
New structures to solve aggregated queries for

trips over public transportation networks⋆

Nieves R. Brisaboa1, Antonio Fariña1, Daniil Galaktionov12,
Tirso V. Rodeiro1, and M. Andrea Rodŕıguez34

1 Universidade da Coruña, Fac. Informática, CITIC, Spain
2 Enxenio S.L., Spain

3 Universidad de Concepcion, Computer Science Department, Chile
4 Millennium Institute for Foundational Research on Data, Chile

Abstract. Representing the trajectories of mobile objects is a hot topic
from the widespread use of smartphones and other GPS devices. How-
ever, few works have focused on representing trips over public trans-
portation networks (buses, subway, and trains) where user’s trips can
be seen as a sequence of stages performed within a vehicle shared with
many other users. In this context, representing vehicle journeys reduces
the redundancy because all the passengers inside a vehicle share the
same arrival time for each stop. In addition, each vehicle journey follows
exactly the sequence of stops corresponding to its line, which makes it
unnecessary to represent that sequence for each journey.

To solve data management for transportation systems, we designed a
conceptual model that gave us a better insight into this data domain
and allowed us the definition of relevant terms and the detection of re-
dundancy sources among those data. Then, we designed two compact
representations focused on users’ trips (TTCTR) and on vehicle trips
(AcumM), respectively. Each approach owns some strengths and is able
to answer some queries efficiently.

We include experimental results over synthetic trips generated from ac-
curate schedules obtained from a real network description (from the bus
transportation system of Madrid) to show the space/time trade-off of
both approaches. We considered a wide range of different queries about
the use of the transportation network such as counting-based/aggregate
queries regarding the load of any line of the network at different times.

⋆ Funded in part by European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie grant agreement No 690941 (project
BIRDS). The Spanish group is also partially funded by Xunta de Galicia/FEDER-
UE [CSI: ED431G/01 and GRC: ED431C 2017/58]; by MINECO-AEI/FEDER-UE
[Datos 4.0: TIN2016-78011-C4-1-R; Velocity: TIN2016-77158-C4-3-R; and ETOME-
RDFD3: TIN2015-69951-R]; by MINECO-CDTI/FEDER-UE [INNTERCONECTA:
uForest ITC-20161074]; and by FPI Program [BES-C-2017-0085]. M. A. Rodŕıguez is
partially funded by Fondecyt-Conicyt grant number 1170497 and by the Millennium
Institute for Foundational Research on Data.

2 N. Brisaboa, A. Fariña, D. Galaktionov, T. Rodeiro, and M.A. Rodŕıguez

1 Introduction

The management of public transportation systems is a complex problem that has
been typically faced from the point of view of the offer (lines, stops, schedules of
journeys for each line, ...). In the last decade, the widespread use of new technolo-
gies allowing somehow the tracking of users’ movements along a network trans-
portation system (mobile phones with GPS, use of RFID technologies, smart
cards used to pay and enter buses/trains, ...) brings new opportunities to gather
the actual usage of the transportation systems allowing to study the problem
from the point of view of users’ demand. In consequence, it is now possible to
develop new applications to exploit those data in order to effectively handle the
resources of the transportation system and to give a better service to the users.

The management of the transportation system has become a Big Data prob-
lem in many important cities around the world, where millions of passengers
use the public transportation network every day. Therefore, even though we can
assume the gathered data is reliable (even in the case of depending on the smart
cards provided to users that typically gather only the entry point to the network,
the end point can commonly be derived using historical data from user trips and
transportation models [9]), the problem lies now on how to represent user trips
in such a way that not only we provide a compact representation but also we
enable performing queries in an efficient way.

While there exist many works that tackle the problem of representing trajec-
tories of mobile objects constrained to networks [12, 6, 5], they typically aim at
locating the position of those objects from the underlying trajectories. Others
[8, 7] focus on solving strict and approximate path queries that permit to find
the trajectories that follow a given line pattern within a given time interval. The
latter work [7] is, to the best of our knowledge, the first work using a compact
data structure to represent the spatial data (a FM-index [4]). Yet, none of them
have been designed to tackle the analysis of the usage of the transportation net-
work and would hardly support queries such as count the number of user trips
that went from stop X to stop Y , or show the load of the lines at a given hour.

In [1], a representation for user trips along a transportation network referred
to as CTR was presented. The different stops from bus lines were given a node-ID.
Then, each user trip was associated a string composed of the sequence of node-
IDs traversed. Finally, a CSA-based representation [13] was used to represent the
collection with all users’ trips, and a Wavelet Matrix (WM) [2] aligned with the
CSA represented, for each trip, the time instant when every node from that trip
was reached. CTR enabled answering counting-based aggregated queries (number
of users that started/ended a trip at a given node within a given time interval,
number of users that used a node, top-k most used nodes, etc.). In addition,
since it represented the actual trips in a compact self-indexed way, CTR still
possessed enough flexibility to support more complex queries. CTR succeeded at
providing a compact representation for general trips. Yet, it still represented trips
in a redundant way when considering public transportation by bus, train, and
subway. This happens because it does not exploit the fact that all the passengers
in the same bus/train traverse each stop at the same time, nor the topology of

New structures to solve aggregated queries for trips over pub. transp. netws. 3

the network (for all the users’ trips from a stop X to a stop Y along a given line,
all the intermediate stops are always the same).

In this work, we have analyzed the problem of representing both offer (stops,
lines, schedule for each line) and users’ demand (user trips, and stages that in-
clude stops where users get on/off or switch lines) within a public transportation
network. We present a conceptual model that provides valuable insights into this
domain and shows both the data needed and the relationships among them.

Then, we present two complementary structures to represent those data and
show how they handle some useful queries in this context. The first solution
is named Topology&Trip− aware CTR (TTCTR) and is based on a modification
of CTR that also represents all the user trips but exploits both the network
topology and the fact that all the passengers of the same vehicle journey reach
the same stops at the same time, hence temporal information can be related
to the vehicle journey rather than to each user trip. Therefore, it still makes
up a general representation focused on users’ trips. The second solution, named
Accumulated−Matrix (AcumM), does not actually represents user’s trips. It fo-
cuses on the journeys of each line, and accumulates the number of passengers
that get on/off in each stop of each journey. Therefore, AcumM is a summariza-
tion of the load each line had considering each of its journeys, in the same way
a data warehouse is a summarization of the operational data in a database.

The structure of the paper is as follows. In Section 2 we discuss the concep-
tual model associated to the network transportation problem and provide some
definitions. In Section 3, we present our representation of the offer (lines, stops
and journeys) which is then used in our two solutions. The next sections describe
both TTCTR and AcumM and discuss the types of queries they are designed for.
Section 7 includes experimental results to show the space/time trade-offs of our
proposals. And finally, conclusions and future work are discussed in Section 8.

2 A model to describe a public transportation network

The E-R conceptual model at Figure 1 represents the relevant data of any public
transportation system including data related with both the offer and the demand.
We did not include entities such as vehicles or drivers, as they are out of the
scope of this work. To create that model we have defined the following concepts:

– Stop (or Stop-place). Places were passengers can get on/off from a vehicle.
– Lines. A line (or route) is a sequence of stops that starts at a given stop X

and ends in another stop Y . We consider a line and its return line as different
lines because they include different sequences of stops.

– Journeys. We define a journey (or vehicle journey, or line trip) as a trip
that a vehicle performs. It departs at a given day and time from the first
stop of a specific line and follows the complete sequence of stops of that line
until the ending stop, allowing passengers to get on and to get off in each
stop. For instance, a journey is the trip that a bus performed along line L1
departing at 9:00am on 2017/05/05, and stopping at each stop of the line.

4 N. Brisaboa, A. Fariña, D. Galaktionov, T. Rodeiro, and M.A. Rodŕıguez

In addition to the day and time each journey starts, it could be interesting to
have the time at which each stop was reached by each specific journey of the
line. Yet, if such an accurate time is not needed, we can save a large amount
of space by only storing, for each stop of a line, the average accumulated time
needed to reach that stop from the initial stop (as in the examples shown
along this paper). Some other solutions, with different trade-off between
accuracy of the temporal data and storage space, are possible. For example,
we could store the average time to get to each stop of a line in peak and non-
peak hours. In any case, all those strategies enable us to associate temporal
data to the user-trips done within a given vehicle journey.

stop-place line

journey

belongs totraverses

contains

stop

get-on

get-off
stage

user-trip

id

num

loc

num-st

seq

time

id st-time
end-time

st-stop
end-stop

day num

num-

get-on

num-

get-off

Fig. 1. E-R model for a public transportation network.

– Stages. A stage represents the pair of stops where a given user respectively
gets on/off to/from a vehicle doing a given journey of a given line.

– User trip. We define a user trip as a sequence of stages. That is, a user
trip can begin at stop A from line 3 and continue up to stop B (first stage),
then change to line 2 up to stop C (second stage), and so on. This enables
tracking user trips from an origin to a destination. Note that, since stages
refer to a given journey, and we can know the time when a journey traverses
a stop X , we can also know when a given user trip reached such stop X .

3 Towards a practical representation: common structures
to represent the offer

In Sections 4 and 5, we present two representations. The first one is focused on
the representation of user trips, whereas the second one is focused on the journeys
of each line and basically stores the number of users that get on/off at any
given stop for each journey of a any line. Both techniques require some common
structures that handle the data that represents the offer of public transportation
the network provides. Such offer refers to the structure of the network and
includes the representation of the lines, and, for each line, the schedule of its
journeys; that is, their departure time from the starting stop. In addition, we
use two aligned arrays for each line, one with the sequence of stops, and another
with the average accumulated time to reach each stop from the first stop of
the line. Note that instead of assigning a unique sequence of estimated times to
reach any stop from the line, we could have dealt with several, probably more

New structures to solve aggregated queries for trips over pub. transp. netws. 5

accurate, estimations for peak/low periods, or even we could have stored the
actual time each journey reached each stop. In any case, we can estimate the
time when each journey reaches each stop.

S1 S2 S3

S4
S6

S10

S5

S7
S8

S9

S11

S12

S14

S13

LINE 1

LINE 2

LINE 1

LINE 2

- S1 – S2 – S3 – S10 – S4 – S7 – S8 – S9 – S14 (sequence of stops)

- S13 – S6 – S10 – S5 – S11 – S9 – S12 (sequence of stops)

 0 180 305 415 550 679 790 883 980 (avg estimated time –in seconds-)

 0 140 300 433 550 700 805 (avg estimated time –in seconds-)

 journeys departing each day

 from 6:00 to 23:40 every 20 minutes:

journeys departing each day

from 6:00 to 00:30 every 15 minutes:

Description of lines

STOPS - S1 – S2 – S3 – S4 – S5 – S6 – S7 – S8 – S9 – S10 – S11 – S12 – S13 – S14

 A A A A B B A A A A B B B A

Lines including each stop (inverted index for stops)

 B B

06:00

06:23

06:25h

 (day1) 06:00 – 06:20 – 06:40 – … (day2) 06:00 – 06:20 – 06:40 – …

 (day1) 06:00 – 06:15 – 06:30 – … (day2) 06:00 – 06:15 – 06:30 – …

 journey-ids 0 1 2 48 49 50

 journey-ids 0 1 2 64 65 66

Fig. 2. Example of (bus) public transportation network.

Figure 2 includes an example of a bus network with two lines (1 and 2). For
each line we show the stops that compose it (e.g. Line 2 contains the sequence
of stops 〈S13, S6, S10, S5, S11, S9, S14〉) and the accumulated times from the
initial stop (e.g. the average time to reach the fourth stop S5 from the starting
stop of the line is 433 seconds). We also include the starting times for each
journey of each line. In this case, Line 1 has 48 journeys per day, the first one
starts at 6:00am, the second one at 6:20am, etc.

Note that given a line X we have direct access to the information related
to the i-th stop. Yet, given a stop, we do not know the line/s it belongs to. To
overcome this issue, we include, for each stop Y , the list of lines that include such
stop Y . It is referred to as inverted index for stops in the bottom of Figure 2.

To sum up, we saw that to represent the network offer we need: (i) a sequence
of stops for each line5; (ii) a schedule with the starting times of the journeys of
each line; and (iii), an inverted index to mark the lines each stop belongs to.

Apart from the network offer, in Figure 2 we also include (arrows) five user
trips done along the network. For example, there is a user trip (dashed arrow
from S3) that starts at stop S3 at 06:25am on day-1 (6:20am + 305 sec.), and
follows the journey of line 1 until S10, where the user switches to line 2 at time
6:35am (6:30am + 300 sec.) and continues the corresponding journey of line 2
(the one started as 06:30h in S13) up to stop S12. That is, it includes two stages.

5 We also store average estimated times to reach each stop from first stop of the line.

6 N. Brisaboa, A. Fariña, D. Galaktionov, T. Rodeiro, and M.A. Rodŕıguez

4 Topology&Trip − aware CTR (TTCTR): a representation
focused on user’s trips

A previous representation for user trips along a transportation network, named
CTR [1], basically associates an integer si to each stop in the network, and
represents a user trip ti as the sequence of the stops traversed plus a terminator
$ (ti = s1, s2, . . . , sk$). Finally, a CSA-based representation is used to represent
the collection with all users’ trips, and a Wavelet Matrix (WM) aligned with the
CSA keeps, for each trip, the (discretized) time instant in which every stop from
that trip was reached. For example, the trip from Figure 2 that started at S3
would be represented as 〈S3, S10, S5, S11, S9, S12, $〉 and the times associated
to those stops would be discretized into 5-min time periods. CTR exploited the
indexing capabilities of the underlying CSA and WM to solve counting-based
spatial, temporal, and spatio-temporal queries.

Our TTCTR is an adaptation of CTR that represents a user trip as a sequence
of stages rather than as a sequence of stops (hence exploiting the topology of the
network). Furthermore, instead of having to represent the time each user trip
reaches a stop, we will only store a reference/id of the journey (within a vehicle
of a line) that the user used. The building process of TTCTR is presented below.

Let us assume a network with ns stops (S) numbered s ∈ [1, ns]; nl lines (L)
numbered [1, nl], and that there are nl

j journeys (J
l) for each line l ∈ L numbered

[0, nl
j − 1]. Additionally, we have the starting times for each journey and the

accumulated average times for the stops of each line as discussed in the previous
section. We can define that a user gets on/off from a vehicle following the journey
j of line l at a given stop s, as a triple (s, l, j) where l ∈ L, s ∈ S, j ∈ J l.

Let us define T = {t1, t2, . . . , tz} as a set of z user trips. Since we want to rep-
resent a user trip tx as a sequence of k stages, but it holds that the final stop of a
stage and the starting stop of the next stage are the same (or close in walking dis-
tance), it is not necessary to explicitly represent the final stop of each stage, ex-
cept for the final stop. We define tx = 〈(s1, l1, j1), (s2, l2, j2), . . . , (sk+1, lk+1, jk+1)〉,
k ≥ 1. That is, we have a sequence of k triples that indicate that the user got
on a vehicle corresponding to the ji-th journey of line li at stop si. The last
triple indicates where the user finally got off. Note that, for the last two triples,
lk = lk+1, and jk = jk+1 since the beginning of the last stage is represented by
the k-th triple, and its end by the (k + 1)-th triple.

Example 1. Assuming that all the user trips depicted in Figure 2 belong to our
1st-day, those user trips can be represented as: t1 = 〈(1, 1,0), (10, 2,1), (11, 2,1)〉,
t2 = 〈(2, 1,1), (7, 1,1)〉, t3 = 〈(3, 1,1), (10, 2,2), (12, 2,2)〉, t4 = 〈(6, 2,0), (11, 2,0)〉,
and t5 = 〈(13, 2,2), (9, 1,2), (14, 1,2)〉. Note that, for example, (13, 2,2) from t5
indicates that, at stop 13, the user got on a vehicle from line 2, that corresponds
to the 2-nd journey. We know it is the 2-nd journey because t5 started at 06:30h,
which is the departure time of journey 2. Note also that the line and journey ids
of the last triple of each trip are identical to the ones in the previous triple. ⊓⊔

In TTCTR, we represent both the spatial (lines and stops) and the temporal
component (journeys) of the user trips of our collection of trips T using respec-

New structures to solve aggregated queries for trips over pub. transp. netws. 7

tively a CSA and a WM aligned with the CSA. In the following sections we show
how we handle such components, and how we solve some queries of interest.

4.1 Representing the spatial component of TTCTR with a CSA

We use a variant of the CSA [3] for integer alphabets to represent the spatial
component, i.e. the sequence of pairs (si, li) that compose each user trip in T .
However, in order to create a CSA we need to assign each pair (stop, line) a
unique integer id. This will allow us to create an integer sequence S[1, n] (ended
by a $ terminator) over which our CSA will be built. For this purpose we create
a vocabulary V (with 1 + ns(1 + nl) entries) as follows:

– Entry V [0] is reserved for the terminator symbol $.

– Entries 〈V [1], V [2], . . . V [ns]〉] are associated to stops 〈1, 2, . . . , ns〉 and are
used to represent the final stops of the trips. That is, when a given stop x
ends a user trip, it is given id← x.

– The last nl×ns entries are associated to the sequence composed of the pairs
(s, l) ∈ S×L considering that those pairs are sorted by s and l respectively.
That is, entry V [ns+1] is given to (s, l) = (1, 1); V [ns+2] to (1, 2); V [ns+3]
to (1, 3); . . . ; V [ns+nl] to (1, nl); V [ns+nl+1] to (s, l) = (2, 1), V [ns+nl+2]
to (2, 2), and so on. In practice, in this case, the id/pos-in-V for a pair (s, l)
is obtained as id← ns + nl(s− 1) + l.

Note that there will be a large number of unused entries (holes) in V . Yet,
this can be efficiently handled by a bitvector B with rank/select capabilities
that marks the used entries from V . Therefore, once we gather the position
(id) corresponding to a pair (s, l) in V , we obtain its final position (id′) in a
vocabulary without holes (V ′) as id′ ← rank1(B, id). Our id′ assignment ensures
that the used pairs (si, l), corresponding to a given stop si, receive contiguous
id′s. This will be interesting at query time.

The next step processes each user trip ti ∈ T , i ∈ [1, z] replacing all the pairs
(stop, line) in ti (except in the last one where the line is already known and we
only need s) by their corresponding id′. After each trip, a 0 (id′ for terminator $)
is added. That is, a trip ti with k stages is regarded as a string s1s2 . . . skslast$,
where 1 ≤ slast ≤ rank1(B, ns) is the id′ of ending stop given to stop s.

Once this process has completed, a sequence S[1, n] that contains only values
from V ′ is obtained, and a CSA can be built on S.

In parallel with the construction of S, we create a sequence Jcodes[1, n]
aligned to S where we set, for each trip ti, the journey-id corresponding to each
stage in ti. Recall the journey-id is the third term from the triples (si, li, ji), i ∈
[1, k] from ti. In addition, assuming that S[p] contains the 0 corresponding to the
terminator $ for the trip, we set Jcodes[p]← j1 (i.e. the same journey-id as the
starting stop of the trip). According to the discussion above, Figure 3 shows, for
the user trips in Example 1: (step-1) the sequence of pairs (stop, line) for each
trip, and the corresponding Jcodes; (step-2) the vocabularies, including V , B,

8 N. Brisaboa, A. Fariña, D. Galaktionov, T. Rodeiro, and M.A. Rodŕıguez

stop:line

Jcodes
For pairs (s:l��ZKHUH�WKH�OLQH� LV�PDUNHG�ZLWK�DQ�³*´��VWRS�³V´�FRUUHVSRQGV�WR�WKH�ODVW�VWRS�RI�DQ�XVHU�WULS�

1:1 1:2 2:1 2:2

15 16 17 18 19

3:1 3:2

20 «

« 5:2 6:1 6:2 7:1 7:2 8:1 8:2 9:1 9:2

24 25 26 27 28 29 30 31 32 33

10:1 10:2

34

$ 1:* 2:* 3:* 4:* 5:* 6:* 7:* 8:* 9:* 10:* 11:* 12:* 13:* 14:*

1 2 3 4 5 6 7 8 9 10 11 12 13 140

11:1 «

35 « 39

13:1 13:2

40 41

14:1 14:2

42

V
1 0 1 0 1 0 « 0 0 1 0 0 0 0 1 0 0 11 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 « 0 1 0 0B

V $ 7:* 11:* 12:* 14:* 1:1 2:1 3:1 6:2 9:1 10:2 13:2
1 2 3 4 5 6 7 8 9 10 110

Vocabulary with no holes

user trips
Including the trailing

$ for each trip

1

Vocabulary of pairs (stop:line)2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

S

A

D

Jcodes

CSA built on S3

WM on Jcodes4

1:1 10:2 11:* $ 2:1 7:* $ 3:1 10:2 12:* $ 6:2 11:* $ 13:2 9:1 14:* $ $

0 1 1 0 1 1 1 1 2 2 1 0 0 0 2 2 2 2 0

5 10 2 0 6 1 0 7 10 3 0 8 2 0 11 9 4 0 0

19 18 4 7 11 14

1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1

1 12 13 14 15 19 3 2 5 4 6 17 7 18 9 11 8 10 16

0 0 1 1 0 2 1 1 0 2 2 0 1 1 0 2 1 2 2

19 4 7 11 14 18 6 3 13 10 17 1 5 8 12 16 2 9 15
$· regular non-cyclical

12 13 14 15 19 1 regular non-cyclical

Fig. 3. Structures involved in the creation of a TTCTR.

and V ′ (ending stops s of trips do not need the line, therefore we use “s :∗”.);6

and (step-3) the structures involved in the creation of CSA from which TTCTR

uses Ψ , D, (and V ′, B).
As in CTR [1], we sort the terminators considering that each trip is a cyclical

string. For instance in Figure 3, S[18] = 0 would traditionally be followed by
S[19] = 0, but for sorting purposes we consider it is instead followed by S[15] =
11. After that, we make Ψ cyclical in the terms of each user trip. That is, let us
assume that a user trip lays on S[i] . . . S[i+k+1], i.e. the terminator of the trip
is at position e = i + k + 1 in S. Therefore, being A[j] = e, we modify Ψ [j] in
such a way that A[Ψ [j]] points not to the initial position e+ 1 of the next user
trip, but it cyclically points to the beginning of the same trip; that is, we set
Ψ [j] ← Ψ [A−1[i]].7 Using a cyclical Ψ will enable searching efficiently for user
trips that started at a stop X and ended at a stop Y , as we will see below.

4.2 Representing the temporal component of TTCTR with a WM

The temporal component of TTCTR includes the sequence Jcodes described
above. Recall Jcodes contains journey-ids aligned to the values in S, and that,
for every line l there are nl

j journeys sorted by their starting time and numbered

as 0 . . . nl
j − 1, and also we have average accumulated times to reach each stop

in the line. Therefore, this representation allows us to describe exact times for
each stop. In practice, we use JcodesΨ , which is aligned to Ψ rather than to S.
See step-4 in Figure 3. Note that Jcodes[8] = 1 corresponds to JcodesΨ [14] = 1,
since A[14] = 8; Jcodes[9] = 2 corresponds to JcodesΨ [18] = 2, since A[18] = 9;
and so on. We represent the sequence JcodesΨ with a WM. This saves space,
and provides indexing capabilities to the temporal component.

6 In this example, with only 5 trips, we have only 11 used pairs in V , but in a real
scenario for each stop of each line (existing pair (s, l)) there will be a 1 in B.

7 Note that A−1 is the inverse of the suffix array A; i.e. A−1[i] = j iff A[j] = i.

New structures to solve aggregated queries for trips over pub. transp. netws. 9

5 Dealing with aggregated data: Accumulated − Matrix

We propose AcumM as an intuitive solution for the representation of two-dimensional
matrices of integers with support to aggregated queries by row, column, or win-
dow/range. In the context of a public transportation network we found queries
referred to a given line where data must be aggregated either by stop (e.g. num-
ber of users that got on a vehicle at stop X); by time-interval, hence referred
to a sequence of consecutive journeys within that time-interval (e.g. number of
users got on at any stop of the line on 2017/03/24); or by stop and time-interval.

����� ����� �����

� � � 	
 � � � � � � 	
 � � � � � � 	
 � � �

�
�
�
��
�
�
�

� � � � � � � � � �

�
�
�
��
�
�
�

� � � � � � � � � �

�
�
�
��
�
�
�

� � � � � � � � � �

� � � � � � � � � � � � � � � � � �� �� �� � � � � � � � � � �

� � � � � � � � � � � � � � �� �� �� �� �� �� � � �� � � �� � � � ��

	 � � � � � � � � � 	 � � � �� �� �� �� �� �� 	 � �� �� � �� � � � ��

 � � � � � � � � �
 � � �� �� �� �� �� �� ��
 � �� �� � �� � � �� ��

��������������������� � �������������������������!"#����������	�$������� %�

Fig. 4. Example, for a given line, of get-on matrix (a), accumulated matrix (b), and
compact representation with gaps (c). Stop and column 0 are virtual. The values in
column/row 0 are set to zero to simplify operations.

Let us assume that, for a given line, we have a matrix M+ that stores the
number of users that got-on at each stop (column) from each journey (row).
Figure 4.(a) includes an example. To efficiently support aggregated queries, we
create, for each line, the accumulated get-on matrix M for M+. We compute
the value of a cell M(r, c) ←

∑r

i=1

∑c

j=1 M
+(i, j). That is, each cell contains

the sum of all the values from position (1, 1) to position (r, c). M is depicted
in Figure 4.(b). The accumulated matrix M allows us to solve a range count
query over M+ in O(1) time by computing: countRange((x1, y1), (x2, y2)) ←
M(x2, y2) −M(x2, y1 − 1) −M(x1 − 1, y2) +M(x1 − 1, y1 − 1). In AcumM, we
actually represent, for each line, two accumulated matrices that count, respec-
tively, the passengers that get on and get off to/from a journey in each stop.

countRange allows us to add: (i) consecutive values of a column (e.g. users
that got on in a stop X in consecutive journeys, such as those in one day); (ii)
consecutive values in a row (e.g. users that, for a given journey, got on along
a consecutive sequence of stops, such as those in a neighborhood); and (iii)
values in a window (e.g. users that got on in a consecutive sequence of stops in
consecutive journeys).

Being C the capacity of a vehicle, a simple way to decrease space usage on M
(it has ns×n

l
j integers) consists in keeping the middle column m ← (ns + 1)/2

explicitly, and representing the values in the other columnsm±k as the difference
with respect to column m. This is depicted in Figure 4.(c). The differences in
columns m± k require at most ⌈log2 kC⌉ bits, while retaining direct access.

10 N. Brisaboa, A. Fariña, D. Galaktionov, T. Rodeiro, and M.A. Rodŕıguez

6 Performing queries on TTCTR and AcumM

AcumM and TTCTR are designed for different purposes and therefore each high-
light in different types of queries.

Queries for Accumulated− Matrix: This data structure resembles a data-
warehouse, i.e. it stores aggregated values (rather than individual trips) to
efficiently answer aggregated queries about the number of users (load of the
network) in a given stop or group of stops over one or more journeys. Recall
countRange efficiently sums the values of any submatrix. Yet, some useful queries
could need more than one countRange operation, and then to either aggregate or
compute the average of those results. For example, if we want to know the aver-
age number of users that got on in line L in stops of a neighborhood (consecutive
stops) between 8:00 and 9:00 along the last month, we will need a countRange

operation for each window including the consecutive stops and the consecutive
journeys inside that period for each day. Finally, we add the results of those
countRange operations (one per day) and divide the result by the number of
days in the month.

Since we have both the accumulated matrix for users getting on and getting
off, we can easily compute queries about the load of the journeys. For example,
to know how many users were inside the vehicle of journey j from line L, between
the stops X and X+1, we compute: tot up ← how many users got on in such
journey j between stops 1 and X (inclusive), using the accumulated get-on matrix
for line L (countRange of a row); in the same way, using the accumulated get-off
matrix, we compute tot down←how many users got off in the same journey and
range of stops ; and finally, we return the value total ← tot up− tot down.

Queries for TTCTR: Recall that TTCTR actually stores all the individual
trips. This allows it to answer queries about the patterns users follow when
using the transportation network. For example, queries about how many users
start their trips in stop X , or end their trips in stop Y , or even started their trips
in stop X and ended in stop Y , can be efficiently answered because CSA easily
locates the subsection devoted to each stop, and the cyclic encoding of the trips
allows to ask for patters such as $X or Y $ or even Y $X . Note also that our
way to encode the pairs stop:line guaranties that the occurrences of a stop for
different lines are consecutive in the CSA, therefore, we can ask both how many
users start their trips in stop X or how many users start their trips in stop X
of line L. Finally, using the WM we can filter out those queries by time using
the journeys.

Note that none of those queries can be answered by AcumM, which stores the
number of passengers getting on to (off from) a journey in each stop but cannot
track individual trips. On the other hand, in TTCTR, queries about the load of
the transportation network, such as number of passengers into the vehicle in
journey j between stops X and X+1, would become very time consuming.

New structures to solve aggregated queries for trips over pub. transp. netws. 11

7 Experimental evaluation

We created a synthetic collection of user trips generated from a GTFS8 descrip-
tion of urban and medium-distance buses9 from Madrid, with 1049 different lines
and 10913 stop locations. We used real stop times from the journeys provided by
the GTFS to generate ten million user trips over the span of a month. Each user
trip created had one or more stages, defined as pairs (stop in, stop out), being
stop in and stop out respectively triples (stop, line, journey) that determine the
stop, line, and the journey where the user got on and got off.

The created user trips started from a random stop on a random journey, and
followed the stops on that journey. After at least two traversed stops, we used
a probability table to determine if the stage ends and user switch lines. In such
case, we simulate the user getting off from that journey and either waiting on
the same stop (at most 30 minutes) or walking to a nearby (100 meters) stop
to get on to a new journey. We ensured there were no inconsistencies in our
generated trips (i.e. users getting on the same line from which they just got
off). Trip lengths were limited to 100 stops. Yet, after each traversed stop, the
probability for ending the trip was 0.01λ, where λ is the number of previously
traversed stops.

Finally, we represented all those trips using TTCTR and AcumM.

Implementation details: Due to the relatively small size of the network, the
common structures were built using plain arrays of fixed size integers. Table 1
shows the space occupied by these structures.

For TTCTR, we used the CSA from [3] tuned the sampling rate for Ψ (tΨ) to
the values tΨ = {32, 128, 512}. To represent bitvector D we used a SDArray [10].
In Table 2 (left) we show the space required by Ψ , D, B, and V ′ for an input
of 35,702,981 entries in S and Jcodes, when compared to a baseline that uses
fixed width integers to represent the pairs (line, stop) in the trips (that is, of
⌈log2 |V |⌉ bits/entry, where V is the vocabulary defined in Section 4.1). In the
WM of the TTCTR we used a RRR bitvector to compress the bitmaps [11]. We
set sampling parameter s ∈ {32, 64, 128}, as shown in the Table 2 (right), where
we compare the space of WM with a plain representation of the journey-ids that
uses the number of bits needed to represent the maximum number of journeys
on any line, argmaxl∈L⌈log2 J

l⌉.

(i) Lines (ii) Schedules (iii) Inverted index of stops Overall size
Size (KiB) 176.54 7299.66 139.96 7616.17

Table 1. Size of common structures (in KiB).

8 https://developers.google.com/transit/gtfs/reference
9 Provided by CRTM (http://www.crtm.es)

12 N. Brisaboa, A. Fariña, D. Galaktionov, T. Rodeiro, and M.A. Rodŕıguez

tΨ
32 128 512

iCSA 27.13 MB
(39.84)%

21.91 MB
(32.17)%

20.58 MB
(30.22)%

RRR sampling
32 64 128

WM 42.35 MB
(71.07)%

39.43 MB
(66.18)%

37.98 MB
(63.73)%

Table 2. Compression of the CSA (left) and WM (right) components from TTCTR.
Percentages refer to the sizes with respect to the size of the uncompressed baseline.

Accumulated matrix Differential Matrix
get-on matrix 11189 KB (100%) 5596 KB (50.01%)
get-off matrix 11189 KB (100%) 5596 KB (50.01%)

Table 3. Sizes of the different AcumM variants.

For AcumM, we consider both the simple accumulated-matrix and the version
using differential encoding. In the former case we have a simple matrix of integers.
In the latter one, the middle column is kept apart as an integer array. For the
rest of columns in the differential matrix values in each cell are encoded with
⌈ log2 N⌉ bits, being N the maximum difference (i.e. value on those columns).

Query execution times: We run experiments to show the query execution
times of our proposals. An Intel Xeon E5-2620v4@2.1GHz machine was used.

On TTCTR, we tested several configurations for the query number of user
trips from stop X to stop Y , labeled as xy∗ in Table 4. The entry for xy with no
subindices applies no line nor time restriction. xyS and xyE restrict, respectively,
the Starting and Ending stop to a specific line. xyT denotes a Temporal restric-
tion (at one random day). Therefore, combinations of these subindices stand for
combinations of these three restrictions. We randomly generated a set of 10, 000
query patterns by choosing trips from all the available user trips. In the densest
setup (tΨ = 32, RRR = 32) all the queries are answered in around 6-30µs.

The last row also includes the times to solve the query: How many users got
on in a stop X on a given line during a given day? (JkS1). We also implemented
this query in AcumM to compare the efficiency for these type of queries.

RRR = 32 RRR = 64 RRR = 128
tΨ = 32 tΨ = 128 tΨ = 512 tΨ = 32 tΨ = 128 tΨ = 512 tΨ = 32 tΨ = 128 tΨ = 512

xy 6.94 10.28 22.89 6.90 10.23 22.80 6.87 10.21 22.82
xyS 6.89 10.23 22.95 6.86 10.22 22.82 6.90 10.21 22.74
xyE 29.37 62.63 192.86 29.13 62.60 192.01 29.14 62.38 192.28
xySE 29.21 61.84 192.11 28.88 61.83 190.46 28.92 62.05 190.47
xyT 31.85 64.66 195.62 31.63 65.52 195.06 31.95 65.47 195.31
xyST 31.61 63.83 193.41 31.12 65.05 193.14 31.54 64.78 194.23
xyET 31.73 65.04 195.53 31.66 65.73 195.15 32.01 65.09 195.45
xySET 31.36 63.96 194.12 31.17 64.99 193.11 31.42 64.42 193.40

JkS1 5.05 5.85 9.14 5.20 6.01 9.30 5.41 6.31 9.63

Table 4. Performance at query time shown in µsecs/query for TTCTR.

New structures to solve aggregated queries for trips over pub. transp. netws. 13

Accumulated matrix Differential Matrix

JkS1(column) 131 211

J1S∗ (rows) 107 221

JkSk (window) 76 182

Table 5. Performance at query time for the variants of AcumM (in ns per query).

To test AcumM we considered three types of queries: The query JkS1 dis-
cussed above; total number of passengers that got on in all the stops of a given
journey (1-row), labeled J1S∗; and total passengers that got on along a range of
consecutive stops from several consecutive journeys (window), labeled JkSk. We
generated 20, 000 query patterns based on the real data (line number, stop num-
ber, and journeys), and then run the tests obtaining query times around 0.1µs
when using the accumulated matrix. As expected, the differential accumulated
matrix performs around twice slower. Yet, AcumM performs more than one order
of magnitude faster than TTCTR on query JkS1. Table 5 shows the results.

8 Conclusions and future work

We have analyzed the problem of representing trips over a public transportation
network and presented two data structures designed to efficiently answer two
subsets of useful queries. Both approaches use some common data structures
defined to represent the transportation network, that is the offer (lines, schedule
of their journeys and stops) it provides.

The first proposal, TTCTR, represents the whole set of user trips during a
period of time. Each user trip is composed of stages performed over specific
journeys of different lines. This data structure is useful to analyze user trip
patterns, that represent the real demand over the transportation network. Yet,
TTCTR enables not only counting-based queries for the number of passengers
related to any stop of the network, but also queries for stops or stops-lines were
users start/end trips or switch lines. It also allows to retrieve individual trips.

The second structure (AcumM) focuses on the usage of lines. For each line, it
keeps in an accumulated fashion, the number of passengers that, at each stop, get
on/off from the vehicle performing a specific journey of the line. This simplifies
solving queries regarding the load of the different journeys and therefore to
analyze when specific lines must be reinforced with a more frequent schedule.

We understand more research is needed in this topic. Even we can see AcumM

as a data warehouse were we store basically the same information but in an aggre-
gated way, we consider that avoiding the redundancy between both structures
would be desirable. As future work, we are interested in developing a unique
self-indexed structure providing the functionality included in both TTCTR and
acumM .

14 N. Brisaboa, A. Fariña, D. Galaktionov, T. Rodeiro, and M.A. Rodŕıguez

References

1. Brisaboa, N.R., Fariña, A., Galaktionov, D., Rodriguez, M.A.: A compact repre-
sentation for trips over networks built on self-indexes. Information Systems 78,
1–22 (2018). https://doi.org/10.1016/j.is.2018.06.010

2. Claude, F., Navarro, G., Ordóñez, A.: The wavelet matrix: An efficient wavelet
tree for large alphabets. Information Systems 47, 15–32 (2015)

3. Fariña, A., Brisaboa, N.R., Navarro, G., Claude, F., Places, Á.S., Rodŕıguez, E.:
Word-based Self-Indexes for Natural Language Text. ACM Transactions on Infor-
mation Systems 30(1), article 1: (2012). https://doi.org/10.1145/2094072.2094073

4. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. 41st IEEE Symposium on Foundations of Computer Science (FOCS). pp.
390–398 (2000)

5. Funke, S., Schirrmeister, R., Skilevic, S., Storandt, S.: Compass-based navigation
in street networks. In: Proc. 14th International Symposium on Web and Wireless
Geographical Information Systems (W2GIS). pp. 71–88. LNCS 9080 (2015)

6. Kellaris, G., Pelekis, N., Theodoridis, Y.: Map-matched Trajectory Com-
pression. Journal of Systems and Software 86(6), 1566–1579 (2013).
https://doi.org/10.1016/j.jss.2013.01.071

7. Koide, S., Tadokoro, Y., Yoshimura, T.: SNT-index: Spatio-temporal index
for vehicular trajectories on a road network based on substring match-
ing. In: Proc. 1st International ACM SIGSPATIAL Workshop on Smart
Cities and Urban Analytics (UrbanGIS@SIGSPATIAL). pp. 1–8 (2015).
https://doi.org/10.1145/2835022.2835023

8. Krogh, B., Pelekis, N., Theodoridis, Y., Torp, K.: Path-based queries on trajectory
data. In: Proc. 22nd ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (SIGSPATIAL). pp. 341–350 (2014)

9. Munizaga, M.A., Palma, C.: Estimation of a disaggregate multimodal public
transport Origin–Destination matrix from passive smartcard data from Santiago,
Chile. Transportation Research Part C: Emerging Technologies 24, 9–18 (2012).
https://doi.org/10.1016/j.trc.2012.01.007

10. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: Proc. 9th Workshop on Algorithm Engineering and Experiments (ALENEX).
pp. 60–70 (2007). https://doi.org/10.1137/1.9781611972870.6

11. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In: Proc. 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). pp. 233–242 (2002)

12. Richter, K.F., Schmid, F., Laube, P.: Semantic Trajectory Compression: Repre-
senting Urban Movement in a Nutshell. Journal of Spatial Information Science
4(1), 3–30 (2012). https://doi.org/10.5311/JOSIS.2012.4.62

13. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms 48(2), 294–313 (2003)

