensus
contigs, which requires having all overlaps between reads.
Therefore, since our goal is to reduce memory consumption,
we have focused our improvements on this module.

Next, we will introduce how Flye builds the assembly
draft. It is important to remark that this work does not
introduce any changes to the Flye’s assembly algorithm. Our
goal is to improve Flye’s memory efficiency, and therefore
its scalability, by using new data structures to store and ma-
nipulate data, but always using Flye’s assembly procedure.

The traditional genome assembly process is based on
creating a graph representation from the reads using k-mers
and then looking for safe solutions/paths inside the graph.
Afterwards, multiple heuristic steps are applied to extend
these solutions, and once the contigs have been stretched,
the final stages of the process are scaffolding and gap filling.

However, this process suffers from problems when deal-
ing with long reads due to, as explained, their high error
ratio, which is around 15% for long reads compared to 0.1–
1% for NGS. To overcome this, the Flye’s assembly process
consists of three different phases: (i) approximate k-mer
counting, (ii) selection and indexing of solid k-mers, and
(iii) draft genome assembly. The first two steps focus on
filtering the k-mers in reads and selecting those k-mers that
can be considered genomic. Once Flye has selected the legit
genomic k-mers, it assembles the reads looking for those
that overlap each other and also fulfil a set of restrictions.
As a final step, Flye generates consensus contigs to build
long error-free reads and, from them, it obtains an accurate
genome assembly.

6. A repeat graph is an alternative graph representation that com-
pactly represents all repeats in a genome and reveals their mosaic
structure [18], [29]. Furthermore, repeat graphs can deal with mis-
matches and gaps inside repetitions, offering a better way of treating
and detecting repetitive regions.
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2.2.1 Counting k-mers

The high error rate of the reads produces a large number
of false or non-genomic k-mers.7 In order to overcome this
problem, Flye separates the genomic and non-genomic k-
mers by counting the appearances of the k-mers in the reads
and selecting only those whose frequency is above a thresh-
old t. While this might sound simple, it actually becomes
a hard problem when working with long reads, due to the
huge amount of k-mers present in the reads, which makes
their indexation extremely difficult in a reasonable time and
space. In fact, this problem is the origin of a research line by
itself [52]–[54].

The threshold used by Flye in this phase is automatically
selected as a value between 2 and 5, depending on the
coverage of the input dataset, which is estimated by Flye
from the genome length (provided as a parameter) and the
sum of the read lengths.

The solution of Flye requires two counts: (i) approximate
counting, and (ii) exact counting. The approximate counting
is carried out by using a Bloom filter [55], a hash table
that does not solve collisions. Therefore, one hash entry
can accumulate appearances of different k-mers. This step
removes k-mers with a very low frequency.

We illustrate an example of the use of the hash table
for the approximate counting in the left part of Figure 1. In
the upper part, we include two reads (read1 and read2),
and, for each of their positions, the k-mer that starts at
that position. As explained, in this approximate counting,
collisions are not solved. Observe that entry 4 accumulates
six appearances, which correspond to four appearances of
k13 and two appearances of k14, since the hash function
hash1 maps both k-mers to the same entry.

Being Lr the average length read, Nr the number of
reads, and GenomeSizeFactor a value between 1 and 16 that
Flye calculates based on the estimated size of the genome
provided by the user, this phase costs θ(Lr ∗ Nr) time and
uses GenomeSizeFactor ∗ 415 ∗ 8 bits.

In a second pass of the reads, Flye counts the exact oc-
currences of the k-mers whose entries reached the threshold
t in the first pass. For this exact counting, Flye uses the well-
known data structure Cuckoo hash [56]. It is a variation of
hashing that assures a small and constant number of itera-
tions for indexing and accessing operations. This is achieved
by using several hash functions, usually two is enough,
and a collision handler. When a collision is produced, the
corresponding key already stored at the entry is moved to
one of its other possible positions, defined by an alternative
hash function. This can cause another collision, which is
solved in the same way.

We illustrate the exact counting in the right part of
Figure 1, including different states of the hash table for
different instants of the process. Now, the entries of the hash
table contain the key (a k-mer), in addition to the counter.
In reality, a Cuckoo hash usually uses two tables of the
same size, and, at each entry, several keys can be stored
(collisions). For a given key, if hash(key) = i, that key can

7. The maximum number of non-genomic k-mers is (Lr ∗Fr)∗Cov ∗
Nr , where: Lr is the average length read, Fr is the failure ratio, Cov is
the coverage, and Nr is the number of reads.

be in the entry i of either table. However, in order to simplify
the figure, we use just one table with just one key per entry.

In the hash table under the (a) label, we show the state
of the table after traversing read1 until position 6. As seen,
k13 and k54 appeared twice and k32 once. These keys are
placed in the position given by the hash function hash1.
Under the label (b), we show the state of the hash table after
processing position 7 of read1. The k-mer in that position
(k44) is mapped to the entry 5 according to hash1, which
is already occupied by k32. Therefore, k32 is moved to its
alternative position given by the hash function hash2, that
is, to position 15. Once position 5 is released, k44 is placed
there.

Under label (c), we show the state of the hash table
when processing position 4 of read2. In that position, the
k-mer k14 begins, and hash1 maps it to entry 4, which is
already occupied by k13. Then, k13 should be moved to
its alternative position given by hash2, which is position
5, thus releasing position 4 for k14. However, position 5
is also occupied by k44. Then, k44 is also moved to its
alternative position defined by hash2, which is position
11. Again, position 11 is occupied, in this case by k54, but
now, we enter in a cycle, because the alternative position
of k54 is 4. To avoid this situation, there is a limit in the
number of handled collisions (logarithmic in the table size).
If that value is reached, this requires the change of the hash
functions hash1 and hash2, and all the k-mers should be
reallocated accordingly.

This method guarantees constant time access as long as
the table is not occupied more than 50% of its capacity.
To avoid this, when the number of collisions triggers the
change of the hash functions, the table size is doubled as
well.

The worst-case time complexity of the exact count is
O(Lr ∗ Nr + S2) time, being S the number of k-mers that
passed the approximate counting. Recall that all k-mers
must be processed, checking if they have passed the first
threshold, and then inserted in the Cuckoo table. These
insertions may cause duplication of the hash table and the
reallocation of most entries. Observe that each duplication
implies O(S) reallocations, and, in the worst-case scenario,
this can happen for O(S) keys.

Regarding space, the memory required at the beginning
is O(S) bits, but this is doubled when the number of
collisions triggers a reallocation, therefore it can reachO(S2)
bits in the worst-case scenario. In practice, this easily reaches
20–30 GB.

Here we can see one of the weaknesses of Flye that
our work addresses. In order to ensure an efficient use
of the Cuckoo hash, and therefore to allow fast access to
the information of any k-mer, Flye needs big amounts of
memory. We aim at replacing the Cuckoo hash table by a
more compact data structure without losing speed.

2.2.2 Selecting/Indexing k-mers
Although the previous phase significantly reduces the
amount of non-genomic k-mers, some non-genomic or low
frequent k-mers remain. Therefore, a second filtering step
is necessary to minimize those non-genomic k-mers. Fur-
thermore, more information about k-mers is needed for the
next steps, such as the reads in which each k-mer appears,



5

0

0

9

10

11

12

13

14

15

16

0

…
…

..

0

6

1

2
3

4

5
6

7

8

4

0
1

0

3
0

0
0
0

0

0

0

entry

Approximate
counting

Exact
counting

S

k32

k13

k32

k54

9

10

11
12

13
14

15

16

…
…

..

1

2
3

4

5
6

7
8

0

0

0
…

…
..

0

2
1

0
1

0

2
0

0
0
0

0

0

0

entry

(a)
Position 6 

of read1

(b)
Position 7 

of read1

k13

k32

k54

9

10

11

12

13

14

15

16

…
…

..

1

2
3

4

5
6

7
8

0

0

0

…
…

..

0

2
1

0
1

0

2
0

0
0
0

0

0

1

entry

k44

position    1      2       3      4 5       6       7     ….
k24 k13 k54 k32 k13      k54       k44    ….

hash1 6      4      11     5 4      11      5    ….

read1 k32    k44      k13     k14     k13     k54        k14       ….
hash1 5 5 4 4 4      11 4 ….

position   1      2      3      4 5      6       7       ….
read2

hash2         5       4      15     5       4      11 hash2         15  11      5     15         5    4      15  

k54    cycle -> rehash
table size doubles

(c)
Position 4
of read2

k14

k32

k44

9
10
11
12
13
14
15

16

…
…

..

1
2
3

4
5
6

7
8

0

0

0

…
…

..

0

1
2

0
1

2

2
0

0
0
0

0

0

2

entry

k13

GenomeSizeFactor*415

Fig. 1: Counting k-mers in Flye.

and the position inside these reads. This second filter uses a
different threshold, which depends on the results of the first
filtering step. Actually, the second threshold is equal to the
highest frequency that ensures that the number of selected
k-mers is greater than the length of the genome.

This step requires another traversal of the reads, and
the k-mers that pass this second threshold are indexed into
a Cuckoo hash again, but now, they are stored with the
positions within the reads where they appear,8 that is, a
list of pairs (read, positions inside read), thus creating an
index of the appearances of the solid k-mers.

This index is the key element for the subsequent step of
Flye, that is, the assembly phase. To perform the assembly,
Flye uses a variation of the de Bruijn graph called A-
Bruijn graph. However, the graph is never created and Flye
implements it “virtually” by means of this index. The nodes
are the reads and the edges are simulated by searching
“on the fly” overlaps between reads. Therefore, since that
operation is very frequent, this operation must be fast. The
overlaps are computed by taking all the k-mers of a read,
and, for each one, this index gives all the reads where that
k-mer is also found. With this information, Flye computes
the overlapping reads.

The creation of this index consumes O(LR ∗ Nr) time.
In space, we need O(S2) bits for the hash table, plus O(S ∗
Cov) bits for the appearances of the k-mers9, being Cov the
average coverage of the dataset. Thus, the worst-case space
complexity is O(S2 + S ∗ Cov).

8. Each k-mer can occur an arbitrary number of times within a read.
9. There is another filter in this phase, and the number of k-mers

considered decreases, but we keep S as the number of solid k-mers.

Algorithm 1: FlyeWalk (AllReads, MinOvelap,
HashTable)

1 Contigs← empty set of contigs
2 UnprocessedReads← AllReads
3 IndexOfReads← BuildIndex(AllReads, HashTable)
4 for each Read in UnprocessedReads do
5 ChainOfReads← ExtendRead (UnprocessedReads,

Read, IndexOfReads, MinOverlap)
6 ContigSequence← Consensus(ChainOfReads,

AllReads, MinOverlap, IndexOfReads)
7 add ContigSequence to Contigs
8 remove Overlap(ChainOfReads) from

UnprocessedReads
9 end

10 return Contigs

2.2.3 Assembling contigs

As previously explained, Flye does not use a real de Bruijn
graph that is traversed seeking for contigs, but simulates
this graph navigation by obtaining all the possible overlaps
between reads. More precisely, the construction of contigs
is done by checking the overlaps between a processed read
and others, while considering several restrictions.

Algorithm 1 shows this process. The algorithm starts by
obtaining for each read all its overlapping reads. The process
uses the index described in Section 2.2.2. The procedure
BuildIndex processes all reads, each one is traversed position
by position. The k-mer starting at the processed position is
used to query the index and, if it is solid, it gives all the
overlapping reads.

Once the overlaps have been computed, the process
continues with the for in Line 4, which processes the reads in



6

Algorithm 2: ExtendRead(UnprocessedReads, Read,
MinOverlap, IndexOfReads)

1 ChainOfReads← empty sequence of reads
2 while true do
3 NextRead← FindNextRead(UnprocessedReads,

Read, MinOverlap,IndexOfReads)
4 if NextRead = empty string then
5 return ChainOfReads
6 else
7 add NextRead to ChainOfReads
8 Read← NextRead
9 remove Read from UnprocessedReads

10 end
11 end

random order. Then, in Line 5, each read is extended using
the function ExtendRead, which is shown in Algorithm 2.
Given a read Read, ExtendRead finds an unprocessed read
that overlaps with Read by at least MinOverlap base pairs.
This is done during the call of the function FindNextRead.
Flye does not waste much time checking if the next read
fits well in the current path; it just chooses one that overlaps
MinOverlap base pairs with the current read and fulfils other
simple conditions. This process continues until it cannot find
another read overlapping the last processed read.

Finally, Consensus constructs the consensus of all
reads that contribute to the processed ContigReads.
The process is as follows. Let Read1, Read2, . . . ,
Readn be the reads in ContigReads. Let prefix (Read i)
be the overlapping region between consecutive reads
Read i−1 and Read i, let suffix (Read i) be the suffix
of Read i after the removal of prefix (Read i), and
let concatenate(ChainOfReads) be the concatenation
suffix (Read1)||suffix (Read2)|| . . . ||suffix (Readn).
Then, all reads from the dataset are aligned to
concatenate(ChainOfReads) using the method minimap2
[57]. The consensus is taking by the majority vote. Finally,
the reads considered in the consensus step are removed
from the UnprocessedReads (Line 8), and therefore they are
not considered anymore.

In this process, with O(N2
r ) time, the Consensus is the

dominant cost.

3 OUR PROPOSAL: COMPACT FLYE

In this section, we describe our memory-efficient variant of
Flye assembler, where we use compact data structures. We
detail how our proposal addresses each of the phases of the
method.

3.1 Counting k-mers
3.1.1 Approximate counting
Our aim is to perform the same filtering, but without using
such a large amount of memory. Moreover, we do not
want to penalise the temporal efficiency; thus, our target
is also to maintain the execution times in the same order of
magnitude or even improve them.

The original method uses 8-bit counters for this phase,
allocating a hash table of size GenomeSizeFactor ∗ 415 ∗ 8

bits, where GenomeSizeFactor is set to 1 or 16 depending
on the size of the genome. This large space hardly provokes
collisions. For example, in the case of k-mers of length 15,
those 8-bit counters for all the 415 possible combinations
would require 8 GB.

Instead, we propose an adaptive solution that is able to
store the same number of entries as the hash tables of Flye
(both, of 1 GB and 16 GB), but using much less space. For
the approximate counting, instead of allocating a complete
byte for the counters of k-mers, we use just t bits, being
t the given threshold, which is a number between 2 and
5. When a new appearance occurs, the first bit set to 0 is
changed from 0 to 1. For instance, if the threshold is 5, then
each entry initially has the value 00000. The first appearance
changes the entry to 10000, the second to 11000, the third
one to 11100, and so on. With this approach, to perform the
update, it is only necessary to access the memory location
and flip just one bit, rather than adding 1 to the memory
location, which requires moving the data to the Arithmetic
Logical Unit of the processor and executing an operation of
addition.

With this approach, we do not have a real count, that
is, we do not know how many times an entry has been
processed. This is not a problem, as at this step of the
process, we are only interested in those entries that have
been found t times or more, and thus, their corresponding
k-mer passes this filtering step. Recall that in Flye, this
is an approximate counting, as each entry can accumulate
appearances of different k-mers.

Our approach is able to filter as many k-mers as Flye
does, but only requiring GenomeSizeFactor ∗ 415 ∗ t bits. Of
course, the key of a low space requirement is that we are
assuming that the threshold value is small, between 2 and
5, otherwise valuable k-mers would be removed. Therefore,
in the worst case, our structure is always cheaper than 1 GB
or 16 GB (the value of the hash table of Flye), independently
of the genome size.

Figure 2 shows an example of this process under the
brace labelled “approximate counting”. More concretely, we
have two reads composed of different k-mers, and we will
filter those that have more than 3 appearances (t = 3). Thus,
our data structure contains 3 bits per entry, and only those
entries having their third bit set to 1 pass this filter. We
denote b the bitmap composed of the last bit of all entries,
as indicated in the figure. Observe that entry 5 has reached
the threshold, due to the occurrences of two different k-mers
that have the same hash value, namely two appearances of
k32 and two appearances of k14. After the third appearance,
additional occurrences are no longer recorded.

Although the conceptual description is that shown in
Figure 2, we implemented it in a faster way, to avoid the
sequential search of the first bit set to 0. Specifically, the first
t − 1 bits of each entry are joined in a unique bitmap. In
addition, the bits are completely flipped so the first 1 is set
in the least significant position. Then, given the t− 1 bits of
an entry, when a new occurrence should be registered, we
simply shift one bit to the left and we introduce a 1-bit on the
right. The leftmost bit, which is lost, is used to update the
corresponding entry of the tth bit, which is stored separately
from the others in bitmap b. For example, if the entry is 001,
first it is shifted one bit to left, and the leftmost bit (0), is used
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Fig. 2: Example of the k-mer counting.

to update the corresponding entry at b, and we introduce a
1 on the right, obtaining 011. Therefore this method has a
cost of O(1), regardless of t.

An alternative implementation is using a counter of
logd(t)e bits, which would save some space. In this case,
the bitmap corresponding to the first t − 1 bits is replaced
by an array of counters of dlog(t − 1)e bits, while bitmap b
is kept. When a new occurrence of a k-mer appears and the
corresponding value at the counter is already t − 1, we set
the 1-bit of the corresponding entry of bitmap b. In practice,
we will use the method shown in Figure 2 when k ≤ 15,
and the counter of dlog(t− 1)e bits when k > 15.

The time cost for this step is the same of Flye, that is,
θ(Lr ∗Nr). The space consumption is GenomeSizeFactor ∗
415 ∗ t bits if k ≤ 15 and GenomeSizeFactor ∗415 ∗ (logd(t−
1)e+ 1) when k > 15.

3.1.2 Exact counting

Once the approximate counting has been done, we create a
new data structure, denotedEC, to support the exact count-
ing. This data structure has as many entries as positions set
to 1 in the k-mer bitmap b, that is, rank1(b, size(b)) entries.
At each entry, we store a pointer to a list of pairs, each pair
containing a k-mer that has passed the first filtering and an
integer counter for storing the exact number of occurrences.
Then, in a second traversal of the reads, for each read k-mer
kr that satisfies b[hash(kr)] = 1, we compute its position
pos = rank1(b, hash(kr)). In case kr is already stored at
EC[pos], we increase its counter by one. Otherwise, a new

pair (kr, 1) is added to the list pointed to by the pointer in
EC[pos].

In our example of Figure 2, when the traversal reaches
position 4 of read1, which is the first appearance of k32,
EC[2] is empty10, therefore we write (k32, 1) in the list
pointed to by EC[2]. When the traversal of read1 reaches
position 7, k-mer k44 is also hashed to position 5, but the
list pointed to by EC[2] has only one pair, with key k32,
therefore a new pair (k44, 1) is added to the list pointed to by
the pointer in EC[2]. It is important to remark that the use
of a list of pairs at each entry does not damage the execution
times significantly, as these lists are generally short.11

Here we can see one of the main differences between
our method and Flye. If we compare Figures 1 and 2,
we can see that compact Flye uses a simple bitmap of
GenomeSizeFactor ∗ 415 bits to index the k-mers, and the
collisions, such as in the case of k13 and k14, are stored in
a list pointed to by an entry of EC. However, as explained,
the lists of collisions are short. Instead, in Figure 1, Flye uses
the Cuckoo hash table, which gives constant time access but
requiring a big amount of memory and also time, due to
reallocations. We can see how the entries of k13 and k14 are
separated. Thus, compact Flye reduces the memory usage
in exchange of probably increasing time processing when
accessing to those counters in next steps of the process.

The worst-case time complexity of our approach is
O(Lr ∗ Nr + S2), since this phase processes the Lr ∗ Nr

input k-mers, and, in the worst-case scenario, all the solid k-
mers are mapped to the same entry, and thus, the S k-mers
are added to just one list pointed to by one entry of EC.
The data structure requires GenomeSizeFactor ∗ 415 bits of
space for bitmap b, which is constant, plus O(S) counters,
therefore the worst-case space complexity is O(S).

3.2 Selecting/Indexing k-mers
Analogously to original Flye, reads are processed again to
index only the k-mers with a number of occurrences higher
than the second threshold.

Figure 3 shows the result of this step with our running
example, assuming that the new threshold is 3 again. As in
the case of the exact count, compact Flye relies on bitmap
b, of GenomeSizeFactor ∗ 415 bits, to index the k-mers, and
now the collisions, such as in the case of k13 and k14, are
stored in an array, ordered by frequency of appearance. In
our example, k13 is the first entry of the list corresponding
to the hash entry 4, since it is more frequent than k14.

Therefore, the worst-case time complexity of our method
isO(Lr∗Nr+S

2), which includes both indexing and sorting
the arrays. In space, we need the GenomeSizeFactor ∗ 415
bits of bitmap b (constant), and O(S ∗ Cov) for storing the
appearances of the solid k-mers.

3.3 Contigs Assembly
As the main goal of this research is to prove the good prop-
erties of compact data structures for the implementation of

10. Since hash(k32)=5, and rank1(b, 5) = 2, then k32 must be
included in the second entry of EC.

11. For instance, in our experiments for the E. coli datasets, the
average number of elements at each list of EC was lower than 2, and
the maximum number of elements was not higher than 5.
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TABLE 1: Time complexities. Lr average length of reads, Nr

number of reads, S the number of solid k-mers.

Compact Flye Original Flye
Approx Count θ(Lr ∗Nr) θ(Lr ∗Nr)
Exact Count O(Lr ∗Nr + S2) O(Lr ∗Nr + S2)
Indexing O(Lr ∗Nr + S2) O(Lr ∗Nr)
Assembly O(Lr ∗Nr + S2 +N2

r ) O(Lr ∗Nr +N2
r )

bioinformatics tools, we wanted to compare time and space
results of our proposal with those obtained by the original
software, but without significantly changing the underlying
algorithm. Thus, we maintain the original A-Bruijn algo-
rithm for genome assembly, as changes on the algorithm
would lead to different results with a higher/lower number
of contigs and/or longer/shorter contigs.

3.4 Comparison of time and space
We include a summary of the time complexities for our
proposal and the original method in Table 1. Worst-case
time complexities of the approximate and the exact counting
phases are the same for both approaches. However, these
worst-case scenarios are too pessimistic. For instance, in the
case of compact Flye, the worst-case scenario occurs when
all the keys are mapped to the same entry of the hash table,
and thus it degenerates to a linked list. This is extremely rare
in practice when using well-designed hash functions. In the
case of the original Flye, collisions may cause resizing and
rehashing the table. This may not cause a quadratic time
in the number of solid k-mers, but it actually has a great
impact, and it will be reflected in the experimental section.

In the indexing phase, original Flye has a cost of O(1)
per processed k-mer, whereas the compact version has to
deal with collisions plus the sorting of the arrays. However,
collisions only occur when k > 15, and arrays are short,
therefore, as we will see in the experimental section, only
when k > 15, compact Flye pays a price in time. However,
the use of the index during the assembly phase (employed
to search for overlaps between reads) does not introduce

TABLE 2: Space complexities. GSF denotes
GenomeSizeFactor, S the number of solid k-mers,
Cov the coverage, t the threshold used in the counting, and
outp the assembly output.

Compact Flye Original Flye
Appr. Count GSF ∗ 415 ∗ t GSF ∗ 415 ∗ 8
Exact Count O(S) O(S2)
Indexing O(S ∗ Cov) O(S2 + S ∗ Cov)
Assembly O(S ∗ Cov + outp) O(S2 + S ∗ Cov + outp)

significant changes in times in any case, since the dominant
cost is the quadratic cost in the number of reads, which is
the same for both approaches.

Table 2 shows the space complexity. In the approximate
counting, we use t bits (or logd(t − 1)e + 1, if k > 15) per
entry instead of 8 bits of the original Flye. The second and
more important difference is that in the exact count and
the index, the size of the structure used by the original
approach is tied to the number of collisions, doubling the
data structure when the number of collisions surpasses a
threshold. However, our data structure is only tied to the
simple bitmap b, of constant size, and only increases the
size of the entries linearly with the number of solid k-mers
that passed the first filter (S). On the contrary, in the case of
the original Flye, collisions and therefore duplications pose
a big price in space. These duplications of the hash table are
inherited during the indexing phase, therefore, in the space
complexity the original Flye has an additional S2 term.

As summary, we trade off time for the sake of reduc-
ing space consumption. In the time complexity, the only
significant difference is the presence of an additional S2

term caused by the fact of having linked lists instead of a
constant-time Cuckoo hashing, which is a very pessimistic
scenario that does not occur in practice, as lists are generally
short. The counterpart is that the original Flye has in its
space complexity that additional S2 term in the exact count-
ing, indexing, and assembly phases, precisely due to the use
of that very efficient Cuckoo hashing strategy. However, in
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practice, the price in space that Flye has to pay is much
bigger in comparison with the worsening in times of the
compact version. Compact data structures are more memory
friendly, and this yields even slight improvements in time in
some cases, as we will see in the experimental section.

4 EXPERIMENTAL EVALUATION

4.1 Experimental framework

All experiments were run on an Intel® CoreTM Xeon es2470
CPU @ 2.3 GHz (32 cores), 64 GB of RAM, over De-
bian GNU/Linux 10 (buster). All programs were coded
in C++. We use version 2.4 of Flye. Our code is available
at https://bitbucket.org/bfreirec1/compactflye. To ensure
the availability of all datasets, we have collected them
and uploaded them into the following repository: https:
//bitbucket.org/bfreirec1/datasets-compactflye.

We have run the tests with two different k-mer sizes: the
k value recommended by Flye for each dataset (k = 15 for
the smallest datasets and k = 17 for the largest datasets),
and a higher k value, more concretely, k = 31, for all
datasets. All experiments were run five times for the small-
est datasets and three times for the largest datasets, and we
report the average results.

We have used five datasets from Oxford Nanopore Tech-
nology (ONT) and PacBio (PB) sequencers, some of which
were used also by the authors of Flye [18]. We describe now
the datasets, and include some properties in Table 3.

• BACTERIA-PB dataset12 contains data gathered with
a PacBio RS II System and P4-C2 chemistry on a size
selected 20kb library of E. coli K12 substr. MG1655.

• BACTERIA-ONT dataset13 also contains reads from
whole-genome shotgun sequencing of the model or-
ganism E. coli K-12 substr. MG1655, but generated on
a MinION device.

• WORM dataset14 contains Pacific Biosciences reads
(coverage 40x) from a Bristol mutant strain of C.
elegans genome of length 100 Mb (6 chr.).

• DROSOPHILA-PB dataset15 contains Pacific Bio-
science reads (coverage 120x) from a subline of the
ISO1 strain of Drosophila melanogaster.

• DROSOPHILA-ONT dataset16 contains reads from
Oxford Nanopore technology (coverage 30x) from
a subline of the ISO1 strain of Drosophila
melanogaster.

4.2 Results

4.2.1 Memory consumption
Figure 4 shows the memory consumption of the original
Flye and that of our improved version. In all cases we
obtain important improvements, ranging from 22% to 47%

12. https://github.com/PacificBiosciences/DevNet/wiki/E.
-coli-20kb-Size-Selected-Library-with-P4-C2

13. http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
14. https://github.com/PacificBiosciences/DevNet/wiki/C.

-elegans-data-set
15. https://github.com/PacificBiosciences/DevNet/wiki/

Drosophila-sequence-and-assembly
16. https://www.ebi.ac.uk/ena/data/view/SRR6702603

less space. We require almost half the space for almost all
experiments, except for WORM with k = 31, which uses
78% of the space needed by the original version. The most
remarkable result is observed for DROSHOPILA-ONT with
k = 31. In this case, the physical memory of the machine (64
GB) was not enough for the original Flye. On the contrary,
our version finished successfully, which shows that our
version is more scalable due to better memory usage.

4.2.2 Time performance

Figure 5 shows the processing times of the complete process.
One of the most significant improvements is obtained for
DROSHOPILA-ONT with k = 17 (the recommended setup),
where our method is 13% faster, whereas, as explained,
with k = 31, original Flye did not run in our machine.
In WORM dataset, the results are on a par, whereas in the
smallest datasets, our method is between 5% and 11% faster
with k = 15 and between 8% and 18% with k = 31. For
DROSHOPILA-PB, results are on a par when using k = 17
and 25% faster for k = 31. These results show that improved
memory usage and, therefore better scalability, can even
lead to better runtimes with large datasets when physical
memory is nearly exhausted, or when the datasets are
smaller, but significant parts of the data structures can be
kept in higher levels of the memory hierarchy, like in our
BACTERIA datasets.

We have measured the time spent at each of the four
phases of the assembly process. We show the results in
Figure 6. In the small datasets, the pre-assembly phases
are faster with our bitmap-based data structures compared
to the Cuckoo based hash table of Flye, whereas for the
assembly phase, both methods are on a par.

The time complexity of the approximate count is the
same in both approaches, O(1) per processed k-mer, still
compact Flye obtains an improvement of 33% in the WORM
dataset, but it is on a par in the case of DROSOPHILA-ONT.
However, in the exact count, here we can see clear dif-
ferences. Our method has a worst-case cost of O(S) per
processed k-mer, while the original Flye has O(1) access
time if we exclude the duplications of the Cuckoo hash table
needed to keep that O(1) access time. However, as seen,
each duplication requires a considerable waste of time. This
implies that compact Flye is between 1.20 times and 4.24
times faster than the original version. The counterpart is in
the indexing phase, where compact Flye hasO(Lr∗Nr+S

2)
time due to the sorting of the arrays and the mixture of data
from several k-mers in the lists of the index, which is worse
than the O(Lr ∗ Nr) of the original FLye, and this can be
seen in the largest datasets, where our method is between
37% and 48% slower. Nevertheless, our index based on a
bitmap does not slow down the assembly. As it can be seen
from the figures, both approaches are on a par in all cases.

4.2.3 Analysis of underlying data structures

One question that may arise is that, during the approximate
counting, if instead of using t bits (or logd(t − 1)e + 1 bits)
for counters, a 1-byte counter would be faster. Moreover, is
that solution scalable when the threshold increases? For an-
swering these questions, we present an experiment varying
the value of threshold t, and show the results in Figures 7–8.

https://bitbucket.org/bfreirec1/compactflye
https://bitbucket.org/bfreirec1/datasets-compactflye
https://bitbucket.org/bfreirec1/datasets-compactflye
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-20kb-Size-Selected-Library-with-P4-C2
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-20kb-Size-Selected-Library-with-P4-C2
http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set
https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set
https://github.com/PacificBiosciences/DevNet/wiki/Drosophila-sequence-and-assembly
https://github.com/PacificBiosciences/DevNet/wiki/Drosophila-sequence-and-assembly
https://www.ebi.ac.uk/ena/data/view/SRR6702603
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TABLE 3: Datasets used in the experiments.

Est. Gen. Number Aver. Max
Dataset Species Size Techn. Cover. of reads bp bp
BACTERIA-PB E. coli 5 Mbp PB 50x 48,048 8,637 41,331
BACTERIA-ONT E. coli 5 Mbp ONT 50x 50,966 9,753 57,229
WORM C. elegans 100 Mbp PB 40x 1,481,552 10,958 55,460
DROSOPHILA-PB D. melanogaster 175 Mbp PB 120x 3,227,724 9,303 44,766
DROSOPHILA-ONT D. melanogaster 175 Mbp ONT 30x 663,784 6,956 446,050
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Fig. 4: Main memory peak (in Megabytes).

Recall that Flye chooses automatically the correct value
for this threshold, ranging between 2 and 5. More specif-
ically, Flye sets t = 2 for WORM and DROSOPHILA-ONT,
t = 4 for BACTERIA-PB and BACTERIA-ONT, and t = 5
for DROSOPHILA-PB. For this experiment, we hard-coded
the values between 2 and 5. However, we must note that, by
doing this, the assembly obtained can be of a lower quality,
or even Flye may not get an assembly at all.

As explained, our method for the approximate counting
is based on identifying the first bitmap with a 0-bit in the
corresponding entry and changing its value to 1. However,
instead of a sequential scan, our implementation requires
constant time by using bitwise shifts. We compare our
approach with that of the original Flye and also with the
use of a 1-byte counter. We can see the time results for
BACTERIA-PB with k = 15 in Figure 7(a), where a counter
using 1 byte is slightly faster for the approximate counting
step, but requiring much more memory, as shown in Figure
8(a). We can also observe that times for our approach remain
stable, regardless of the value of t, and always below the
times of the original Flye. In addition, there are no signif-
icant differences between using t-bits counters and 1-byte
counters when we take into account the subsequent phases
(exact counting and indexing). In terms of space, we can
see in Figure 8(a) that, during the approximate counting
step, the solution using t bits requires more space when
using a larger t, but not as much as the 1-byte counters.
In fact, the space used for the 1-byte counters only for

the approximate counting is even larger than the space
required by the rest of the phases of our improved version.
Moreover, the 1-byte counters also require more space than
the original solution of Flye for the approximate counting.
In any case, the original Flye requires much more memory
for the following steps. In general, we can see that the global
memory consumption tends to decrease when t grows. This
is due to the fact that if the threshold augments, then fewer
k-mers pass the first filter, and thus this may lead to a
decrease in memory consumption.

In Figures 7(b) and 8(b), we can see the same experiment
for WORM dataset with k = 17. In this case, compact Flye
uses a counter of logd(t−1)e bits. Times for the approximate
counting remain in the same order as using 1-byte counters
when t increases. This is expected, as the only difference
is the use of counters using bits not aligned to bytes, and,
as seen, this does not significantly affect the times. In any
case, our approach is clearly faster than the original method,
between 37–70% for this step. In terms of peak memory con-
sumption, we observe the same pattern as the one described
for the smallest dataset. However, for this dataset, there are
no big differences when t decreases, as the number of k-
mers that pass the first filter remains similar for the different
values of t: there is a reduction only of 12% comparing those
k-mers that pass the filter when t = 2 and t = 5 for WORM,
but 83% reduction for BACTERIA-PB. Thus, we can see that
our approach is not only more efficient in terms of space
and time compared to the original Flye, but also more stable
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Fig. 6: Processing time (in seconds with log scale) of the different phases.

when the value of t varies, as the space/time results of the
original Flye are very dependant on the number of k-mers
that pass the first filter.

4.2.4 Energy study

Even though energy was not considered during the design
of our proposal, we also measured the energy consumption
of both tools. It was measured using Perf, which uses the In-
tel RAPL (Running Average Power Limit) energy estimates.
As it can be seen in Figure 9, our proposal obtains reductions
in energy consumption for all datasets, with improvements
of 3–8% when k = 15 or k = 17, and reaching an improve-
ment of 26% in the case of DROSOPHILA-PB when k = 31.

5 DISCUSSION

As seen in the previous section, the improved version has
better memory consumption. Flye allocates considerably
large amounts of new memory when an insertion in the
hash table, which uses a Cuckoo strategy, reaches a given
number of collisions. Therefore, as the input size grows, the
amount of memory needed by Flye grows much faster. With
our approach, when the input datasets are huge, our growth
speed is the same as for small cases. Thus, at the early stages
of the process, the allocated memory grows fast, although
not even close to the original Flye, but in the last stages our
rhythm falls heavily.

In principle, better memory usage yields a more scalable
system. A prove of this is that our improved version suc-
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Fig. 7: Processing time (in seconds) of each of the steps
(approximate counting, exact counting, and indexing) when
using different data structures and varying the threshold
value (t) for the approximate counting step.
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Fig. 8: Peak memory consumption for the approximate
counting and the complete process when using different
data structures and varying the threshold value (t) for the
approximate counting step.

cessfully assembled DROSOPHILA-ONT with k = 31 in our
machine of 64 GB, whereas the original Flye was not able.

Moreover, as can be observed in Figure 6, the counting
phases are faster in the new version. Observe that our
enhancements are designed, in principle, to save space.
Indeed, observe that in the approximate counting phase, the
process is the same in both implementations, except that in
our version, we do not use a hash table, but a bitmap. In the
exact count and the indexing, we have an additional cost
due to collisions that are kept in the same entry.

Therefore, why our version is faster? We measured the
different procedures included in the exact count, and the
gain is due to the insertion and update procedure of the
hash table. In BACTERIA-PB, this procedure consumes 11.82
seconds in our version, whereas the original version requires
17.82; in WORM, the new version consumes 663.50 seconds
versus the 1077.43 seconds of the original.

To better determine the origin of this improvement,
we measured the cache references using cachegrind.17 In
BACTERIA-PB, our code made 157 billions references to the
instructions cache, whereas the original one required 192
billions references; in WORM, the new version issued 1,840
billions references versus the 2,733 billions of the original.
Moreover, our version required much fewer accesses to the
data. In BACTERIA-PB, it performed 26 billions references
versus the 44 billions of the original; and in WORM, 287
billions versus 717 billions. This shows that Cuckoo hash
is penalized by the doubling procedures.

6 CONCLUSIONS

We have successfully modified the original Flye software
in order to obtain a more efficient version of the same
software, both in terms of space usage and execution time.
The enhancements are mainly found in the k-mer counting
phase, where we were able to obtain the exact same results
with less memory consumption and even faster.

The improvements in memory consumption are consid-
erable, halving the space required in most cases, and in
the processing time from being on a par up to obtaining
decreases of 25%. More importantly, we are able to assemble
datasets that the original Flye is not able to process. In
addition, as a side effect, our method saves between 3–8% of
energy in general, and up to 26% for one of the experiments.

This implies a more scalable and faster software, which
also requires less energy consumption. These memory-,
time- and energy-efficient approaches will contribute to the
advance of in-field analysis that are now becoming possible
thanks to the advances on portable and real-time DNA
sequencing and the appearance of affordable and portable
handheld devices, such as the Oxford Nanopore’s MinION
and SmidgION.

As future work, we plan to further reduce the space
consumption by counting, selecting and indexing the k-
mers in compressed form in main memory. This is not an
easy task, and traditional compressors cannot be used, as
we must be able to decompress a given k-mer individually.
Moreover, this problem becomes even harder, as it requires
an on-line compression of the k-mers, that is, compressing

17. https://www.valgrind.org/docs/manual/cg-manual.html
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Fig. 9: Energy consumption (in Joules).

them during the traversal of the reads, and without storing
all the k-mers in main memory.
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