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2 Enxenio S.L.

Abstract. Big research efforts have been devoted to efficiently manage
spatio-temporal data. However, most works focused on vectorial data,
and much less, on raster data. This work presents a new representation
for raster data that evolve along time named Temporal k2raster. It faces
the two main issues that arise when dealing with spatio-temporal data:
the space consumption and the query response times. It extends a com-
pact data structure for raster data in order to manage time and thus, it is
possible to query it directly in compressed form, instead of the classical
approach that requires a complete decompression before any manipula-
tion. In addition, in the same compressed space, the new data structure
includes two indexes: a spatial index and an index on the values of the
cells, thus becoming a self-index for raster data.

1 Introduction

Spatial data can be represented using either a raster or a vector data model [6].
Basically, vector models represent the space using points and lines connecting
those points. They are used mainly to represent man-made features. Raster
models represent the space as a tessellation of disjoint fixed size tiles (usually
squares), each one storing a value. They are traditionally used in engineering,
modeling, and representations of real-word elements that were not made by
men, such as pollution levels, atmospheric and vapor pressure, temperature,
precipitations, wind speed, land elevation, satellite imagery, etc.

Temporal evolution of vectorial data has been extensively studied, with a
large number of data structures to index and/or store spatio-temporal data.
Examples are the 3DR-tree [14], HR-tree [10], the MVR-tree [13], or PIST [3].

In [9] the classical Map Algebra of Tomlin for managing raster data is ex-
tended to manage raster data with a temporal evolution. The conceptual solution
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is simple, instead of considering a matrix, it considers a cube, where each slice
of the temporal dimension is the raster corresponding to one time instant.

Most real systems capable of managing raster data, like Rasdaman, Grass, or
even R are also capable of managing time-series of raster data. These systems,
as well as raster representation formats such as NetCDF (standard format of
the OGC3) and GeoTiff, rely on classic compression methods such as run length
encoding, LZW, or Deflate to reduce the size of the data. The use of these
compression methods poses an important drawback to access a given datum or
portion of the data, since the dataset must be decompressed from the beginning.

Compact data structures [7, 11] are capable of storing data in compressed
form and enable us to access a given datum without the need for decompressing
from the beginning. In most cases, compact data structures are equipped with an
index that provides fast access to data. There are several compact data structures
designed to store raster data [2, 8]. In this work, we extend one of those compact
data structures, the k2raster [8], to support representing time-series of rasters.

2 Related work

In this section, we first revise the k2tree, a compact data structure that can be
used to represent binary matrices. Then, we also present several compact data
structures for representing raster data containing integers in the cells. We pay
special attention to discuss one of them, the k2raster, which is the base of our
proposal Temporal k2raster (T−k2raster).

k2tree: The k2tree [5] was initially designed to represent web graphs, but it also
allows to represent binary matrices, that is, rasters where the cells contain only
a bit value. It is conceptually a non-balanced k2-ary tree built from the binary
matrix by recursively dividing it into k2 submatrices of the same size. First, the
original matrix is divided into k2 submatrices of size n2/k2, being n×n the size
of the matrix. Each submatrix generates a child of the root whose value is 1 if it
contains at least one 1, and 0 otherwise. The subdivision continues recursively for
each node representing a submatrix that has at least one 1, until the submatrix
is full of 0s, or until the process reaches the cells of the original matrix (i.e.,
submatrices of size 1×1).

The k2tree is compactly stored using just two bitmaps T and L. T stores
all the bits of the conceptual k2tree, except the last level, following a level-wise
traversal: first the bit values of the children of the root, then those in the second
level, and so on. L stores the last level of the tree.

It is possible to obtain any cell, row, column, or window of the matrix very
efficiently, by running rank and select operations [7] over the bitmaps T and L.

k3tree: The k3tree [2] is obtained by simply adding a third dimension to the
k2tree, and thus, it conceptually represents a binary cube. This can be trivially
done by using the same space partitioning and representation techniques from
the k2tree, yet applied to cubes rather than to matrices.

3 http://www.opengeospatial.org/standards/netcdf
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Thus, each 1 in the binary cube represents a tuple 〈x, y, z〉, where (x, y) are
the coordinates of the cell of the raster and z is the value stored in that cell.

k2acc: The k2acc [2] representation for a raster dataset is composed by as many
k2trees as different values can be found in the raster. Given t different values in
the raster: v1 < v2 < . . . < vt, k

2acc contains K1,K2, . . . ,Kt k
2trees, where each

Ki has a value 1 in those cells whose value is v ≤ vi.

2D-1D mapping: In [12], it is presented a method that uses a space-filling
curve to reduce the raster matrix to an array, and the use of one dimensional
index (for example a B-tree) over that array to access the data.

k2raster: k2raster has proven to be superior in both space and query time [12,
8] to all the other compact data structures for storing rasters. In [8], it was also
compared with NetCDF. It drew slightly worse space needs than the compressed
version (that uses Deflate) of NetCDF, but queries performed noticeably faster.

k2raster is based in the same partitioning method of the k2tree, that is, it
recursively subdivides the matrix into k2 submatrices and builds a conceptual
tree representing these subdivisions. Now, in each node, instead of having a
single bit, it contains the minimum and maximum values of the corresponding
submatrix. The subdivision stops when the minimum and maximum values of
the submatrix are equal, or when the process reaches submatrices of size 1×1.
Again the conceptual tree is compactly represented using, in addition to binary
bitmaps, efficient encoding schemes for integer sequences.

More in detail, let n×n be the size of the input matrix. The process begins
by obtaining the minimum and maximum values of the matrix. If these values
are different, they are stored in the root of the tree, and the matrix is divided
into k2 submatrices of size n2/k2. Each submatrix produces a child node of the
root storing its minimum and maximum values. If these values are the same,
that node becomes a leaf, and the corresponding submatrix is not subdivided
anymore. Otherwise, this procedure continues recursively until the maximum
and minimum values are the same, or the process reaches a 1×1 submatrix.

Figure 1 shows an example of the recursive subdivision (top) and how the
conceptual tree is built (centre-top), where the minimum and maximum values
of each submatrix are stored at each node. The root node corresponds to the
original raster matrix, nodes at level 1 correspond to submatrices of size 4×4,
and so on. The last level of the tree corresponds to cells of the original matrix.
Note, for instance, that all the values of the bottom-right 4×4 submatrix are
equal; thus, its minimum and maximum values are equal, and it is not further
subdivided. This is the reason why the last child of the root node has no children.

The compact representation includes two main parts. The first one represents
the topology of the tree (T ) and the second one stores the maximum/minimum
values at the nodes (Lmin/Lmax). The topology is represented as in the k2tree,
except that the last level (L) is not needed. The maximum/minimum values are
differentially encoded with respect to the values stored at the parent node. Again,
these values are stored as arrays following the same method of the k2tree, that is,
following the same level-wise order of the conceptual tree. By using differential
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Fig. 1. Example (using k = 2) of integer raster matrix (top), conceptual tree of the
k2raster, conceptual tree with differential encoding, and final representation of the raster
matrix. Lmax and Lmin contain the maximum and minimum values of each node
following a level-wise order and using differential encoding.

encoding, the numbers become smaller. Directly Addressable Codes (DACs) [4]
take advantage of this, and at the same time, provide direct access. The last two
steps to create the final representation of the example matrix are also illustrated
in Figure 1. In the center-bottom and bottom parts, we respectively show the
tree with the differences for both the maximum and minimum values, and the
data structures that compose the final representation of the k2raster. Therefore,
the original raster matrix is compactly stored using just a bitmap T , which
represents the tree topology, and a pair of integer arrays (Lmax and Lmin),
which contain the minimum and maximum values stored at the tree. Note that
when the raster matrix contains uniform areas, with large areas of equal or
similar values, this information can be stored very compactly using differential
encoding and DACs.

The maximum/minimum values provide indexation of the stored values, this
technique is usually known as lightweight indexation. It is possible to query
the structure only decompressing the affected areas. Queries can be efficiently
computed navigating the conceptual tree by running rank and select operations
on T and, in parallel, accessing the arrays Lmax and Lmin.
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3 T−k2raster: A temporal representation for raster data

Let M be a raster matrix of size n×n that evolves along time with a timeline
of size τ time instants. We can defineM= 〈M1,M2, . . . ,Mτ 〉 as the sequence of
raster matrices Mi of size n×n for each time instant i ∈ [1, τ ].

A rather straightforward baseline representation for the temporal raster ma-
trix M can be obtained by simply representing each raster matrix Mi in a
compact way with a k2raster. In this section we use a different approach. The
idea is to use sampling at regular intervals of size tδ. That is, we represent with
a k2raster all the raster matrices Ms, s = 1 + i tδ, i ∈ [0, (τ − 1)/tδ]. We will
refer to those Mi rasters as snapshots ofM at time i. The tδ− 1 raster matrices
Mt, t ∈ [s + 1, s + tδ − 1] that follow a snapshot Ms are encoded using Ms as
a reference. The idea is to create a modified k2raster′ to represent Mt where, at
each step of the construction process, the values in the submatrices are encoded
as differences with respect to the corresponding submatrices in Ms rather than
as differences with respect to the parent node as usual in a regular k2raster.

With this modification, we still expect to encode small gaps for the maximum
and minimum values in each node of the conceptual tree of Mt. Yet, in addition,
when a submatrix in Mt is identical to the same submatrix in Ms, or when
all the values in both submatrices differ only in a unique gap value α, we can
stop the recursive splitting process and simply have to keep a reference to the
corresponding submatrix of Ms and the gap α (when they are identical, we
simply set α = 0). In practice, keeping that reference is rather cheap as we only
have to mark, in the conceptual tree of Mt, that the subtree rooted at a given
node p has the same structure of the one from the conceptual tree of Ms. For
such purpose, in the final representation of k2raster′, we include a new bitmap
eqB, aligned to the zeroes in T . That is, if we have T [i] = 0 (node with no
children), we set eqB[rank0(T, i)]← 1,4 and set Lmax[i]← α. Also, if we have
T [i] = 0, we also can set eqB[rank0(T, i)] ← 0 and Lmax[i] ← β (where β is
the gap between the maximum values of both submatrices) to handle the case
in which the maximum and minimum values in the corresponding submatrix are
identical (as in a regular k2raster).

The overall construction process of the k2raster′ for the matrix Mt related
to the snapshot Ms can be summarized as follows. At each step of the recursive
process, we consider a submatrix of Mt and the related submatrix in Ms. Let the
corresponding maximum and minimum values of the submatrix of Mt be maxt
and mint, and those of Ms be maxs and mins respectively. Therefore:

– If maxt and mint are identical (or if we reach a 1×1 submatrix), the recursive
process stops. Being zt the position in the final bitmap T , we set T [zt]← 0,
eqB[rank0[T, zt]]← 0, and Lmax[zt]← (maxt −maxs).5 Otherwise,

4 From now on, asume rankb(B, i) returns the number of bits set to b in B[0, i − 1],
and rankb(B, 0) = 0. Note that the first index of T , eqB, Lmax, and Lmin is 0.

5 Since in k2raster′ we have to deal both with positive and negative values, we actually
apply a zig-zag encoding for the gaps (maxt −maxs).
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– If all the values in Ms and Mt differ only in a unique value α (or if they
are identical, hence α = 0), we set T [zt] ← 0, eqB[rank0[T, zt]] ← 1, and
Lmax[zt]← (maxt −maxs).

– Otherwise, we split the submatrix Mt into k2 parts and continue recursively.
We set T [zt]← 1, and, as in the regular k2raster, Lmax[zt]← (maxt−maxs),
and Lmin[rank1(zt)]← (mint −mins).
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Fig. 2. Structures involved in the creation of a T−k2raster considering τ = 3.

Figure 2 includes an example of the structures involved in the construction of
a T−k2raster over a temporal raster of size 8×8, with τ = 3. The raster matrix
corresponding to the first time instant becomes a snapshot that is represented
exactly as the k2raster in Figure 1. The remaining raster matrices Ms+1 and
Ms+2 are represented with two k2raster′ that are built taking Ms as a refer-
ence. We have highlighted some particular nodes in the differential conceptual
trees corresponding to Ms+1 and Ms+2. (i) the shaded node labeled 〈0: 0〉 in
Ms+1 indicates that the first 4×4 submatrix of both Ms and Ms+1 are identical.
Therefore, node 〈0: 0〉 has no children, and we set: T [2] ← 0, eqB[1] ← 1, and
Lmax[2]← 0. (ii) the shaded node labeled 〈1: 1〉 in Ms+2 illustrates the case in
which all the values of a given submatrix are increased by α ← 1. In this case
values 〈6, 6, 5, 5〉 in Ms become 〈7, 7, 6, 6〉 in Ms+2. Again, the recursive traversal
stops at that node, and we set: T [8]← 0, eqB[3]← 1, and Lmax[8]← 1 (values
are increased by 1). (iii) the shaded node labeled 〈1: 2〉 in Ms+1 corresponds
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to the node labeled 〈3: 2〉 in Ms. In this case, when we sum the maximum and
minimum values of both nodes we obtain that that node in Ms+1 has the same
maximum and minimum values (set to 4). Consequently the recursive process
stops again. In this case, we set T [7]← 0, eqB[3]← 0, and Lmax[7]← 1.

4 Querying temporal raster data

In this section, we show two basic queries over T−k2raster.

Obtaining a cell value in a time instant: This query retrieves the value of a
cell (r, c) of the raster at time instant t: v ← getCellV alue(r, c, t). For solving this
query, there are two cases: if t is represented by a snapshot, then the algorithm
to obtain a cell in the regular k2raster is used, otherwise, a synchronized top-
down traversal of the trees representing that time instant (Mt) and the closest
previous snapshot (Ms) is required.

Focusing on the second case, the synchronized traversal inspects the two
nodes at each level corresponding to the submatrix that contains the queried
cell. The problem is that due to parts of Mt or Ms having the same value, the
shape of the trees representing them can be different. Therefore, it is possible
that one of the two traversals reaches a leaf, whereas the other does not. In such
a case, the traversal that did not reach a leaf, continues, but the process must
remember the value in the reached leaf, since that is the value that will be added
or subtracted to the value found when the continued traversal reaches a leaf.

Indeed, we have three cases: (a) the processed submatrix of Mt is uniform,
(b) the original submatrix of Ms is uniform and, (c) the processed submatrix
after applying the differences with the snapshot has the same value in all cells.

Algorithm 1 shows the pseudocode of this case. To obtain the
value stored at cell (r, c) of the raster matrix Mt, it is invoked as
getCell(n, r, c, 1, 1, Lmaxs[0], Lmaxt[0]), assuming that the cell at position (0,0)
of the raster is that in the upper-left corner.

zs is used to store the current position in the bitmap T of Ms (Ts) during the
downward traversal at any given step of the algorithm, similarly, zt is the position
in T of Mt (Tt). When zs (zt) has a −1 value, it means that the traversal reached
a leaf and, in maxvals (maxvalt) the algorithm keeps the maximum value stored
at that leaf node. Note that, Ts, Tt, Lmaxs, Lmaxt, and k are global variables.

In lines 1-11, the algorithm obtains the child of the processed node that
contains the queried cell, provided that in a previous step, the algorithm did not
reach a leaf node (signaled with zs/zt set to −1). In maxvals (maxvalt), the
algorithm stores the maximum value stored in that node.

If the condition in line 12 is true, the algorithm has reached a leaf in both
trees, and thus the values stored in maxvals and maxvalt are added/subtracted
to obtain the final result. If the condition of line 15 is true, the algorithm reaches
a leaf in the snapshot. This is signaled by setting zs to −1 and then a recursive
call continues the process.

The If in line 19 treats the case of reaching a leaf in Mt. If the condition of
line 20 is true, the algorithm uses bitmap eqB to check if the uniformity is in



8 A. Cerdeira-Pena, G. de Bernardo, A. Fariña, J. Paramá, and F. Silva-Coira

Algorithm 1: getCell(n, r, c, zs, zt,maxvals,maxvalt) returns the value
at cell (r, c)

1 if zs 6= −1 then
2 zs ← (rank1(Ts, zs)− 1) · k2 + 1
3 zs ← zs + br/(n/k)c · k + bc/(n/k)c +1
4 vals ← Lmaxs[zs − 1]
5 maxvals ← maxvals − vals
6 end
7 if zt 6= −1 then
8 zt ← (rank1(Tt, zt)− 1) · k2+1
9 zt ← zt + br/(n/k)c · k + bc/(n/k)c +1

10 maxvalt ← Lmaxt[zt − 1])

11 end
12 if (zs > |Ts| or zs = −1 or Ts[zs] = 0) and (zt > |Tt| or zt = −1 or Tt[zt] = 0) then

/* Both leafs */
13 return maxvals + ZigZag Decoded(maxvalt)
14 end
15 else if zs > |Ts| or zs = −1 or Ts[zs] = 0 then /* Leaf in Snapshot */
16 zs ← −1
17 return getCell(n/k, rmod (n/k), cmod (n/k), zs, zt,maxvals,maxvalt)

18 end
19 else if zt > |Tt| or zt = −1 or Tt[zt] = 0 then /* Leaf in time instant */
20 if zt 6= −1 and Tt[zt] = 0 then
21 eq ← eqB[rank0(Tt, zt)]
22 if eq = 1 then zt ← −1 ;
23 else return maxvals + ZigZag Decoded(maxvalt) ;

24 end
25 return getCell(n/k, rmod (n/k), cmod (n/k), zs, zt,maxvals,maxvalt)

26 end
27 else /* Both internal nodes */
28 return getCell(n/k, rmod (n/k), cmod (n/k), zs, zt,maxvals,maxvalt)
29 end

the original Mt submatrix or if it is in the submatrix resulting from applying
the differences between the corresponding submatrix in Ms and Mt. A 1 in eqB
implies the latter case, and this is solved by setting zt to −1 and performing
a recursive call. A 0 means that the treated original submatrix of Mt has the
same value in all cells, and that value can be obtained adding/subtracting the
values stored in maxvals and maxvalt, since the unique value in the submatrix
of Mt is encoded as a difference with respect to the maximum value of the same
submatrix of Ms, and thus the traversal ends.

The last case is that the treated nodes are not leaves, that simply requires a
recursive call.

Retrieving cells with range of values in a time instant: 〈[ri, ci]〉 ←
getCells(vb, ve, r1, r2, c1, c2, t) obtains from the raster of the time instant t, the
positions of all cells within a region [r1, r2] × [c1, c2] containing values in the
range [vb, ve].

Again, if t is represented with a snapshot, the query is solved with the normal
algorithm of the k2raster. Otherwise, as in the previous query, the search involves
a synchronized top-down traversal of both trees. This time requires two main
changes: (i) the traversal probably requires following several branches of both
trees, since the queried region can overlap the submatrices corresponding to
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several nodes of the tree, (ii) at each level, the algorithm has to check whether
the maximum and minimum values in those submatrices are compatible with
the queried range, discarding those that fall outside the range of values sought.

5 Experimental evaluation

In this section we provide experimental results to show how T−k2raster handles
a dataset of raster data that evolve along time. We discuss both the space
requirements of our representation and its performance at query time.

We used several synthetic and real datasets to test our representation, in or-
der to show its capabilities. All the datasets are obtained from the TerraClimate
collection [1], that contains high-resolution time series for different variables,
including temperature, precipitations, wind speed, vapor pressure, etc. All the
variables in this collection are taken in monthly snapshots, from 1958 to 2017.
Each snapshot is a 4320×8640 grid storing values with 1/24◦ spatial resolution.
From this collection we use data from two variables: TMAX (maximum temper-
ature) is used to build two synthetic datasets, and VAP (vapor pressure) is com-
pressed directly using our representation. Variable TMAX is a bad scenario for
our approach, since most of the cells change their value between two snapshots.
In this kind of dataset, our T−k2raster would not be able to obtain good com-
pression. Hence, we use TMAX to generate two synthetic datasets that simulate
a slow, and approximately constant, change rate, between two real snapshots.
We took the snapshots for January and February 2017 and built two synthetic
datasets called T 100 and T 1000, simulating 100 and 1000 intermediate steps
between both snapshots; however, note that to make comparisons easier we only
take the first 100 time steps in both datasets. We also use a real dataset, VAP,
that contains all the monthly snapshots of the variable VAP from 1998 to 2017.
Note that, although we choose a rather small number of time instants in our ex-
periments, the performance of our proposal is not affected by this value: it scales
linearly in space with the number of time instants, and query times should be
unaffected as long as the change rate is similar.

We compared our representation with two baseline implementations. The
first, called k2raster6 is a representation that stores just a full snapshot for
each time instant, without trying to take advantage of similarities between close
time instants. The second baseline implementation, NetCDF, stores the different
raster datasets in NetCDF format, using straightforward algorithms on top of
the NetCDF library7 (v.4.6.1) to implement the query operations. Note that
NetCDF is a classical representation designed mainly to provide compression,
through the use of Deflate compression over the data. Therefore, it is not
designed to efficiently answer indexed queries.

We tested cell value queries (getCellValue) and range queries (getCells). We
generated sets of 1000 random queries for each query type and configuration:
1000 random cell value queries per dataset, and sets of 1000 random range

6 https://gitlab.lbd.org.es/fsilva/k2-raster
7 https://www.unidata.ucar.edu/software/netcdf/
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queries for different spatial window sizes (ranging from 4×4 windows to the
whole matrix), and different ranges of values (considering cells with 1 to 4
possible values). To achieve accurate results, when the total query time for a
query set was too small, we repeated the full query set a suitable number of
times (in practice, 100 or 1000 times) and measured the average time per query.

All tests were run on an Intel (R) Core TM i7-3820 CPU @ 3.60GHz (4 cores)
with 10MB of cache and 64GB of RAM, over Ubuntu 12.04.5 LTS with kernel
3.2.0-126 (64 bits). The code is compiled using gcc 4.7 with -O9 optimizations.

T−k2raster (varying tδ)
k2raster

NetCDF (varying deflate level)

4 6 8 10 20 50 0 2 5 9

T 100 398.2 407.0 429.6 456.7 584.4 820.8 769.3 14241.3 615.3 539.5 528.0

T 1000 170.4 152.5 151.2 154.6 196.2 304.6 496.6 14241.3 435.0 344.7 323.6

Table 1. Space requirements (in MB) of T−k2raster, k2raster and NetCDF over synthetic
datasets.

Table 1 displays the space requirements for the datasets T 100 and T 1000 in
all the representations. We tested our T−k2raster with several sampling intervals
tδ, and also show the results for NetCDF using several deflate levels, from level
0 (no compression) to level 9. Our representation achieves the best compression
results in both datasets, especially in T 1000, as expected, due to the slower
change rate. In T 100, our approach achieves the best results for tδ = 4, since
as the number of changes increases our differential approach becomes much less
efficient. In T 1000, the best results are also obtained for a relatively small tδ
(6-8), but our proposal is still smaller than k2raster for larger tδ. NetCDF is only
competitive when compression is applied, otherwise it requires roughly 20 times
the space of our representations. In both datasets, NetCDF with compression
enabled becomes smaller than the k2raster representation, but T−k2raster is
able to obtain even smaller sizes.
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Fig. 3. Space/time trade-off on T 100 and T 1000 datasets for cell value queries.

Figure 3 shows the space/time trade-off for the datasets T 100 and T 1000
in cell value queries. We show the results only for NetCDF with compression
enabled (deflate level 2 and 5), and for T−k2raster with a sampling interval of 6
and 50. The T−k2raster is slower than the baseline k2raster, but is much smaller
if a good tδ is selected. Note that we use two extreme sampling intervals to show
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the consistency of query times, since in practice only the best approach in space
would be used for a given dataset. In our experiments we work with a fixed tδ, but
straightforward heuristics could be used to obtain an space-efficient T−k2raster
without probing for different periods: for instance, the number of nodes in the
tree of differences and in the snapshot is known during construction, so a new
snapshot can be built whenever the size of the tree of differences increases above
a given threshold.

T 100 T 1000

T−k2raster
k2raster

NetCDF T−k2raster
k2raster

NetCDF

wnd rng 6 50 2 5 6 50 2 5

16 1 3.6 3.8 2.8 6130 10070 3.3 3.4 2.5 6160 10020

4 5.1 5.5 3.6 6240 10100 3.5 3.5 2.6 6160 10100

256 1 222.9 248.1 163.9 9610 15330 207.1 228.9 167.6 9370 15110

4 429.3 489.4 301.7 9340 14790 213.4 234.3 172.7 9510 15240

ALL 1 111450 126220 78250 443830 580660 79650 89380 63350 436400 568730

Table 2. Range query times over T 100 and T 1000 datasets. Times shown in µs/query
for different spatial windows (wnd) and range of values (rng).

Table 2 shows an extract of the range query times for all the representations
in datasets T 100 and T 1000. We only include here the results for T−k2raster
with a tδ of 6 and 50, and for NetCDF with deflate level 2 and 5, since query times
with the other parameters report similar conclusions. We also show the results
for some relevant spatial window sizes and ranges of values. In all the cases,
T−k2raster is around 50% slower than k2raster, due to the need of querying two
trees to obtain the results. However, the much smaller space requirements of our
representation compensate for this query time overhead, especially in T 1000.
NetCDF, that is not designed for this kind of queries, cannot take advantage of
spatial windows or ranges of values, so it is several orders of magnitude slower
than the other approaches. The last query set (ALL) involves retrieving all the
cells in the raster that have a given value (i.e. the spatial window covers the
complete raster). In this context, NetCDF must traverse and decompress the
whole raster, but our representation cannot take advantage of its spatial indexing
capabilities, so this provides a fairer comparison. Nevertheless, both T−k2raster
and k2raster are still several times faster than NetCDF in this case, and our
proposal remains very close in query times to the k2raster baseline.

Figure 4 (left) shows the space/time trade-off for the real dataset VAP. Re-
sults are similar to those obtained for the previous datasets: our representation,
T−k2raster, is a bit slower in cell value queries than k2raster, but also requires
significantly less space. The NetCDF baseline is much slower, even if it becomes
competitive in space when deflate compression is applied.

Finally, Figure 4 (right) displays the query times for all the alternatives in
range queries over the VAP dataset. The k2raster is again a bit faster than the
T−k2raster, as expected, but the time overhead is within 50%. NetCDF is much
slower, especially in queries involving small windows, as it has to traverse and
decompress a large part of the dataset just to retrieve the values in the window.
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 0.1

 1

 10

 100

 1000

 10000

 100000

 50  100  150  200  250  300

q
u

er
y

 t
im

e 
(µ

s/
q

u
er

y
)

space (Mbytes)

VAP cell value queries

T-k
2
raster

k
2
raster

NetCDF

T−k2raster
k2raster

NetCDF

wnd rng 6 50 2 5

4 1 2.2 2.2 1.6 5570 9520

2 2.0 2.0 1.4 5530 9430

3 1.9 1.8 1.3 5580 9430

4 1.7 1.7 1.3 5550 9470

16 1 4.3 4.2 3.1 5670 9670

2 3.7 3.7 2.7 5630 9730

3 3.3 3.4 2.4 5660 9660

4 2.9 3.0 2.2 5720 9740

64 1 26.4 26.1 19.5 6150 10470

2 21.1 21.6 16.1 6140 10440

3 16.8 17.3 12.9 6130 10450

4 16.2 16.6 12.6 6220 10660

256 1 239.6 242.5 179.4 8720 14820

2 207.2 218.7 161.0 8660 14640

3 181.7 187.9 140.3 8590 14430

4 142.2 146.5 112.9 8300 14020

ALL 1 60400 62900 46200 411700 552500

Fig. 4. Results for VAP dataset. Left plot shows space/time tradeoff for cell value
queries. Right table shows query times for range queries. Times in µs/query.

Note that even if the window covers the complete raster, T−k2raster and k2raster
achieve significantly better query times.

6 Conclusions and future work

In this work we introduce a new representation for time-evolving raster data. Our
representation, called T−k2raster, is based on a compact data structure for raster
data, the k2raster, that we extend to efficiently manage time series. Our proposal
takes advantage of similarities between consecutive snapshots in the series, so it is
especially efficient in datasets where few changes occur between consecutive time
instants. The T−k2raster provides spatial and temporal indexing capabilities,
and is also able to efficiently filter cells by value. Results show that, in datasets
where the number of changes is relatively small, our representation can compress
the raster and answer queries very efficiently. Even if its space efficiency depends
on the dataset change rate, the T−k2raster is a good alternative to compress
raster data with high temporal resolution, or slowly-changing datasets, in small
space.

As future work, we plan to apply to our representation some improvements
that have already been proposed for the k2raster, such as the use of specific
compression techniques in the last level of the tree. We also plan to develop
an adaptive construction algorithm, that selects an optimal, or near-optimal,
distribution of snapshots to maximize compression.
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