
Efficient algorithms to calculate the Hausdorff

Distance on point sets represented by a k2-tree

Fernando Domı́nguez1, Gilberto Gutiérrez1, Miguel R. Penabad2*,
Miguel Romero1, Fernando Santolaya1†

1Department of Computer Science and Information Technology, Faculty
of Economic Sciences, University of B́ıo-B́ıo, Chillán, Chile.

2*University of A Coruña, CITIC Research Center, A Coruña, Spain.

*Corresponding author(s). E-mail(s): miguel.penabad@udc.es;
Contributing authors: fdomingu@egresados.ubiobio.cl;

ggutierr@ubiobio.cl; miguel.romero@ubiobio.cl; fsantolaya@ubiobio.cl;
†These authors contributed equally to this work.

Abstract

The Hausdorff distance is a measure of the similarity between two sets of points.
It has been used in many different fields, such as comparing MRI images or trans-
portation routes. There have been different approaches to compute the Hausdorff
distance; some algorithms operate in main memory, while others store the set of
points in secondary memory. In order to avoid secondary memory, compact data
structures, such as k2-tree, can be used. They are able to index large sets of
points in main memory, and they can be efficiently queried while minimizing stor-
age. We present in this article two efficient algorithms (HDKP1 and HDKP2)
to compute the Hausdorff distance over two data sets that are stored in k2-trees.
These algorithms provide a time- and space-efficient solution. The performance
of our algorithms was evaluated through a series of experiments together with
the most promising algorithms from the state of the art. Based on the results, it
was concluded that our approach is competitive or exceeds current algorithms.

Keywords: Algorithms, Compact Data Structures, Hausdorff distance, k2-tree

1

1 Introduction

The Hausdorff distance calculation is not a new problem and it is mostly addressed
in the field of topology [1]. The first computer science study dates back to 1983 in
which the authors [2] proposed an algorithm to calculate the Hausdorff distance of
two convex polygons.

The Hausdorff distance is the similarity measure of two sets of points A and B.
Therefore, it can be used to compare geometric shapes, such as polylines, convex
polygons [2], or general polyhedra represented as triangular meshes [3]. This has many
practical applications because it is possible to model various situations in the real
world as a set of points or as geometric figures. For example, this similarity measure
is used in the field of topology to compare maps [1]. It is also used to compare images
to identify the similarity between images of skin lesions from one patient to another
in the field of dermatology [4], follow the evolution of the size of a brain tumor over
time [4], and for facial recognition [5–7].

The HausDist(A,B) is a function where A and B ⊆ Rd and is defined as [8]:

HausDist(A,B) = max
a∈A

{min
b∈B

{Dist(a, b)}}

It is the greatest distance between each point a ∈ A with its nearest neighbor b ∈ B.
The HausDist(A,B) is also called the direct Hausdorff distance. The Hausdorff distance
is not symmetric (HausDist(A,B) ̸= HausDist(B,A)), so it is defined as [9]:

SymHD(A,B) = max{HausDist(A,B),HausDist(B,A)}

Fig. 1 illustrates two trajectories1 A and B. The Hausdorff distance can be regarded
as the largest discrepancy between one trajectory and another; the notion of dis-
crepancy between trajectories is a similarity measure [10]. Therefore, the largest
discrepancy between A and B is HausDist(A,B) = Dist(a4, b4) and the largest dis-
crepancy between B and A is HausDist(B,A) = Dist(b5, a4). A practical application
of the aforementioned would be to identify the maximum additional distance a pas-
senger would have to travel if the public transport authority decided to replace a bus
route (sequence of stops) with another [9]. The different alternative routes could then
evaluated to choose the one that generates the least impact on the population.

Given the increasing volume of information, it is indispensable to efficiently use
storage to represent data. Data size not only has an impact on storage, but also on
transmission and processing costs. One approach to address this problem comes from
the field of information recovery systems, known as compact data structures [11].
These data structures efficiently represent information by using a space that is very
close to the theoretical optimum according to information theory. They also maintain
direct access properties to the data, which enables operations to be performed on the
structure without previously decompacting it. In the previous examples, it is easy
to visualize contexts in which great volumes of points exist, such as comparing high
resolution images. These images are more costly to analyze when they require indexing

1A trajectory is the sequence of points through which a moving object has passed. The sequence of points
is ordered by time.

2

(a) HAUSDIST(A,B)

(b) HAUSDIST(B ,A)

Fig. 1: Example of Hausdorff distance calculation for both A to B and B to A [9].

the points in secondary memory than when they are in main memory, merely for
the location of data. Various compact data structures to represent sets of points are
encountered in the literature, among which are the wavelet tree [12] and the k2-tree
[13]. The wavelet tree is highlighted because it can obtain theoretical optimum storage
as compared with the k2-tree. However, a k2-tree can achieve a lower storage cost
when the points are clustered [11].

As far as we know, there are no algorithms that compute the Hausdorff distance
using any compact data structures in the reviewed literature. Therefore, if the point
sets are stored in one of them, there are basically two ways to calculate the Hausdorff
distance. The first consists in extracting the points from the compact structure and
then calculate the Hausdorff distance with some known algorithm. The second is to
devise new algorithms to calculate the Hausdorff distance directly using the compact
data structure. Two new algorithms are proposed in the present study2, which were
based on the ideas of [9], [8], and [15] to directly calculate the Hausdorff distance for
sets of two-dimensional points stored in different k2-trees.

Given that the k2-tree is a static structure, the repeated calculation of the Haus-
dorff distance for the same sets is meaningless. It is more convenient to calculate it
only once and store it because it does not vary. However, it is sometimes necessary to
calculate the Hausdorff distance for subsets established by spatial ranges or for sets
that are generated from other sets through set operations for k2-trees, such as union
and intersection, as described in [16].

The rest of the article is organized as follows. Section 2 reviews previous work on
the Hausdorff distance problem and describes compact data structures, focusing on the

2A preliminary version of this work was presented at the CLEI International Conference [14].

3

k2-tree, which will be used in our work. Section 3 describes our algorithms to calculate
the Hausdorff distance. The experiments we conducted are shown in Section 4. Finally,
the last section offers some conclusions and directions for future work.

2 Related Work and Background

In this section, we discuss the algorithms proposed in the literature to calculate the
Hausdorff distance. Algorithms that assume it is possible to completely store two sets
in main memory and those that process data from secondary memory are analyzed.
Essential compact data structures are also described, and the k2-tree structure used
in the present study is highlighted.

2.1 Algorithms in main memory to compute Hausdorff distance

The first algorithm encountered in the literature to calculate the Hausdorff distance
in main memory was proposed by Atallah [2]. It is used to calculate the Hausdorff dis-
tance between two disjoint convex polygons, and its temporal complexity is O(m+n)
where m and n are the number of external vertices of each convex polygon. Following
the same line of comparing polygonal shapes, Tang et. al. [17] demonstrated an algo-
rithm to calculate the Hausdorff distance between complex polygonal models. Unlike
the previous algorithm, it requires no special conditions for point sets. The proposed
algorithm uses a Voronoi subdivision to divide the polygonal model into smaller tri-
angles to calculate the Hausdorff distance between the vertices of those triangles. This
algorithm only provides an approximate result. Helmut et. al. [18] presented algorithms
that also use the Voronoi diagram to calculate Hausdorff distance with a temporal
complexity of O((n+m) log(n+m)).

More recently, Taha et. al. [8] proposed an algorithm that eventually avoids
calculating the nearest neighbor of each point of A for the points of B.

The algorithm progressively optimizes (maximizes) an initial candidate solution in
the following way. For each point p of A, an attempt is made to calculate its nearest
neighbor in B. If a point q is obtained in B in which the distance between p and q is
less than the candidate solution reached so far, then the query for the nearest neighbor
for p is not continued (early break) and the next point of A is selected.

The algorithm shows temporal complexity O(m) for its best case and O(mn) for
its worst case.

Another algorithm that uses the “early break” technique has been proposed by
Chen et. al. [19], which is known as a local start search (LSS). The “early break” of
this algorithm arises from the probability of high density zones of points. As in Taha
et. al. [8], these “early breaks” are performed when calculating the nearest neighbor of
a point. The algorithm uses a mechanism to record the position of the last break as an
initial position to calculate the nearest neighbor of the next element of A. In another
line of research, Guthe et. al. [20] submitted an algorithm to calculate the Haus-
dorff distance of geometric meshes. This algorithm takes advantage of the geometric
mesh properties because it reviews only those regions where maximum distances exist

4

between the triangles of each mesh. A grid was constructed using an octree data struc-
ture [21] to store each region by calculating the minimum and maximum distances
between them.

Similarly, Kang et. al. [22] proposed an algorithm to calculate the Hausdorff dis-
tance between a triangular geometric mesh and a quadruple mesh. They tried to
decrease the use of memory by eliminating the storage of all the combinations to avoid
processing the whole set of information.

As for comparing tri-dimensional models and using the ideas proposed in [8], Zhang
et. al. [23] submitted algorithms that use what the authors call “diffusion search” to
optimize the calculation of the Hausdorff distance. They used an octree data structure
as described in [20]. The main idea of these algorithms is to take advantage of the
probability that if an “early break”, as defined in [8], the next solution is found in
points near this first candidate solution. This idea is similar to the one described
in [19]. Another interesting point about these algorithms is that they consider point
distribution and density. When dealing with a dispersed set of points, the authors
proposed an algorithm that reviews the points of the second z-order set. It converts
these sets by using Morton code, which is a function that maps multidimensional data
in a single dimension, thus preserving the location of the points [24].

Huttenlocher et. al. [25] proposed two algorithms to compare images; one is for
objects in R2 with O(mn logmn) complexity and the other for objects in R3 with
O(m2n2 ∝ (mn)) complexity where m and n are the number of points of each set
and ∝ (mn) is the translation function of these sets. In line with [2], these algorithms
calculate the Hausdorff distance with the polygons generated by the exterior points
of the data sets. When using this same translation method, but specifically for the
calculation of the Hausdorff distance between two lines, Rote [26] and Li et. al. [27]
proposed algorithms that improved the algorithm submitted in [25]. The complexity
of these algorithms is O((n+m) log(n+m)). Depending on the number of points in
each set, the problem with these translation techniques is that they require excessive
computation time. To reduce it, Chang et. al. [28] proposed an algorithm that uses
a Kalman filter [29] to filter points and improve computation time when comparing
these sets.

More recently, Ryu and Kamata [30] proposed a new algorithm, based on the idea
of ruling out points. It is also based on the early break technique, but in this case they
apply it not only in the internal loop (as Taha’s algorithm) but also in the external
loop. Their time complexity is O(m) for its best case and O(mn) for its worst case,
but their empirical tests (using 3D synthetic datasets and MRI images) show that
they can outperform Taha [8] in up to 2 orders of magnitude.

The Hausdorff distance can also be calculated between curves. An algorithm for
this purpose was presented by Chen et. al. [31]. This algorithm uses a heuristic method
to divide the curves into sub-intervals through B-spline curves. It also uses geometric
pruning techniques to eliminate those sub-intervals that do not contribute to the final
solution.

5

2.2 The k2-tree Compact Data Structure

Compact data structures enable space-efficient data representation, while still being
able to efficiently solve required operations on the data [11, 13]. Compact data struc-
tures are available for binary sequences (bitmaps), symbol sequences, cardinal trees,
permutations, graphs, and range indexing among others.

Among the compact data structures we can find the k2-tree (see Fig. 2). Brisaboa
et. al. [32] defined it as a compact data structure based on the quadtree [33]. This
structure can also be regarded as a binary relation represented by a k2-ary tree with
height h = ⌈logk n⌉; it represents a binary adjacency matrix with an n × n range
in a compact manner. It can be used to represent general purpose graphs [34], RDF
(resource description framework) data, or a bi-dimensional grid of points [35].

Fig. 2 shows a binary matrix and the conceptual k2-tree (with k = 2) which stores
the same information. The building process is as follows: starting with the whole
matrix, it is divided in k × k equal-sized submatrices, and a bit is associated to each
one. The bit is 1 if the corresponding matrix contains at least a 1, or a 0 if the whole
submatrix is empty (full of 0s). The process continues recursively for all non-empty
submatrices, and it stops when it either finds an empty submatrix or it reaches the
individual cells of the matrix.

Finally, what is stored in the k2-tree is the sequence of bits that corresponds to
the breadth-first traversal of the conceptual tree, storing the last level (bitmap L)
separately from the rest of the tree (bitmap T). For the example in Fig. 2, the stored
bitmaps are T = 1001 and L = 11011110.

Space saving in a k2-tree is due to the existence of quadrants that are full of 0s and
are therefore not subdivided. In addition, the tree topology is not explicitly stored,
saving the space required for the pointers and nodes of a classic tree representation.

The retrieval of direct and reverse neighbors, cell retrieval, and range queries are
some operations that can be efficiently performed in a k2-tree.

Fig. 2: Representation of a an adjacency matrix in a k2-tree [32].

A variation of the k2-tree is the hybrid approach, which tries to improve compres-
sion and query times. It maintains two k values, a larger k value for the upper levels
and a smaller k value for the lower levels. This reduces tree height.

Another special version of the k2-tree uses the compression of 1s, which was orig-
inally described in [36]. This structure seeks to obtain an efficient representation for
binary matrices that contain large groups of 0s and 1s. An example of these matrices
are those representing binary images. The main difference with the original k2-tree
is the philosophy of submatrix division. The original decomposition in this structure

6

stops when uniform regions of either 0s or 1s are found. This version has a higher com-
pression ratio than the original k2-tree when large regions of 1s appear in the binary
matrix.

Another variation is the Dk2-tree, which is a dynamic version of the k2-tree. The
tree is modified when a cell of the adjacency matrix in this structure is dynamically
changed. This enables subsequent modifications to the initial tree construction.

The storage required by a k2-tree to store a set of points has been studied in
different works [15, 35, 37]; these authors mainly conclude that the k2-tree efficiently
represents points, especially if the points are concentrated in regions of space.

2.3 Spatial indexes that can be used to speed up Hausdorff
distance computation

It was our intention to compare the behavior of the k2-tree with an spatial index. We
are aware that R-trees [38] are one of the most well known spatial indexes. However,
we do not consider them in this work, because they are basically designed to work well
in secondary memory, and our data structures and algorithms are designed to work in
main memory (RAM). For this reason, we decided to chose another well-known spatial
index, the Kd-tree. This section briefly describes it, as well as a specific, compact
version, the iKd-tree.

Let P ⊆ Rd be a set of d-dimensional points. A Kd-tree [39] is a data structure
to store P , being also a multidimensional autoindex. It is a hierarchical structure (a
binary tree) that recursively divides the space. Each node of the tree contains an
object in P . Internal nodes divide the d-dimensional subspace in two subspaces by
means of a (d − 1)-dimensional hyperplane. This hyperplane is iso-oriented, and its
direction alternates among the d dimensions on the different levels of the binary tree.
For example, if d = 2, the first partition could be based on the X coordinate of the
point stored in the root (level 0). The nodes on level 1 would partition the space
according to the Y coordinate, on level 2 according to X again, and so on. The Kd-tree
permits search, insertion and deletion operations on O(h) time, being h the height of
the tree.

An iKd-tree [40] is an implicit Kd-tree that does not use pointers in its implemen-
tation. It is very convenient when the P set is static. Basically, the iKd-tree stores the
objects from P in an array Q[1 . . . n], with n = |P | that implicitly forms a balanced
binary tree. The object stored in the root of the tree is located inQ[⌈n

2 ⌉] and, according
to the chosen hyperplane, divides the space in two subspaces like the original Kd-tree
does. The left and right childs of the root (either internal nodes or leaves) are located
at positions Q[⌈n

4 ⌉] and Q[⌈ 3n
4 ⌉], respectively. This way, exploring or navigating the

iKd-tree is really simple.
As stated by [40], the cost of building a iKd-tree is O(dn log2 n). It essentially

corresponds to the cost of sorting the set P according to each of the d dimensions.
The expected search time for a search (point query) is O(log2 n).

7

3 Proposed algorithms

Our algorithms are based on ideas proposed by [8] and [41]. Specifically, the “early
break” concept described by [8] is applied to both sets.

We shall use some metrics defined in [41] and [42], adapted to our algorithms. These
works rely on the concept of MBRs (Minimum Bounding Rectangles) that enclose sets
of points. However, in our algorithms, we do not really have MBRs, but “regions”
that come from the recursive partition of a k2-tree (or an iKd-tree, but since our
major contribution is the design of algorithms that work with k2-trees, we will focus
on these). We define a region as either the whole binary matrix stored in the k2-tree,
or a submatrix that comes from the recursive partition of the k2-tree.

Being p1 and p2 two points, and R and S two regions, the following functions are
defined (see Fig. 3 and 5):

• Dist(p1, p2) is the distance between p1 and p2. We consider the Euclidean distance,
but other metrics, such as Manhattan or Chebyshev distances would also work.

• minDist(p1, S) is the minimum possible distance between p1 and any point in S.
• maxDist(p1, S) is the maximum possible distance between p1 and any point in S.
• MAXMAXDIST(R,S) is the maximum possible distance from any point in R to
any point in S.
Note that maxDist(p1, S) is a special case of MAXMAXDIST(R,S), where R is a
region containing only the point p1 [43].

Even when all these metrics were originally defined for MBRs or regions that
represent rectangles, for our algorithms with k2-trees, a region will always be a square,
which comes from the recursive partition of the k2-tree (if we consider also the iKd-
trees, their recursive partition also obtains rectangles).

Also, for the sake of simplicity, we shall abuse the notation on some of those
functions, by identifying a node in a k2-tree with the region it identifies. Thus, for
example, if N is a node in the k2-tree KA that represents the region R, we shall use
interchangeably minDist(p1, N) and minDist(p1, R).

Our algorithms HDKP1 and HDKP2 are presented below. The first performs prun-
ings only in set B, while the second applies pruning strategies in sets A and B. A
summary of the conditions and actions of the 4 pruning rules is shown in Table 1.

Rule Condition Action
Rule 1 p ∈ A, pb ∈ B,Dist(p, pb) ≤ cmax Stop testing p
Rule 2 p ∈ A,S ⊆ B,maxDist(p, S) ≤ cmax Stop testing p
Rule 3 p ∈ A,S ⊆ B,minDist(p, S) > minNN Do not test S (do not insert in pQ)
Rule 4 R ⊆ A,S ⊆ B,MAXMAXDIST(R,S) ≤ cmax Do not test R

Table 1: Summary of pruning rules. p and pb are points, R and S are regions,
minNN is the current min distance from p to its nearest neighbor (found so far).

8

3.1 HDKP1 algorithm

The algorithm assumes that the point sets A and B are stored in the k2-trees KA

and KB , respectively. Basically, a k2-tree represents a binary matrix (a matrix where
each cell contains a 1 or a 0). So, a set of points is stored in a binary matrix simply
setting to 1 the cell matrix (x, y) for each point (x, y) in the set, and setting to 0 all
the remaining cells. Then, the matrix is stored in a compact form in the k2-tree. For
example, Fig. 4 shows on the left the matrix for the point set {(0, 4), (0, 7), (7, 7)}.

The HDKP1 algorithm extracts and explores each point in KA and, for each point,
finds its nearest neighbor in KB , provided that this neighbor is a possible solution.

The strategy of the algorithm is branching and pruning. It specifically uses three
pruning rules based on the previously defined distance functions.

HDKP1 is shown in Algorithm 1. It heavily relies on the NNMax function (Algo-
rithm 2). We will discuss in detail this function later, but basically NNMax obtains,
for a point p in KA, its nearest neighbor in KB .

In order to keep the pseudocode simple, we make some assumptions and use some
specific notation. Consider we have a k2-tree KA. Then, KA also represents the root
node of the conceptual tree. As we already mentioned, when we refer to any node
N in the conceptual k2-tree, we also refer to the submatrix it represents. Thus,
maxDist(p,N) obtains the max possible distance between the point p and any point
in the submatrix the node N represents. The following functions are also used in our
pseudocode:

• isLeaf(N) returns true if N is a leaf node in a k2-tree (it corresponds to an
individual point), false otherwise.

• hasChildren(N) returns whether an intermediate node N in a k2-tree has any
children (whether it corresponds to a non-empty region in the matrix represented
by the k2-tree).

Basically, HDKP1 visits every point p in the k2-tree KA in a loop, and invokes
NNMax (Algorithm 2) in each step. It obtains the nearest neighbor of the current
p, and possibly improves the value of the Hausdorff distance (sometimes an iteration
may skip the test using one of the pruning rules that we will discuss).

HDKP1 and NNMax share 3 important variables:

• cmax: it is the current candidate for the Hausdorff distance. It is initialized as 0.
• pNN : It is a global variable that contains the last computed nearest neighbor in KB

to a point p in KA. It is initialized as (∞,∞), and NNMax may change its value.
• minNN : It is the distance between the point p ∈ KA being processed, and pNN
(which, as we will see, is the nearest neighbor of the point p computed in a previous
iteration in the loop of HDKP1). It is used as a threshold that allows for some
computations to be avoided (using pruning rules).

Let us describe HDKP1 following its pseudocode. The for loop (lines 3-8) visits
every point p in KA, and calls NNMax to find its nearest neighbor in KB , with the
aim of improving the value of cmax. Note that in line 5, NNMax is invoked only
when the distance between p and the current value of pNN is higher than the current
value of cmax. This is pruning rule 1: When this distance (minNN) is lower or

9

equal to cmax, p would not improve the answer, because we know there is a neighbor
closer than the current cmax distance (we can consider minNN an upper bound for
the distance from p to its nearest neighbor).

To clarify the application of pruning rule 1, we can refer to Fig. 3 in which, assuming
that p was processed before q, it is evident that if minNN = Dist(q, pNN) ≤ cmax
is the distance between q and pNN , it does not improve the value of cmax.

A

B

pNN
q

max
Dis

t(p,
B)

minDist(p,B)p

minNN

cmax

Fig. 3: Metrics used in pruning rules 1, 2, and 3.

Let us now focus on NNMax (Algorithm 2). It takes as imput the k2-tree KB ,
the current point p being tested (from KA), and the current values of cmax and
minNN . The algorithm computes the nearest neighbor of p in KB , with the aim of
improving the Hausdorff distance. It starts considering the whole KB and follows the
k2-tree partitioning schema to consider only subregions with points. Using pruning
rules, NNMax can eventually avoid testing some subregions, or even stop calculating
the nearest neighbor of the current p, deciding at an early stage that the distance
between p and its nearest neighbor does not improve the solution.

NNMax uses a priority queue represented by a min heap pQ that stores the regions
of KB yet to be processed. Each pQ element has the ⟨n, d⟩ structure, where n is a
node of KB , and d is the maximum possible distance (maxDist(p, n)) between p and
the submatrix represented by n. pQ is sorted (in increasing order) by d, that is, the
lowest value of d is found at the top of the heap. This way, the regions with points
close to p are probably closer to the top of the queue and will be processed first.

This priority queue uses standard functions to access it. In our case, they are the
following: createMin-heap() creates an empty min heap (priority queue), empty(pQ)
tests if pQ has no elements, insert(pQ, element) inserts an element into pQ, and
extract-min(pQ) extracts (and removes from the queue) the node at the top of the
heap, which corresponds to the minimum distance.

NNMax initializes pQ (line 3) with an entry that represents the root of KB , and
the distance maxDist(p,KB). The algorithm is then executed in a cycle (lines 4-28),
processing the pQ entries.

The e entries of pQ which are intermediate nodes (not leaves) of KB , are processed
in lines 6-18. This process basically involves partitioning the node e.n of KB (following
the standard k2-tree partitioning) and inserting the non-empty child nodes of e.n in
pQ. Note the optimization in this part of the algorithm, with the application of pruning
rules 2 and 3, which will be defined now.

Pruning rule 2 is applied in lines 7-9: If e.d ≤ cmax (being e.d the maximum
possible distance between p and e.n, the currently dequeued node), then the nearest
neighbor of p in KB does not improve the solution. Therefore, no further exploration

10

Algorithm 1 HDKP1 algorithm to calculate the Hausdorff distance for two point
sets stored in k2-tree.

HDKP1(KA, KB)
input: Two k2-trees KA and KB .
output: Hausdorff distance.

1: pNN = (∞,∞) ▷ pNN is a global variable that may be modified in NNMax
2: cmax = 0 ▷ cmax Hausdorff distance
3: for Each point p in KA do
4: minNN = Dist(p, pNN)
5: if minNN > cmax then ▷ pruning rule 1
6: cmax = NNMax(KB , p, cmax,minNN)
7: end if
8: end for
9: return cmax

of KB is necessary for the current p, so NNMax ends, returning the current value of
cmax.

Pruning rule 3 is applied in lines 13-16, before inserting an entry in pQ . If
minDist(p, h), which is a lower bound of the distance of the nearest neighbor of p
in h, is not lower than minNN , which is the candidate distance between p and its
nearest neighbor at this point of the algorithm, child h of the e.n entry is not added
to the priority queue pQ, because it does not minimize the value of minNN .

When the entries e of pQ being processed are leaves (they belong to the last level
of KB , and they represent points), they are processed in lines 19-26. Recall that only
non-empty nodes are inserted in the priority queue, so in this type of entries, e.n
represents a point inKB , and e.d (maxDist(p, e.n)) is the real distance between points
p and e.n. In this case, pruning rule 1 is also applied in NNMax, in lines 20-22: if
the distance between p and e.n is not higher than cmax, then further exploration of
KB is not necessary for the current p, because the value of cmax would not improve,
so the algorithm ends, returning the current value of cmax.

Finally, if the distance e.d between p and e.n is lower than minNN (lines 23-26),
the algorithm updates minNN and pNN .

As a final note on algorithms 1 and 2: as we mentioned, we have a global variable
pNN , shared between them. It is initialized as (∞,∞), but its value may be modified
in Algorithm 2 (line 25), setting it to a point closer to the current p. Given the
partitioning schema of the k2-trees and the use of a min heap, it is very likely that
the next point p to be processed in Algorithm 1 would be close to the current one,
obtaining a lower minNN , and thus increasing the probability of using the pruning
rule 1 in HDKP1.

Now, let us use an example to walk through the algorithms HDKP1. The input
is formed by two 16× 16 binary matrices A and B, which are shown in Fig. 4. They
would be stored in two k2-trees, KA and KB .

Initially, pNN = (∞,∞) (there is not yet any known point in B) and cmax = 0
(no current candidate; any result of HausDist(A,B) is ≥ 0). Given the k2-tree nature,

11

Algorithm 2 NNMax. Maximization of the Hausdorff distance.

NNMax(KB , p, cmax,minNN)
input: Root node of k2-tree KB , point p ∈ KA, Hausdorff distance cmax can-
didate, and minNN the upper bound for the distance between p and its nearest
neighbor.
output: The updated Hausdorff distance cmax.

1: pQ =createMin-heap()
2: d = maxDist(p,KB)
3: Insert(pQ, ⟨KB , d⟩)
4: while (Not Empty(pQ)) do
5: e = Extract-Min(pQ)
6: if not isLeaf(e.n) then
7: if (e.d ≤ cmax) then ▷ pruning rule 2
8: return cmax
9: end if

10: for all Node h child of e.n do
11: if (hasChildren(h)) then
12: hminDist = minDist(p, h)
13: if (hminDist < minNN) then ▷ pruning rule 3
14: hmaxDist = maxDist(p, h)
15: Insert(pQ, ⟨h, hmaxDist⟩)
16: end if
17: end if
18: end for
19: else
20: if (e.d ≤ cmax) then ▷ pruning rule 1
21: return cmax
22: end if
23: if e.d < minNN then
24: minNN = e.d
25: pNN = e.n ▷ At leaf level, the submatrix is a point
26: end if
27: end if
28: end while
29: return minNN

KA will be explored using a depth first traversal, which corresponds to the Z-order.
In our case, the points in KA will be processed in this order: (0, 4), (0, 7), (7, 7).

For p = (0, 4), minNN = ∞. The NNMax algorithm is invoked to compute the
nearest neighbor of p and eventually improve cmax. Additionally, it updates the global
variable pNN , setting it to the closest point to p in B.

What follows it the execution of NNMax for p = (0, 4). KB is processed using
the priority queue pQ in order to visit the most promising quadrants. Specifically,
it is initialized as pQ = {⟨((0, 0), (15, 15)), 346⟩}, given that the region associated to

12

Fig. 4: Minimal example datasets for the running example.

the full KB is delimited by points(0, 0) and (15, 15) and maxDist(p, (0, 0), (15, 15)) =
|15− 0|2 + |15− 4|2 = 346 3.

Next, the while loop (lines 4 - 28) is executed. In the first iteration, e =
{⟨((0, 0), (15, 15)), 346⟩}. Since e.n is not a leaf, it must be processed in lines 7-
18. Rule 2 does not apply because e.d > cmax (346 > 0), thus all non empty
children of e.n must be processed (lines 10-18). In this case, only the quadrant
h = ((0, 8), (7, 15)) is considered, because the other three do not contain any points.
We compute hminDist = minDist(p, h) = 16. Since hminDist < minNN (16 < ∞),
the entry ⟨((0, 8), (7, 15)), 170) is inserted in pQ, and the first iteration of the while
loop ends.

The next iteration dequeues this last entry and processes it, being par-
titioned in 4 quadrants. Again, all of them are not leaves and no pruning
rules apply, so they are inserted in pQ. Now, pQ = {⟨((0, 8), (3, 11)), 58)⟩,
⟨((4, 8), (7, 11)), 98)⟩, ⟨((0, 12), (3, 15)), 130)⟩, ⟨((4, 12), (7, 15)), 170)⟩}.

The algorithm continues until the point e.n = (0, 9) is extracted from pQ and is
processed in lines 19-26, where the global variables minNN and pNN are updated. At
this point, the nearest neighbor for p is pNN = (0, 9) and the distance isminNN = 25.
NNMax keeps running until pQ is empty. In this example, both pNN and minNN
remain unmodified. That is, the nearest neighbor of p is the point (0, 9) and the dis-
tance is 25. Finally, minNN is returned, and this value updates cmax in the algorithm
HDKP1.

Again in HDKP1, the next point in KA to be processed is p = (0, 7). Line 4 in
HDKP1 computes minNN = dist((0, 7), pNN) = 4, and it applies pruning rule 1,
since minNN ≤ cmax (4 ≤ 25), avoiding the computation of the nearest neighbor of
(0, 7), because it would not improve cmax.

The next point to be processed is p = (7, 7). In this case, minNN =
Dist(p, pNN) = Dist((7, 7), (0, 9)) = 53, so NNMax must be invoked.

3Note that, for efficiency purposes, and as defined in [42], the computed distance is the square of the
Euclidean distance, skipping the final square root operation.

13

The entry ⟨((0, 0), (15, 15)), 128)⟩ is inserted in pQ. Processing it, the entry
⟨((0, 8), (7, 15)), 113)⟩} is inserted. Then, processing it, the priority queue
becomes pQ = {⟨((0, 8), (7, 11)), 25)⟩, ⟨((0, 8), (3, 11)), 85)⟩, ⟨((0, 12), (3, 15)), 113)⟩,
⟨((4, 12), (7, 15)), 154)⟩}. Processing the entry ⟨((0, 8), (7, 11)), 25)⟩, we can see that
e.d ≤ cmax (25 ≤ 25). Therefore, pruning rule 2 is applied in line 7 of NNMax. This
implies that the remaining entries in pQ do not need to be processed, since the dis-
tance to nearest neighbor of (7, 7) will be at most 25, so it is not possible to improve
cmax. At this point the algorithm HDKP1 ends. The answer is) = 25. Or, more
correctly, if we want to use Euclidean distances,

√
25 = 5.

3.2 HDKP2 algorithm

The HDKP2 algorithm (Algorithm 3) is really an improvement of HDKP1, and it
aims to avoid an exhaustive exploration of the points in both KA and KB , in this case
discarding (pruning) also whole regions of points of KA. This is accomplished by using
a new pruning rule (pruning rule 4), which is based on the metric MAXMAXDIST
defined in [43] between quadrants or rectangles associated with the k2-trees (see Fig. 5).
The main idea for pruning rule 4 is that, being R and S two regions in KA and
KB , respectively, MAXMAXDIST(R, S) represents the upper limit of the distance
between any point in R and any point in S. If cmax is no lower than this upper limit,
the whole region R can be skipped, because it would not improve Hausdorff distance.

HKDP2 still uses NNMax (Algorithm 2) to apply the previously defined pruning
rules 1-3.

The pseudocode for HDKP2 is shown in Algorithm 3. An important part of it is
the isCandidate function (Algorithm 4) to obtain candidate areas to compute the
Hausdorff distance, so we shall describe it first.

The isCandidate algorithm takes as its first argument a node of the k2-tree KA

(nodeA), which corresponds to a region of the A dataset coming from the standard
k2-tree partitioning. The remaining arguments are the whole KB and the current
candidate Hausdorff distance, cmax. The objective is to determine if nodeA has can-
didate points to improve the solution. If there are no candidate points, isCandidate
returns -1, otherwise it will return an upper bound for the distance to consider, as low
as possible.

A valid upper limit for the distance would be MAXMAXDIST(nodeA,KB). How-
ever, it would be too high to be useful, so isCandidate tries to lower it. For example,
consider the matrix on the left of Fig. 4: TheMAXMAXDIST using the whole matrix
would give a valid upper limit, but if we consider that there are points only in its first
quadrant, the upper limit would be lower. For this process, the algorithm uses a min-
heap pR with elements of the form ⟨n, d⟩, where n is a node coming from the recursive
partitioning of KB , and d is a distance based on MAXMAXDIST(nodeA, n). Being a
min-heap, the lowest distance is located at the root of the heap. It is initialized (lines
1-3) with the whole KB .

The pR min-heap is processed in a loop (lines 4-19) to determine if KB contains
candidate points that increase the value of cmax. If the node extracted from pR is a
leaf (line 11), that is, a point has been reached, this means that all the regions of KB

have been scanned and it is impossible to apply pruning rule 4. Therefore, R contains

14

R S

cmaxMAX
MAX

DIST(
R,S)

Fig. 5: Metric used in pruning rule 4. No points from R will improve cmax because
they have neighbors in S closer than cmax.

candidate points that could optimize cmax. In this case, the algorithm returns distance
d as an upper limit to the distance of the nearest neighbors of all points in nodeA.

It the extracted element bb of pR corresponds to a non-empty internal node,
the algorithm processes its children nodes h in lines 9-17, computing maxDist =
MAXMAXDIST(nodeA, bb.h) (trying to get a lower upper limit for the distance). Here,
pruning rule 4 can be applied: if maxDist is less than cmax, any nearest neighbor
to the points in the region covered by nodeA has a smaller distance than cmax, so
this region can be discarded, because it would not improve cmax (see, for example,
Fig. 5). If maxDist is greater than cmax, the child node h is enqueued in pR, along
with maxDist.

Now let us describe HDKP2 (Algorithm 3). The initialization process (lines 1-5)
includes computing an initial cmax candidate value (by getting the nearest neighbor
of any random point from KA) and the initialization of a priority queue pQ, which
is implemented as a max-heap. Each element is of the form ⟨n, d⟩, where n is a node
in KA and d is a distance computed by the isCandidate algorithm. This distance
is initialized as N ×

√
2, which corresponds to MAXMAXDIST(KA,KB), being the

length of the diagonal of the matrix represented by KA. pQ is sorted in decreasing
order of d, that is, the largest value of d is found at the root of the heap.

Then the loop in lines 6-26 processes the entries of pQ. For each aa node extracted
in line 7, three scenarios may occur:

• Its distance is less than or equal to the current cmax (line 8). Since pQ is a max-
heap, it means that there are no nodes in it that may improve (increase) cmax, the
the algorithm ends returning its current value.

• The aa.n node is a leaf (line 11). In this case, the distance to its nearest neighbor in
KB is computed using the previously described NNMax algorithm (Algorithm 2).
If this value is larger than cmax, then cmax is updated. It is important to remember
that NNMax uses pruning rules 2 and 3 to discard regions in KB , optimizing the
process.

• The aa.n node is an internal node (line 17). In this case, each of its non-empty
children are processed. The previously defined isCandidate algorithm (Algorithm 4)
is used to determine if the region contains candidate points to improve cmax and,
if so, the child in enqueued in pQ along with the new upper limit for the distance.

15

Algorithm 3 HDKP2 algorithm to calculate the Hausdorff distance for two point
sets stored in k2-tree, discarding quadrants in KA.

HDKP2(KA, KB)
input: Two k2-trees KA and KB .
output: The Hausdorff distance.

1: p = any point fromKA

2: cmax = NearestNeighbor(p, KB)
3: pQ = CreateMax-Heap()
4: d = N ×

√
2; ▷ highest value of cmax

5: Insert(pQ, ⟨KA, d⟩)
6: while (Not Empty(pQ)) do
7: aa = Extract-Max(pQ)
8: if aa.d ≤ cmax then
9: return cmax

10: end if
11: if isLeaf(aa.n) then ▷ aa.n is a point
12: nn = NNMax(KB , aa.n, cmax,∞)
13: if nn > cmax then
14: cmax = nn
15: end if
16: else
17: for all Node h child of aa.n do
18: if (hasChildren(h)) then
19: dh = isCandidate(h,KB , cmax)
20: if (dh ̸= −1) then
21: Insert(pQ, ⟨h, dh⟩)
22: end if
23: end if
24: end for
25: end if
26: end while
27: return cmax

The Hausdorff distance returned by HDKP2 is the current value of cmax, either
returned in the early exit condition described in the first scenario, or when the max-
heap pQ is exhausted.

As a final reminder, recall that Table 1 contains a summary of the conditions and
actions of all 4 pruning rules.

3.3 Time complexity of our algorithms

A k2-tree is a hierarchical data structure that is conceptually very similar to a
Quadtree (specially when k = 2). Additionally, the (non simmetrical) Hausdorff dis-
tance between A and B can be modeled as a join of two sets, using KA and KB ,

16

Algorithm 4 IsCandidate. Determine if the quadrant of set A has candidate points
for scanning.

IsCandidate(nodeA,KB , cmax)
input: Node (region) ofKA, k

2-tree KB , the Hausdorff distance cmax candidate.
output: MAXMAXDIST (nodeA, S) for an S ⊆ KB , or -1 if nodA has no
candidates to improve cmax.

1: pR = CreateMin-Heap()
2: d = MAXMAXDIST(nodeA,KB)
3: Insert(pR, ⟨KB , d⟩)
4: while (Not Empty(pR)) do
5: bb = Extract-Min(pR)
6: if isLeaf(bb.n) then
7: return bb.d
8: else
9: for all Node h child of bb.n do

10: if (hasChildren(h)) then
11: maxDist = MAXMAXDIST(nodeA, h)
12: if (maxDist ≤ cmax) then ▷ pruning rule 4
13: return −1
14: end if
15: Insert(pR, ⟨h,maxDist⟩)
16: end if
17: end for
18: end if
19: end while

respectively. For this type of operation, using hierarchical data structures it is com-
mon to use models that predict the cost of processing the join operation. For example,
the work [44] is integrally devoted to propose a model to estimate the cost of per-
forming a spatial join considering data sets stored in R-trees (also a hierarchical data
structure) and distance between objects as spatial predicates. The development of a
cost model to predict the performance of our algorithms is by itself a challenge that is
beyond the scope of this work. Therefore, we concentrate only in the performance of
our algorithms for the worst case scenario. Since the worst case occurs when no prun-
ing rules apply, the time complexity is basically the same for HDKP1 and HDKP2.
In any case, we have included an empirical estimation of the average-case complexity
in Section 4.4.5, following an approach to those used in [45] or [46]. It shows that our
algorithms range from O(n) to O(n log n).

Let mA and mB the number of points stored in the k2-trees KA and KB , respec-
tively. Basically, the algorithm consists en finding, for each point pA ∈ KA, it nearest
neighbor in KB . This is done by invoking the NNMax algorithm, which is very sim-
ilar to the algorithm introduced in [15] (except that in our case the variable cmax
may be updated). The worst case for NNMax happens when all the points in KB

are at the same distance of pA and cmax is a small value that does not help pruning.
According to [15], the time complexity of NNMax is O(mB log2 mB).

17

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Mixed distribution

Fig. 6: Mixed distribution.

Our algorithms need to process (n
2−1

k2−1) internal nodes, and mA leaves in KA (call-

ing NNMax). Thus, the global complexity to solve HausDist(A,B) is n2−1
k2−1 + mA +

mA(O(mB log2 mB)), which is O(mA(mB log2 mB)).
The complexity for the symmetrical Hausdorff distance, SymHD(A,B) would be,

therefore, O(mA(mB log2 mB) +mB(mA log2 mA)).
Of course, this worst case complexity is bad, almost quadratic on the number of

points. However, the running time of our algorithms, as we will show in the following
section, is much shorter. The algorithms benefit not only from the pruning rules, but
also from the characteristics of the k2-trees. For example, reaching an empty internal
node in upper levels of the k2-tree will decrease the number of internal nodes to be
processed.

4 Experimental Evaluation

4.1 Experimental environment

The experiments were conducted on a computer with an Intel(R) Xeon(R) Silver
4309Y CPU @ 2.80GHz processor, 128 GB RAM Memory, and Ubuntu 22.04 LTS
operating system. The performance of the experiments was measured by execution
time and memory usage. The algorithms were implemented in the C++ programming
language.

To conduct the experiments, it was assumed that the point sets are stored in two
k2-trees or two iKd-trees, depending on the version of the algorithms. Calculated mean
time includes the time needed to extract the points from the data structures and the
time required to calculate the symmetrical Hausdorff distance.

4.2 Data sets

4.2.1 Synthetic data

Experiments were conducted with randomly generated point sets following the uniform
and Gaussian distributions. Sets mixing both distributions were also considered (see
Fig. 6). Points were generated in a two-dimensional space with a 216 × 216 range. Set
size was 10,000, 100,000, 1,000,000, and 10,000,000 points.

18

Fig. 7: Real data sets examples: LAW (left) and Ciconia (right).

To analyze execution time, six pairs of data sets were generated for each test,
and the mean time used to calculate the Hausdorff distance for each algorithm was
determined.

4.2.2 Real data

We used two data sets of real data. The first one represents sets of links between web
pages of the .uk domain collected by the Laboratory for Web Algorithmics (LAW)4.
Cells that are set to 1 (link between pages) in the adjacency matrix are considered as
points of the set. The second dataset was obtained from [47], specifically the Ciconia
dataset. It represents the trajectories of 88 white storks traveling between Europe and
North Africa from 2013 to 2019. The points in this dataset represent GPS locations.
The purpose of these data sets is to evaluate the performance of the algorithms against
real distributions. Fig. 7 shows an example of the graphical distribution of real data
with an example from each dataset. Set sizes for each test are displayed in Table 2.

points A # points B
Test 1 1,048,575 1,048,575
Test 2 1,048,575 1,048,575
Test 3 1,048,575 1,048,575
Test 4 772,030 767,234

(a) LAW.

points A # points B
Test 1 210,275 214,551
Test 2 210,275 259,331
Test 3 210,275 227,355
Test 4 214,551 259,331
Test 5 214,551 227,355
Test 6 259,331 227,355

(b) Ciconia.

Table 2: Number of points of datasets for the tests.

4.3 Tested algorithms and data structures

A series of experiments were conducted to evaluate the algorithms (HDKP1 and
HDKP2) proposed in this work. In order to evaluate the performance of our algorithms,
we compared them with two different proposals:

4http://law.di.unimi.it.

19

1. The algorithm proposed by Ryu and Kamata in [30]: It is, according to the litera-
ture, the most efficient option. The algorithm assumes that both sets of points are
stored in arrays, without the support of any underlying data structure. It is designed
for the symmetrical Hausdorff distance SymHD(A,B), and it greatly improves the
second part, HausDist(B,A). We used our own implementation of their algorithm
in our tests. Given that our algorithms compute only the direct Hausdorff distance,
in our test we computed max(HausDist(A,B),HausDist(B,A)) to obtain the same
result.

2. iKd-tree. We have implemented an adaptation of HDKP1 and HDKP2 algorithms
that operate directly over the iKd-tree data structure. In particular, pruning rules 1
to 4 were implemented, and the traversal of the tree considered the same strategies
as the original algorithms over the k2-tree.

We have made our code public, both for the k2-tree5 and iKd-tree6 versions. Addi-
tionally, the datasets we used in our experiments, which will be described later in this
seccion, are also publicly available7.

4.4 Results

4.4.1 Comparison of algorithms HDKP1, HDKP2, and Ryu using
synthtic data

First, we compared our algorithms, both HDKP1 and HDKP2, with Ryu and Kamata
approach. Fig. 8 shows the results. We can notice that HDKP1 (K2T-HDKP1) and
HDPK2 (K2T-HDPK2) outperform Ryu and Kamata (K2T-RYU) when they are
applied to datasets with gaussian distribution (Fig. 8a). It is also evident that HDKP2
outperforms HDKP1 by 2 to 3 orders of magnitude, and Ryu and Kamata by 2 to
4. Considering a mixed distribution (Fig. 8b), HDPK2 is again faster than the alter-
natives. However, as Fig. 8c shows, Ryu and Kamata algorithm exceeds HDKP1 and
HDKP2 (by about one order of magnitude) when the dataset distribution is random.
The fact that HDKP2 has a better performance than Ryu and Kamata over the gaus-
sian and mixed distributions is easily understandable: these distributions are more
clustered, and this is a property that benefits the k2-tree data structure. It also implies
that the pruning rules, specifically pruning rule 4, will be more productive: a high
level of clusterization implies that, when computing HausDist(A,B), if pruning rule 4
discards a submatrix of A, a higher number of points from A are discarded.

4.4.2 Comparison of HKDP2 algorithms over k2-tree and iKd-tree
using synthtic data

We have also compared our algorithms with a different implementation of them, that
is executed over datasets stored in an iKd-tree. Fig. 9 shows the performance of both
versions in terms of execution time. We have considered only the HKDP2 algorithm,
which was the fastest for both versions. It is easy to see that, over the gaussian

5https://github.com/fsantolaya/Hausdorff k2tree
6https://github.com/fsantolaya/Hausdorff kdtree
7https://doi.org/10.5281/zenodo.16258820

20

https://github.com/fsantolaya/Hausdorff_k2tree
https://github.com/fsantolaya/Hausdorff_kdtree
https://doi.org/10.5281/zenodo.16258820

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 10000 100000 1x106 1x107

K2T-RYU
K2T-HDKP1
K2T-HDKP2

T
im
e

(μ
s
)
lo
g

s
c
a
le

Number of Points log scale

(a) Gaussian distribution.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 10000 100000 1x106 1x107

K2T-RYU
K2T-HDKP1
K2T-HDKP2

T
im
e

(μ
s
)
lo
g

s
c
a
le

Number of Points log scale

(b) Mixed distribution.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 10000 100000 1x106 1x107

K2T-RYU
K2T-HDKP1
K2T-HDKP2

T
im
e

(μ
s
)
lo
g

s
c
a
le

Number of Points log scale

(c) Random distribution.

Fig. 8: Execution time for K2T-HDKP1, K2T-HDKP2 y K2T-RYU algorithms con-
sidering synthetic data sets.

and mixed distributions, K2T-HDKP2 (the implementation of the algorithms over
k2-tree) outperforms, by several orders of magnitude, KD-HDKP (the implementation
over iKd-tree). When the datasets grow, so does the difference in execution time,
reaching up to 5 orders of magnitude for the larger datasets. However, although by a
smaller difference, KD-HDKP2 outperforms K2T-HDKP2 for datasets with a random
distribution. We can also see that this difference decreases as the dataset size increases.
Like in Section 4.4.1, it is evident that the implementation over k2-tree is clearly
benefited by the data clustering and is hindered by random distributions.

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 1x1010

 10000 100000 1x106 1x107

KD-HDKP2
K2T-HDKP2

T
im
e

(μ
s
)
lo
g

s
c
a
le

Number of Points log scale

(a) Gaussian distribution.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 1x1010

 10000 100000 1x106 1x107

KD-HDKP2
K2T-HDKP2

T
im
e

(μ
s
)
lo
g

s
c
a
le

Number of Points log scale

(b) Mixed distribution.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 10000 100000 1x106 1x107

KD-HDKP2
K2T-HDKP2

T
im
e

(μ
s
)
lo
g

s
c
a
le

Number of Points log scale

(c) Random distribution.

Fig. 9: Execution times algorithms HDKP2 using k2-tree (K2T-HDKP2) and iKd-
tree (KD-HDKP2).

4.4.3 Memory usage using synthetic data

Another important measure, apart from the running time of the algorithms, is the
memory usage. We could have measured just the storage needed by the data structures,
and the k2-tree would be the one with the lowest storage footprint, because it is the
only one that compresses the data. However, we believe that a more accurate measure
is the peak memory usage of the programs that run the algorithms. In this way, we
take into account the memory taken up by the data themselves, but also the additional
structures needed to execute the algorithms. This is more realistic if we plan to run
everything in RAM.

21

Fig. 10 shows the peak memory usage for our synthetic datasets. It is easy to
see that the k2-tree has a much lower memory demand in all cases and in all data
distributions. In small datasets, the difference is less noticeable (around 80% of Ryu
and iKd-tree versions). However, for large datasets, and inReal the best case (the
mixed distribution), the k2-tree memory demand can be as low as 2.72% (compared
to Ryu) or even 1.75% (compared to iKd-tree). This means that, as we expected, the
k2-tree is able to deal with much larger datasets in main memory.

This difference in memory usage appears for several reasons. The first one is obvi-
ous: Ryu and Kd-trees deal with uncompressed data (arrays of points), while the
k2-tree uses compression. The second reason has to do with the use of priority queues
(max-heaps and min-heaps). For k2-trees and iKd-trees, the length of the priority
queue is determined by the height of the tree, and it would be O(logk2 N) for k2-trees,
but O(log2 N) for iKd-trees, being N the size of the original matrix. Given that, in
our examples, we used k = 2, the height of the iKd-tree is twice the height of the
k2-tree. For the Ryu version, the extra memory comes from the use of two additional
arrays of distances (each one associated to one of the datasets) of size N .

 0

 500000

 1x106

 1.5x106

 2x106

10.000 100.000 1.000.000 10.000.000

K2T-RYU
K2T-HDKP2
KD-HDKP2

M
e
m
o
ry

c
o
n
s
u
m
p
ti
o
n

(K
b
)

Number of Points

(a) Gaussian distribution

 0

 500000

 1x106

 1.5x106

 2x106

10.000 100.000 1.000.000 10.000.000

K2T-RYU
K2T-HDKP2
KD-HDKP2

M
e
m
o
ry

c
o
n
s
u
m
p
ti
o
n

(K
b
)

Number of Points

(b) Mixed distribution.

 0

 500000

 1x106

 1.5x106

 2x106

10.00 100.000 1.000.000 10.000.000

K2T-RYU
K2T-HDKP2
KD-HDKP2

M
e
m
o
ry

c
o
n
s
u
m
p
ti
o
n

(K
b
)

Number of Points

(c) Random distribution.

Fig. 10: Peak Memory Consumption of the three algorithms for synthetic data sets.

4.4.4 Real data

For real data sets, we decided to use again the most efficient algorithms and compare
them. They are HDKP2 using a k2-tree (K2T-HDKP2), using a iKD-tree (KD-
HDKP2) and the Ryu and Kamata version using a k2-tree(K2T-RYU). The execution
times and memory usage are shown in Fig. 11 for the LAW dataset, and Fig. 12 for
the Ciconia dataset.

Let us focus first on the LAW dataset. Recall that the real data set is actually a web
graph that represents links between pages in the .uk domain, and this type of graph
has usually a high degree of clustering. Fig. 7 (left), graphically shows this clustering.

The execution times of the algorithms are consistent with those over the synthetic
datasets that showed a higher degree of clustering (gaussian and mixed). Thus, K2T-
HDKP2 shows the higher performance, being faster than its alternatives, by roughly
2 to 5 orders of magnitude. From Fig. 11a we can also conclude that the data used on
test 2 is the less clustered, showing the lower difference among the execution times.

22

Regarding memory usage, we represent again the peak memory usage that rep-
resents all the memory used by the program, including the data sets and additional
structures needed to run the algorithms. As Fig. 11b shows, the results are also consis-
tent: the k2-tree version has a much lower memory consumption. The Ryu and Kamata
version may need up to 12 times more memory, and the iKd-tree up to 20 times.

 1

 100

 10000

 1x106

 1x108

 1x1010

 1x1012

test 1 test 2 test 3 test 4

K2T-RYU
K2T-HDKP2
KD-HDKP2

T
im
e

(μ
s
)
lo
g

s
c
a
le

Set of Test

(a) Execution time.

 0

 50000

 100000

 150000

 200000

 250000

 300000

test 1 test 2 test 3 test 4

K2T-RYU
K2T-HDKP2
KD-HDKP2

M
e
m

o
ry

 c
o
n
s
u
m

p
tio

n
 (

K
b
)

Set of Test

(b) Peak memory.

Fig. 11: Execution time and peak memory consumption of the algorithms over real
data sets (LAW).

We can see the results for the Ciconia dataset in Fig. 12. Our results are consistent
with the previous experiments: the K2T-HDKP2 algorithm outperforms the other
approaches. It is easy to see that the difference is not so big as with the LAW dataset,
but it is still better than Ryu’s approach (between 1.3 and 2.9 orders of magnitude).
This is probably due to the fact that the Ciconia dataset is not so clustered as LAW.
Fig. 7 graphically shows it: while both graphics loosely resemble a diagonal of the
matrix, the LAW datasets has clusters of points, while Ciconia contains something
more similar to lines.

The same applies to memory consumption: it is always lower for K2T-HDKP2,
but the difference with the other approaches is lower than with the LAW dataset
(around 6-7 times less memory consumption than Ryu). This was expected, since the
compression of the k2-tree is highly dependent on the clustering degree.

4.4.5 Empirical estimation of the time complexity for the average
case

To estimate the algorithmic complexity for the average-case time, a nonlinear regres-
sion analysis was performed on the experimental data from the synthetic datasets.
To develop the analysis, we used the function curve fit, from the scipy.optimize

module, implemented in Python.
From the experiments over synthetic datasets previously presented, for each combi-

nation of algorithm and data distribution, we have 30 observations. Each observation

23

 1

 100

 10000

 1x106

 1x108

 1x1010

 1x1012

test 1 test 2 test 3 test 4 test 5 test 6

K2T-RYU
K2T-HDKP2
KD-HDKP2

T
im

e
 (

μ
s
)

lo
g
 s

c
a
le

Set of Test

(a) Execution time.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

test 1 test 2 test 3 test 4 test 5 test 6

K2T-RYU
K2T-HDKP2
KD-HDKP2

M
e
m

o
ry

 c
o
n
s
u
m

p
tio

n
 (

K
b
)

Set of Test

(b) Peak memory.

Fig. 12: Execution time and peak memory consumption of the algorithms over real
data sets (Ciconia).

is the pair (n, t), where n is the number of points, and t is the execution time of the
algorithm.

Based on these observations, 11 different theoretical models of algorithmic complex-
ity from the Big-O family were fitted. These models are of the form T (n) = a ·f(n)+b,
where a and b are constants and f(n) is one of the following: O(1), O(log log n),
O(log n), O(

√
n), O(n), O(n log n), O(n2), O(n2 log n), O(n3), O(n3 log n), O(n4).

After sorting (in descending order) the 11 obtained models based on their coefficient
of determination (R2), we selected the top 2 values, which represent the dominant
empirical behavior of the algorithm over this data distribution. We decided to take
the 2 greatest values of R2 and not just the top 1 because their behavior was very
similar, finding differences only at the third or fourth decimal digit, as Table 3 shows.

The model for each Big-O complexity class is the best among five different models
obtained using the 5-fold cross-validation technique. This enables a more robust and
generalizable estimation of the performance of the chosen model.

For the cross-validation, the 30 observations were divided in 5 subsets of similar
size (folds). In each iteration, four sets were used to train the model and the remaining
one to validate it. This process is repeated 5 times, generating 5 models.

During each validation, the model parameters were fitted using nonlinear least
squares, with the coefficients constrained to non-negative values (because they
represent computational costs). Then, the two models with higher coefficient of deter-
mination (R2) were chosen. The performance measures of the selected model are the
average R2 and the average Mean Absolute Percentage Error (MAPE) across the five
fitted models, rather than the values from the best model. Using the average provides
a more robust estimate of the selected models R2 and MAPE.

From the three studied data distributions, we observed that the one that better
explains the behavior for the average-case is the Uniform distribution. Having the
points uniformly distributed, they do not generate neither the best nor the worst case.

Table 3 presents the best two models for the algorithms, considering the data
set with uniform distribution. As it shows, these two best models, that explain the

24

asyntotic behavior for the average-case, are O(n) and O(n log n) for the three studied
algorithms.

Top Agorithm Big O R2 MAPE Model

1 K2T-RYU O(n) 0.9970 1.40% T̂ (n) = 5.37 · n+ 4.35 · 105
2 K2T-RYU O(n logn) 0.9962 2.40% T̂ (n) = 0.23 · n logn+ 7.58 · 105

1 K2T-HDKP2 O(n) 0.9969 0.30% T̂ (n) = 22.55 · n+ 4.50 · 105
2 K2T-HDKP2 O(n logn) 0.9966 1.29% T̂ (n) = 96.54 · n logn+ 1.83 · 10+6

1 KD-HDKP2 O(n logn) 0.9997 0.05% T̂ (n) = 0.39 · n logn+ 2.07 · 10−11

2 KD-HDKP2 O(n) 0.9990 0.38% T̂ (n) = 9.15 · n+ 5 · 10−16

Table 3: Top 2 estimated average-case complexity for each algorithm (Big O col-
umn), estimated Model and their associated R2 and MAPE.

These models, obtained following the previously defined methodology, represent an
empirical estimation of the complexity of the average-case for each analyzed algorithm.
In particular, the estimations for the dataset with uniform distribution have a high
R2 and low MAPE. Thus, these results can be used as a working hypothesis to guide
and support future theoretical studies on algorithmic cost and average-case analysis.

5 Conclusions

Two new algorithms have been presented in this work to calculate the Hausdorff
distance between two point sets stored in k2-trees. The algorithms can avoid processing
all the points by using pruning rules. The first algorithm (HDKP1) applies the rules
for the second set, and the second algorithm (HDKP2) applies the rules for both sets.

Through a series of experiments, our algorithms were compared with state of the
art algorithm [30] using synthetic and real data. Based on 10,000 points and upward
and using synthetic data, the experimental results showed that our algorithms outper-
formed the Ryu and Kamata version by (in the most favorable cases) up to 5 orders of
magnitude in execution time. It also showed that the k2-tree versions of the algorithms
clearly benefit from clustered data sets. When using real data, these conclusions are
confirmed, and the HDKP2 algorithm outperformed the Ryu and Kamata version by
1.3 to 5 orders of magnitude in all the studied cases.

Regarding memory consumption, our approach uses much less memory that its
competitors, specially using large data sets. It ranges from 1.2 to 50 times less memory
using synthetic data sets, and from 6 to 20 times using real data. Thus, we can conclude
that our approach is able to handle much more large data sets in main memory.

According to the review of the state of the art and our own knowledge, this work is
the first to provide an algorithm to calculate the Hausdorff distance when considering
that the points are stored in a compact data structure (in this case, a k2-tree).

As future work, we plan to extend our current algorithms, which work on 2 dimen-
sions, to use a higher dimensionality. We also plan to explore possible optimizations

25

on our current algorithms, such as the use of some cache with distances between some
points or regions (similar to the work in [30]).

Funding

Authors from University of B́ıo-B́ıo were supported in part by [grant num-
bers 2230534 IF/R, 2130520 IF/R] and by Agencia Nacional de Investigación
y Desarrollo (ANID), FONDECYT 1230647 and 11251944. The author from
University of A Coruña was partially supported by TED2021-129245B-C21
(PLAGEMIS): partially funded by MCIN/AEI/10.13039/501100011033 and NextGen-
eration EU/PRTR; PID2020-114635RB-I00 (EXTRACompact): partially funded by
MCIN/ AEI/10.13039/501100011033; GRC: ED431C 2021/53, partially funded by
GAIN/Xunta de Galicia; CITIC, as a center accredited for excellence co-financed
by the EU through the FEDER Galicia 2021-27 operational program (Ref. ED431G
2023/01).

References

[1] Kelley, J.L.: General Topology. Springer, New York, NY, USA (1975)

[2] Atallah, M.J.: A linear time algorithm for the Hausdorff distance between convex
polygons. Information processing letters 17(4), 207–209 (1983)

[3] Bartoň, M., Hanniel, I., Elber, G., Kim, M.-S.: Precise Hausdorff distance com-
putation between polygonal meshes. Computer Aided Geometric Design 27(8),
580–591 (2010)

[4] Spyridonos, P., Gaitanis, G., Bassukas, I.D., Tzaphlidou, M.: Gray Hausdorff
distance measure for medical image comparison in dermatology: Evaluation of
treatment effectiveness by image similarity. Skin Research and Technology 19(1)
(2013)

[5] Takacs, B.: Comparing face images using the modified Hausdorff distance. Pattern
recognition 31(12), 1873–1881 (1998)

[6] Gao, Y.: Efficiently comparing face images using a modified Hausdorff distance.
IEE Proceedings-Vision, Image and Signal Processing 150(6), 346–350 (2003)

[7] Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using
the Hausdorff distance. In: International Conference on Audio-and Video-Based
Biometric Person Authentication, pp. 90–95 (2001). Springer

[8] Taha, A.A., Hanbury, A.: An efficient algorithm for calculating the exact Haus-
dorff distance. IEEE transactions on pattern analysis and machine intelligence
37(11), 2153–2163 (2015)

26

[9] Nutanong, S., Jacox, E.H., Samet, H.: An incremental Hausdorff distance calcu-
lation algorithm. Proceedings of the VLDB Endowment 4(8), 506–517 (2011)

[10] Trajcevski, G., Ding, H., Scheuermann, P., Tamassia, R., Vaccaro, D.: Dynamics-
aware similarity of moving objects trajectories. In: Proceedings of the 15th Annual
ACM International Symposium on Advances in Geographic Information Systems,
p. 11 (2007). ACM

[11] Navarro, G.: Compact Data Structures: A Practical Approach, 1st edn. Cam-
bridge University Press, New York, NY, USA (2016)

[12] Navarro, G.: Wavelet trees for all. In: Annual Symposium on Combinatorial
Pattern Matching, pp. 2–26 (2012). Springer

[13] Ladra González, S.: Algorithms and compressed data structures for information
retrieval. PhD thesis, Universidade da Coruna (2011)

[14] Domı́nguez, F., Gutierrez, G., Romero, M.: Algorithm to calculate the Hausdorff
Distance on sets of points represented by k2-tree. In: 2018 XLIV Latin Ameri-
can Computer Conference (CLEI), pp. 482–489 (2018). https://doi.org/10.1109/
CLEI.2018.00064

[15] Santolaya, F., Caniupán, M., Gajardo, L., Romero, M., Torres-Avilés, R.: Effi-
cient computation of spatial queries over points stored in k2-tree compact data
structures. Theoretical Computer Science 892, 108–131 (2021) https://doi.org/
10.1016/j.tcs.2021.09.012

[16] Quijada-Fuentes, C., Penabad, M.R., Ladra, S., Gutiérrez, G.: Set operations over
compressed binary relations. Information Systems 80, 76–90 (2019)

[17] Tang, M., Lee, M., Kim, Y.J.: Interactive Hausdorff distance computation for
general polygonal models. ACM Transactions on Graphics (TOG) 28(3), 74
(2009)

[18] Alt, H., Behrends, B., Blömer, J.: Approximate matching of polygonal shapes.
In: Proceedings of the Seventh Annual Symposium on Computational Geometry,
pp. 186–193 (1991). ACM

[19] Chen, Y., He, F., Wu, Y., Hou, N.: A local start search algorithm to compute
exact Hausdorff distance for arbitrary point sets. Pattern Recognition 67, 139–148
(2017)

[20] Guthe, M., Borodin, P., Klein, R.: Fast and accurate Hausdorff distance calcula-
tion between meshes. Journal of WSCG 13(2), 41–48 (2005)

[21] Meagher, D.: Geometric modeling using octree encoding. Computer graphics and
image processing 19(2), 129–147 (1982)

27

https://doi.org/10.1109/CLEI.2018.00064
https://doi.org/10.1109/CLEI.2018.00064
https://doi.org/10.1016/j.tcs.2021.09.012
https://doi.org/10.1016/j.tcs.2021.09.012

[22] Kang, Y., Kyung, M.-H., Yoon, S.-H., Kim, M.-S.: Fast and robust Hausdorff dis-
tance computation from triangle mesh to quad mesh in near-zero cases. Computer
Aided Geometric Design 62, 91–103 (2018)

[23] Zhang, D., Zou, L., Chen, Y., He, F.: Efficient and accurate Hausdorff distance
computation based on diffusion search. IEEE Access 6, 1350–1361 (2018)

[24] Morton, G.M.: A computer oriented geodetic data base and a new technique in
file sequencing. Technical report, IBM Ltd, Ottawa, Canada (1966)

[25] Huttenlocher, D.P., Kedem, K.: Computing the minimum Hausdorff distance for
point sets under translation. In: Proceedings of the Sixth Annual Symposium on
Computational Geometry, pp. 340–349 (1990). ACM

[26] Rote, G.: Computing the minimum Hausdorff distance between two point sets on
a line under translation. Information Processing Letters 38(3), 123–127 (1991)

[27] Li, B., Shen, Y., Li, B.: A new algorithm for computing the minimum Haus-
dorff distance between two point sets on a line under translation. Information
Processing Letters 106(2), 52–58 (2008)

[28] Chang, F., Chen, Z., Wang, W., Wang, L.: The Hausdorff distance template
matching algorithm based on Kalman filter for target tracking. In: Automation
and Logistics, 2009. ICAL’09. IEEE International Conference On, pp. 836–840
(2009). IEEE

[29] Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal
of basic Engineering 82(1), 35–45 (1960)

[30] Ryu, J., Kamata, S.-i.: An efficient computational algorithm for Hausdorff dis-
tance based on points-ruling-out and systematic random sampling. Pattern
Recognition 114, 107857 (2021) https://doi.org/10.1016/j.patcog.2021.107857

[31] Chen, X.-D., Ma, W., Xu, G., Paul, J.-C.: Computing the Hausdorff distance
between two B-spline curves. Computer-Aided Design 42(12), 1197–1206 (2010)

[32] Brisaboa, N.R., Ladra, S., Navarro, G.: k2-trees for compact web graph repre-
sentation. In: International Symposium on String Processing and Information
Retrieval, pp. 18–30 (2009). Springer

[33] Samet, H.: The quadtree and related hierarchical data structures. ACM Comput-
ing Surveys (CSUR) 16(2), 187–260 (1984)

[34] Álvarez-Garćıa, S., Freire C., B., Ladra, S., Pedreira, O.: Compact and efficient
representation of general graph databases. Knowledge and Information Systems,
1–32 (2018)

28

https://doi.org/10.1016/j.patcog.2021.107857

[35] Bernardo Roca, G.: New data structures and algorithms for the efficient manage-
ment of large spatial datasets. PhD thesis, Universidade da Coruna (2014)

[36] Bernardo, G., Álvarez-Garćıa, S., Brisaboa, N.R., Navarro, G., Pedreira, O.: Com-
pact querieable representations of raster data. In: Procs. of SPIRE, pp. 96–108
(2013)

[37] Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of web graphs
with extended functionality. Information Systems, 152–174 (2014)

[38] Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: 1984
ACM SIGMOD International Conference on Management of Data, SIGMOD
1984, pp. 47–57 (1984). https://doi.org/10.1145/602259.602266

[39] Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975) https://doi.org/10.1145/361002.361007

[40] Brown, R.A.: Building a balanced k-d tree in o(kn log n) time. Journal of
Computer Graphics Techniques (JCGT) 4(1), 50–68 (2015)

[41] Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest pair
queries in spatial databases. In: Proceedings of the 2000 ACM SIGMOD Inter-
national Conference on Management of Data. SIGMOD ’00, pp. 189–200. ACM,
New York, NY, USA (2000). https://doi.org/10.1145/342009.335414

[42] Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. SIGMOD
Rec. 24(2), 71–79 (1995) https://doi.org/10.1145/568271.223794

[43] Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest pair
queries in spatial databases. SIGMOD Rec. 29(2), 189–200 (2000) https://doi.
org/10.1145/335191.335414

[44] Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Cost models
for distance joins queries using R-trees. Data & Knowledge Engineering 57(1),
1–36 (2006)

[45] Agenis-Nevers, M., Bokde, N.D., Yaseen, Z.M., Shende, M.: An empirical estima-
tion for time and memory algorithm complexities: Newly developed R package.
arXiv preprint arXiv:1911.01420 (2020)

[46] Goldsmith, S.F., Aiken, A.S., Wilkerson, D.S.: Measuring empirical computa-
tional complexity. In: Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering. ESEC-FSE ’07, pp. 395–404. Association
for Computing Machinery, New York, NY, USA (2007). https://doi.org/10.1145/
1287624.1287681 . https://doi.org/10.1145/1287624.1287681

29

https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/342009.335414
https://doi.org/10.1145/568271.223794
https://doi.org/10.1145/335191.335414
https://doi.org/10.1145/335191.335414
https://doi.org/10.1145/1287624.1287681
https://doi.org/10.1145/1287624.1287681

[47] Gómez Brandón, A.: Object Trajectories. figshare (2021). https://doi.org/10.
6084/m9.figshare.c.5740388.v2 . https://figshare.com/articles/collection/Object
Trajectories/5740388/2

30

https://doi.org/10.6084/m9.figshare.c.5740388.v2
https://doi.org/10.6084/m9.figshare.c.5740388.v2
https://figshare.com/articles/collection/Object_Trajectories/5740388/2
https://figshare.com/articles/collection/Object_Trajectories/5740388/2

	Introduction
	Related Work and Background
	Algorithms in main memory to compute Hausdorff distance
	The k2-tree Compact Data Structure
	Spatial indexes that can be used to speed up Hausdorff distance computation

	Proposed algorithms
	HDKP1 algorithm
	HDKP2 algorithm
	Time complexity of our algorithms

	Experimental Evaluation
	Experimental environment
	Data sets
	Synthetic data
	Real data

	Tested algorithms and data structures
	Results
	Comparison of algorithms HDKP1, HDKP2, and Ryu using synthtic data
	Comparison of HKDP2 algorithms over k2-tree and iKd-tree using synthtic data
	Memory usage using synthetic data
	Real data
	Empirical estimation of the time complexity for the average case

	Conclusions

