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Abstract

A recent surprising result in the implementation of worst-case-optimal (wco) multijoins in graph databases
(speci�cally, basic graph patterns) is that they can be supported on graph representations that take even
less space than a plain representation, and orders of magnitude less space than classical indices, while o�ering
comparable performance. In this paper we uncover a wide set of new wco space-time tradeo�s: we (1) introduce
new compact indices that handle multijoins in wco time, and (2) combine them with new query resolution
strategies that o�er better times in practice. As a result, we improve the average query times of current
compact representations by a factor of up to 13 to produce the �rst 1000 results, and using twice their space,
reduce their total average query time by a factor of 2. Our experiments suggest that there is more room for
improvement in terms of generating better query plans for multijoins.
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1. Introduction

Natural joins are fundamental in the relational algebra, and generally the most costly operations. A bad
implementation choice can lead to una�ordable query times, so they have been a concern since the beginnings
of the relational model. Apart from e�cient algorithms to join two tables (i.e., solve pair-wise joins), database
management systems sought optimized strategies (e.g., Selinger et al. (1979)) to solve joins between several
tables (i.e., multijoins), since performance di�erences between good and bad plans could be huge. A multijoin
query plan was a binary tree where the leaves were the tables to join and the internal nodes were the pair-wise
joins to perform.

After half a century of revolving around this pairwise-join-based strategy, it was found that it had no chance
to be optimal (Atserias et al., 2013), as it could generate intermediate results (at internal nodes of the expression
tree) that were much larger than the �nal output. The concept of a worst-case optimal (wco) algorithm (Atserias
et al., 2013) was coined to de�ne a multijoin algorithm taking time proportional to the largest possible output
size of the query on any database. Several wco join algorithms were proposed since then (Ngo et al., 2012,
2013; Khamis et al., 2016; Nguyen et al., 2015; Ngo, 2018). The simplest and most popular of those, Leapfrog
Triejoin (LTJ) (Veldhuizen, 2014), can be regarded at a high level as reducing the multijoin by one attribute at
a time, instead of by one relation.

A serious problem of LTJ and all other existing wco algorithms is their high space usage, however. This has
become an obstacle to their full adoption in database systems. In this paper we are interested in the use of wco
algorithms on graph databases, which can be regarded as labeled graphs, or as a single relational table with three
attributes: source node, label, and target node. Standard query languages for graph databases like SPARQL
(Harris et al., 2013) feature most prominently basic graph patterns (BGPs), which essentially are a combination
of multijoins and simple selections. The concept of wco algorithms can be translated into solving BGPs on
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graph databases (Hogan et al., 2019). wco algorithms are very relevant because typical BGPs correspond to
large and complex multijoins (Nguyen et al., 2015; Aberger et al., 2017; Kalinsky et al., 2017; Hogan et al.,
2019), where non-wco algorithms can be orders of magnitude slower than wco ones (Aberger et al., 2017). The
implementation of various wco indices for graph databases seems to con�rm that large space usage will be the
price to o�er wco query times.

Surprisingly, recent research debunks this impression. In particular, the ring (Arroyuelo et al., 2021, 2024)
is a novel compact index that represents graph databases (the data and the index structures) within less space
than that used by the raw data in plain form, while still supporting BGPs within competitive times, often even
lower than much larger indices.

1.1. Our contribution

The unexpected result achieved by small indexes like the ring has opened numerous opportunities for new
space-time tradeo�s in index data structures for wco multijoins on graph databases. The ring was aimed at
minimum space usage, to demonstrate that competitive query times could be achieved using only as much space
as the raw data, and even less. Since this space is much lower than that of traditional indices, there is su�cient
slack to introduce larger data structures that, still using a fraction of the space of those traditional indices,
are much faster than the ring. Additionally, despite occupying minimal space, the data structures supporting
the ring enable e�cient computation of information�which would otherwise need to be explicitly stored by
conventional indices�that helps compute e�cient attribute elimination orders for LTJ (Arroyuelo et al., 2024).
Motivated by this, we contribute with new compact indices that support solving BGPs in wco time, and their
combination with new query resolution techniques, thereby uncovering a wide set of new space-time tradeo�s in
wco indices for solving BGPs. Concretely:

1. We design an alternative to the ring that, using twice its space, is four times faster in the median and
twice as fast on the average. This new index, which we call the rdfcsa, builds on an existing compact index
representation based on text indexing concepts that only supported single joins (Brisaboa et al., 2023), so
that now it supports full BGPs in wco time. To achieve this, we implement LTJ on top of the rdfcsa,
which requires signi�cantly extending its basic functionality.

2. We combine the ring and the rdfcsa with an adaptive variable elimination order, which recomputes the
best elimination order as the join proceeds and more information is available. We use new estimators for
the next variable to bind that are more accurate than traditional ones. Those are computed e�ciently by
exploiting and extending the functionality of our compact indices.

3. We perform exhaustive experiments comparing our new variants with the original indices and with other
state-of-the-art ones. These show, for example, that our new adaptive variable elimination orders can
speed up standard ones by a factor of 5, outperforming every possible nonadaptive order. Overall, the best
variants of our new indices use from 0.6 to 2 times the plain data size (this space contains the data in
compact form) and outperform every other index we tested from the state of the art, being outperformed
only by an index that uses 12 times more space than the data. For example, we outperform the original
ring by a factor up to 13 to produce the �rst 1000 results.

We focus on static indices that �t in main memory. Unlike most uses of relational databases, there are many
applications where graph databases are static, or updated in bulk only periodically. One of the most widespread
applications of graph databases are the Knowledge Graphs, which are typically costly to build and regarded as
static at query time (Ji et al., 2022, Sec. VII.F). A case that has received much attention recently, for example,
is the (costly) construction of Knowledge Graphs from text using LLMs (Pusch and Conrad, 2024; Sun et al.,
2024). Another area where graphs are regarded as static is graph analytics, where the graph is created once in
order to query it intensively (Hogan et al., 2020). As a third example, the SPARQL primitive CONSTRUCT allows
extracting a graph from a main graph, which can be transmitted to the client's side and be queried locally; this
is also a case where a succinct and functional representation of that (static) derived graph is bene�cial. With
respect to being in-memory, the main purpose of using compact indices is precisely to allow indexing larger
graph databases in main memory, or to use the aggregated main memories of fewer machines.
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2. Preliminary concepts

2.1. Graph joins

2.1.1. Edge-Labeled Graphs

Let U be a totally ordered, countably in�nite set of constants, which we call the universe. In the RDF
model (Manola and Miller, 2004), an edge-labeled graph is a �nite set of triples G ⊆ U3, where each triple

(s, p, o) ∈ U3 encodes the directed edge s
p−→ o from vertex s to vertex o, with edge label p. We call dom(G) =

{s, p, o | (s, p, o) ∈ G} the subset of U used as constants in G. For any element u ∈ U , let u + 1 denote the
successor of u in the total order U . We also denote U = maxdom(G). For simplicity, we will assume that the
constants in U have been mapped to integers in the range [1 . . U ], and will even assume U = [1 . . U ].

2.1.2. Basic Graph Patterns (BGPs)

A graph G is often queried to �nd patterns of interest, that is, subgraphs of G that are homomorphic to a
given pattern Q. Unlike the graph G, which is formed only by constants in U , a pattern Q can contain also
variables, formally de�ned as follows. Let V denote an in�nite set of variables, such that U ∩ V = ∅. Then, a
triple pattern t is a tuple (s, p, o) ∈ (U ∪ V)3, and a basic graph pattern is a �nite set Q ⊆ (U ∪ V)3 of triple
patterns. Each triple pattern in Q is an atomic query over the graph, equivalent to equality-based selections on
a single ternary relation. Thus, a basic graph pattern (BGP) corresponds to a full conjunctive query (i.e., a join
query plus simple selections) over the relational representation of the graph.

Let vars(Q) denote the set of variables used in pattern Q. The evaluation of Q over a graph G is then de�ned
to be the set of mappings Q(G) := {µ : vars(Q) → dom(G) | µ(Q) ⊆ G}, called solutions, where µ(Q) denotes
the image of Q under µ, that is, the result of replacing each variable x ∈ vars(Q) in Q by µ(x).

2.2. Worst-case optimal joins

2.2.1. The AGM bound

A well-established bound to analyze join algorithms is the AGM bound, introduced by Atserias et al. (2013),
which sets a limit on the maximum output size for a natural join query. Let Q denote such a query and D a
relational database instance. The AGM bound of Q over D, denoted Q∗, is the maximum number of tuples
generated by evaluating Q over any database instance D′ containing a table R′ for each table R of D, with the
same attributes and |R′| ≤ |R| tuples. Though BGPs extend natural joins with self joins, constants in U , and
the multiple use of a variable in a triple pattern, the AGM bound can be applied to them by regarding each
triple pattern as a relation formed by the triples that match its constants (Hogan et al., 2019).

Given a join query (or BGP) Q and a database instance D, a join algorithm enumerates Q(D), the solutions
for Q over D. A join algorithm is worst-case optimal (wco) if it has a running time in Õ(Q∗), which is O(Q∗)
multiplied by terms that do not depend, or depend only polylogarithmically, on |D|. Atserias et al. (2013) proved
that there are queries Q for which no plan involving only pair-wise joins can be wco.

This paper focuses on wco algorithms, precisely on the one described next, which is the one most frequently
implemented.

2.2.2. Leapfrog TrieJoin (LTJ)

We describe the Leapfrog Triejoin algorithm (Veldhuizen, 2014), originally designed for natural joins in
relational databases, as it is adapted for BGP matching on labeled graphs (Hogan et al., 2019).

LetQ = {t1, . . . , tq} be a BGP and vars(Q) = {x1, . . . , xv} its set of variables. LTJ uses a variable elimination
approach, which extends the concept of attribute elimination. The algorithm carries out v = |vars(Q)| iterations,
handling one particular variable of vars(Q) at a time. This involves de�ning a total order ⟨xi1 , . . . , xiv⟩ of vars(Q),
which we call a VEO for variable elimination order.

Each triple pattern ti is interpreted as a relation that will be joined, and associated with a suitable trie τi.
The root-to-leaf path in τi must start with the constants that appear in ti, and the rest of its levels must visit
the variables of ti in an order that is consistent with the VEO chosen for Q (this is why we need the 3! = 6
tries). Fig. 1 shows an example graph and the corresponding mapping of the constants in U to integers. We
also show two tries representing the graph triples using the orders pso (i.e., predicate, subject, object) and pos
(ignore the marks τi for now). For example, we must use the trie pso to handle a triple pattern (x, 8, y) if the
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Figure 1: A labeled graph G′ with its string to integer mapping and tries for orders pso and pos. Arrows x
adv→ y mean that y was

the advisor of x, x
nom→ y mean that y was nominated to prize x, and x

win→ y that y won prize x.

VEO is ⟨x, y⟩, and the trie pos if the VEO is ⟨y, x⟩. If Q has a second triple pattern (y, 7, x), then we need both
tries no matter the VEO we use.

The algorithm starts at the root of every τi and descends by the children that correspond to the constants in
ti, and then proceeds to the variable elimination phase. Let Qj ⊆ Q be the triple patterns that contain variable
xij . Starting with the �rst variable, xi1 , LTJ �nds each c ∈ dom(G) such that for every t ∈ Q1, if xi1 is replaced
by c in t, the evaluation of the modi�ed triple pattern t over G is non-empty (i.e., there may be answers to Q
where xi1 is equal to c). If the trie τ of t is consistent with the VEO, the children of its current node contain
precisely those suitable values c for variable xi1 .

During the execution, we keep a mapping µ with the solutions of Q. As we �nd each constant c suitable for
xi1 , we bind x1 to c, that is, we set µ = {(x1 := c)} and branch on this value c. In this branch, we go down by c
in all the virtual tries τ such that t ∈ Q1. We now repeat the same process with Q2, �nding suitable constants
d for xi2 and increasing the mapping to µ = {(x1 := c), (x2 := d)}, and so on. Once we have bound all variables
in this way, µ is a solution for Q (this happens many times because we branch on every binding to c, d, etc.).
When it has considered all the bindings c for some variable xij , LTJ backtracks and continues with the next
binding for Qj−1. When this process ends, all solutions for Q have been reported.

As an example, consider solving the query Q = {(6, 9, x), (6, 9, y), (x, 7, y)} on the graph of Fig. 1, which
looks for Nobel winners y and x such that y was the advisor of x. We decide to use the VEO ⟨y, x⟩. The tries
τ1 and τ2 for the �rst two triple patterns are pso, whereas the trie τ3 for the triple (x, 7, y) is pos. We �rst
descend by the constants 9 and 6 in τ1 and τ2, and by the constant 7 in τ3; the reached nodes are marked in the
�gure. Now the variable elimination phase starts with y, which involves the tries τ2 and τ3. We intersect the
children of the current (i.e., marked) nodes of those tries, obtaining {1, 2, 3}, and proceed to bind y with each
of those values.

1. With the binding µ = {(y := 1)}, we descend by 1 from the marked nodes of τ2 and τ3. The next variable
to bind, x, involves tries τ1 and τ3. We intersect the children of their current nodes and obtain the empty
set, so we abandon this branch and return.

2. With the binding µ = {(y := 2)}, we descend by 2 from the marked nodes of τ2 and τ3. We intersect
the children of the current nodes of τ1 and τ3 and obtain {3}. We then extend the current binding to
µ = {(y := 2), (x := 3)} and, since all the variables are bound, report the solution (i.e., Strutt and
Thomson) and return.

3. With the binding µ = {(y := 3)}, we descend by 3 from the marked nodes of τ2 and τ3. We intersect
the children of the current nodes of τ1 and τ3, obtaining {1}. We then extend the current binding to
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µ = {(y := 3), (x := 1)} and, since all the variables are bound, report the solution (i.e., Thomson and
Bohr) and return.

Operationally, the values c, d, etc. are found by intersecting the children of the current nodes in all the tries
τi for ti ∈ Qj . LTJ carries out the intersection using the primitive leap(τi, c), which �nds the next smallest
constant ci ≥ c within the children of the current node in trie τi; if there is no such value ci, leap(τi, c) returns
a special value ⊥.

2.3. Variable Elimination Orders (VEOs)

Veldhuizen (2014) showed that if leap() runs in polylogarithmic time, then LTJ is wco no matter the
VEO chosen, as long as the tries used have the right attribute order. In practice, however, the VEO plays a
fundamental role in the e�ciency of the algorithm (Veldhuizen, 2014; Hogan et al., 2019). A VEO yielding a
large number of intermediate solutions that are later discarded during LTJ execution, will be worse than one
that avoids exploring many such alternatives. One would prefer, in general, to �rst eliminate selective variables
(i.e., the ones that yield a smaller candidate set when intersecting).

A heuristic to generate a good VEO in practice (Hogan et al., 2019; Arroyuelo et al., 2021; Vrgoc et al.,
2023) computes, for each variable xj , its minimum weight

wj = min{wij | xj appears in triple ti}, (1)

where wij is the weight of xj in ti. The VEO sorts the variables in increasing order of wj , with a couple of
restrictions: (i) each new variable should share some triple pattern with a previous variable, if possible; (ii)
variables appearing only once in Q (called lonely) must be processed at the end.

To compute wij , we (temporarily) choose a trie τj where xj appears right after the constants of ti, and
descend in τj by the constants. The number of children of the trie node v we have reached is the desired weight
wij . This is the size of the list in τi to intersect when eliminating xj .

In this paper we explore the use of adaptive VEOs, which are de�ned progressively as the query processing
advances, and may di�er for each di�erent binding of the preceding variables. ADOPT (Wang et al., 2023) is
the �rst system combining LTJ with adaptive VEOs. The next variables to bind are chosen using reinforcement
learning, by partially exploring possibly upcoming orders, and balancing the cost of exploring with that of the
obtained improvements. Our adaptive VEOs will be computed, instead, simply as a variant of the formula
presented above for global VEOs (Hogan et al., 2019).

We will also explore more re�ned estimations of wj in Eq. (1), beyond the use of simply the minimum of the
set sizes wij to estimate the size of their intersection.

3. The Ring: wco joins in compact space

The ring (Arroyuelo et al., 2021, 2024) is an index that supports the 6 orders needed by LTJ using a single
data structure that uses space close to the raw data representation (and possibly less), while supporting the
leap() operation on the tries in logarithmic time.

3.1. Bitvectors and wavelet trees

We start surveying the compact data structures used by the ring. First, a bitvector B[1 . . n] is an array of n
bits supporting the following queries:

� access(B, i): the bit stored at B[i].

� rankb(B, i): the number of bits b ∈ {0, 1} in B[1 . . i].

� selectb(B, j) : the position of the jth occurrence of bit b ∈ {0, 1} in B.

� selectnextb(B, j) : the position of the leftmost occurrence of b in B[j . . n].
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Figure 2: Example of the wavelet tree for the sequence {5, 3, 1, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6}. The ranges at the left depict the alphabet
range of each bitmap. The arrows show the procedure to obtain the 4th value of the sequence.

These operations can be supported in O(1) time using n + o(n) bits of space (Clark, 1996; Munro, 1996) or,
alternatively, nH0(B) + o(n) bits (Raman et al., 2007), where H0(B) ≤ 1 denotes the zero-order entropy of B.

The wavelet tree (Grossi et al., 2003; Navarro, 2014) is a binary tree that represents a string S[1 . . n] of
symbols from an alphabet Σ = {1, . . . , σ}. Each node v represents a range [a, b] of the alphabet, a, b ∈ Σ, with
the root representing the whole alphabet [1, σ] and each leaf representing a single symbol a, or range [a, a]. The
range [a, b] of internal nodes is divided into two, [a, ⌊(a+ b)/2⌋] and [⌊(a+ b)/2⌋+1, b], which are those of their
left and right children.

Each internal node v representing a range [a, b] is associated with the subsequence Sa,b of S formed by
the symbols in [a, b] (Sa,b = S if the node is the root). Instead of storing Sa,b, the node stores a bitvector
Ba,b[1 . . |Sa,b|], where Ba,b[i] = 0 i� Sa,b[i] ∈ [1, ⌊(a+ b)/2⌋] (i.e., belongs to the �rst half of the alphabet range);
else Ba,b[i] = 1.

Note that the bitvector lengths at any level of the tree sum up to n and we need to support binary rank/select
operations on them. Therefore, the wavelet tree represents S using n lg σ+ o(n lg σ) bits (a plain representation
uses almost the same, n lg σ bits), and even within zero-order entropy, nH0(S) ≤ n lg σ bits. For large alphabets
(as occurs in this paper), the additional space for the O(σ) tree pointers are eliminated in a pointerless version
called wavelet matrix (Claude et al., 2015).

The wavelet trees support the functionality of access, rank, and select on general alphabets in time O(lg σ)
by traversing the tree from the root to a leaf. For instance, to access S[i] we start at position i in the bitmap of
the root B1,σ. Depending on B1,σ[i] we know that S[i] is represented in the left (0) or right child (1). Hence, we
continue by the left (resp. right) child at position rank0(B1,σ, i) (resp., rank1(B1,σ, i)) when B1,σ[i] = 0 (resp.,
B1,σ[i] = 1). Those steps are repeated recursively within the corresponding bitmaps up to reaching a leaf. The
symbol of that leaf is the solution to S[i]. Fig. 2 shows an example of access operation at position 4. Operation
rank is solved analogously, and select involves a further bottom-up traversal using select on the bitmaps.

In addition, the wavelet trees support the following advanced operations that are useful for the ring (Gagie
et al., 2012; Barbay et al., 2013):

� range_next_value(S, rs, re, c): for c ∈ Σ, �nds in time O(lg σ) the smallest symbol c′ ≥ c that occurs
within S[rs . . re]. This is used to simulate the primitive leap() of LTJ on a compact representation of G.

� range_intersect(S1⟨[l1, r1], . . . , Sk[lk, rk]⟩): computes the intersection of the ranges S1[l1 . . r1], . . . , Sk[lk . . rk],
reporting the symbols that occur in all the k ranges. It is assumed that all the sequences Si share the
same alphabet. This intersection is typically faster than the one performed via leap().

� range_count(S, xs, xe, [rs, re])): counts how many symbols in S[rs . . re] belong to the range [xs, xe] in
O(lg σ) time. This will be used to estimate the costs of VEOs on compressed representations of G.

6



1 7 3
3 7 2
4 7 5
5 7 1
6 8 1
6 8 2
6 8 3
6 8 4
6 8 5
6 9 1
6 9 2
6 9 3
6 9 4

s P Co

7 1 5
7 2 3
7 3 1
7 5 4
8 1 6
8 2 6
8 3 6
8 4 6
8 5 6
9 1 6
9 2 6
9 3 6
9 4 6

P O CsAs 1

2,3

4

5

6

7

1 5 7
1 6 8
1 6 9
2 3 7
2 6 8
2 6 9
3 1 7
3 6 8
3 6 9
4 6 8
4 6 9
5 4 7
5 6 8

O S Cp
1

2

3

4

5

6,7

Ao 7Ap

8

9

10

(6,8,?)

(6,8,3)

(?,8,?)

Figure 3: The ring representation of the graph of Fig. 1. The horizontal lines mark the values of As, Ao, Ap, left to right.

3.2. Indexing the data

To represent a labeled graph G, let us de�ne the table Tspo[1 . . n][1 . . 3] storing the n graph triples sorted
according to the spo order. Column 1 of Tspo corresponds to s, column 2 to p, and column 3 to o. We denote Co

the last column of Tspo. Indeed, column Co reads in left-to-right order the last level (i.e., the one corresponding
to o) of the trie for spo. Next, the process moves column Co to the front in Tspo, making it the �rst column.
The table is then sorted to obtain table Tosp, which conceptually represents the trie for the order osp. Let Cp

denote the last column of this table. Finally, column Cp is moved to the front of Tosp and the table is sorted
again, obtaining table Tpos and column Cs. See Fig. 3.

The ring index is then formed by the sequences C∗, which are stored using wavelet trees (Section 3.1), with
a total space requirement of 3n lgU + o(n lgU) bits. We also build arrays Aj , for each Cj with j ∈ {s,p,o},
de�ned as Aj [k] = |{i ∈ [1 . . n], Cj [i] < k}|, for k = 1, . . . , U + 1. These arrays store the cumulative number
of occurrences of the symbols of U in Cj . This adds O(U lgn) extra bits, which are o(n lgU) if U ∈ o(n). In
practice, these arrays are represented using bitvectors (Section 3.1), with a total space usage of 3(n+U)+o(n+U)
bits. The total space is then close to the 3n lgU bits needed to represent G in plain form, and it can be even
less if we use compressed wavelet trees to represent the columns.

3.3. Moving between tables

We can move from a table to the next one using Cj and Aj , for j ∈ {s,p,o}, using the function Fj : [1 . . n]→
[1 . . n], de�ned as follows:

Fj(i) := Aj [c] + rankc(Cj , i), (2)

where c = Cj [i]. Function Fo maps a position in table Tspo, using Ao and Co, to the corresponding one
in Tosp. In Fig. 3, the straight dashed line maps from Co[7] = 3 to the position of that 3 in Tosp, with
Fo[7] = Ao[3] + rank3(Co, 7) = 6 + 2 = 8. Similarly, Fp maps from Tosp to Tpos, and Fs maps from Tpos back
to Tspo. The function takes O(lgU) time. We can also move in the opposite direction, with the same time
complexity, by computing the inverse function of Fj from Eq. (2): let c satisfy Aj [c] < i′ ≤ Aj [c+ 1], then

F−1
j (i′) := selectc(Cj , i

′ −Aj [c]). (3)

Every node v in the trie of spo corresponds to a range of rows in Tspo[s . . e] (i.e., a range in Co): if v is the
root, the range is Co[s . . e] = [1 . . n]. If v is in the �rst level and corresponds to the subject s = x, the range
Co[s . . e] is that of all triples starting with x. If v is in the second level and corresponds to (s,p) = (x, y), then
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Co[s . . e] corresponds to the triples starting with xy. A leaf trie node denoting the triple (s,p,o) = (x, y, z)
corresponds to a single position in Tspo containing xyz (i.e., a cell in Co). The same holds, analogously, for
tables Tosp (column Cp) and Tpos (column Cs). The other three tries are also implicitly represented by the
tables. Consider the trie for pso. A �rst-level node for p = x corresponds to a range of rows in Tpos (i.e., in
Cs), a second-level node representing (p, s) = (x, y) corresponds to a range of rows in Tspo (i.e., in Co), and so
on.

Along the search, each triple pattern will have a bound subset of attributes {s,p,o}, which always matches
a pre�x X of either spo, osp, or pos, the three tries we represent via columns Co, Cp, and Cs. As explained,
every concrete value for a pre�x X corresponds to a range in some column. As we progress, the set X expands
and we may have to switch from one column to another. For example, given the range Co[s . . e] (i.e., Tspo[s . . e])
of the triples sharing a pre�x X of spo, we obtain the range Cp[s

′ . . e′] (i.e., Tosp[s
′ . . e′]) of the triples sharing

pre�x cX of osp with

s′ := Ao[c] + rankc(Co, s− 1) + 1,

e′ := Ao[c] + rankc(Co, e). (4)

This is called a backward step. Fig. 3 shows how we descend from the �rst-level node 8 in Tpos (represented by
Cs[5 . . 9]) to its child with value 6 (represented by Co[5 . . 9]), and from there to its child with value 3 (represented
by Cp[8 . . 8]). An analogous forward step extendsX toXc, in this case restricting the range Co[s . . e] to a smaller
range Co[s

′ . . e′] in the same column; see the original article (Arroyuelo et al., 2021, 2024) for details.

3.4. Constants in triple patterns

When LTJ starts, we �nd a range in some suitable column C∗ for the constants of each triple pattern ti. We
choose a table T∗ (Tspo, Tosp, or Tpos) whose attribute order is pre�xed by the constant attributes in ti, and
�nd the range corresponding to the constant pre�x X in the column that represents T∗. For example, if only
the attribute o is the constant, we start from Tspo[1 . . n] and apply Eq. (4) to end with some Tosp[s . . e]; if p
and s are the constants, we start from Tosp[1 . . n] and apply (the analogous of) Eq. (4) twice to end with some
Tspo[s . . e]. The total initialization time is O(lgU) per triple pattern.

3.5. Supporting leaps

The remaining piece to support LTJ is function leap(t′i, c) (Section 2.2.2), where t′i is either a triple pattern
ti from Q, or one of its progressively bound versions µ(ti). This �nds the smallest child of the current node of t′i
with value cx ≥ c. In the context of the ring, this is done di�erently depending on whether or not the variable
appears to the left of the current pre�x matched. If it does, for example we are binding o and our range is
Tspo[s . . e], then we use range_next_value(Tspo, s, e, c) (Section 3.1) to �nd the appropriate value of cx, and if
we assign that value to o we use Eq. (4). A more di�cult case arises when the desired variable is not to the
left, as if binding p in Tspo[s . . e]. This only happens when we have bound just one position so far, so we start
from the range Tpos[Ap[c] + 1 . . n], rework Eq. (4) for the current value of s, and �nally use Eq. (3) to obtain
the desired value cx. In all cases, leap() takes O(lgU) time and the ring solves queries in wco time O(Q∗ lgU).

4. RDFCSA: LTJ on a compressed su�x array

We now present a new data structure, which roughly doubles the space of the ring in exchange for being
potentially faster. The rdfcsa (Brisaboa et al., 2023) was designed as a compact representation for labeled
graphs that can be queried by single triple patterns and binary joins. It predates the ring and shares with it the
model of viewing the graph triples as cyclic strings of length 3 (in spo order). This set of strings is indexed and
compactly represented with a compressed su�x array (CSA, see next). The CSA on the cyclic strings su�ces
to solve the original rdfcsa queries, but in order to support the LTJ algorithm, the rdfcsa lacks bidirectionality,
that is, unlike the ring, it cannot support leap() on variables to the left and to the right of the already bound
positions.

We now extend the rdfcsa to support LTJ by storing two CSAs, one for the spo order, and another for the
ops order, and adding them the support for leap(), in one direction. We expect this implementation to be faster
than that of the ring (Section 3.5) because the CSA is in practice more e�cient than the wavelet tree for this
problem, even if both take logarithmic time.
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Figure 4: Structures involved in the construction of rdfcsaspo (i.e., D and Ψ) for the graph in Fig. 1.

4.1. Compressed Su�x Array

Given a string S[1 . . n] of symbols drawn from an alphabet Σ = {1, . . . , σ} (except the special symbol
S[n] = $, which is lexicographically smaller than all symbols in Σ), the su�x array A of S (Manber and Myers,
1993) lists all su�x indices [1 . . n] of S in increasing lexicographic order; that is, S[A[i] . . n] < S[A[i + 1] . . n]
for all i ∈ [1 . . n − 1] . For example, let S = abracadabra$, then A = ⟨12, 11, 8, 1, 4, 6, 9, 2, 5, 7, 10, 3⟩. All the
occurrences of any given substring pattern P [1 . .m] are pointed from a contiguous range A[rs . . re] (because
they are pre�xes of the su�xes S[A[i] . . n], i ∈ A[rs . . re]).

The compressed su�x array (CSA) (Sadakane, 2003) is a compact representation of the su�x array that
replaces both S and A. It uses a permutation Ψ[1 . . n] such that Ψ[i] = j if A[j] = A[i] + 1 (or A[j] = 1 if
A[i] = n). Therefore, given a position p = A[i] in S, j = Ψ[i] gives the index in A such that A[j] = p + 1,
the next position in S. For the example above we have Ψ[1 . . n] = ⟨4, 1, 7, 8, 9, 10, 11, 12, 6, 3, 2, 5⟩. Note that
S[A[7] . . 12] = bra$, Ψ[7] = 3, and so S[A[3] . . 12] = ra$. The CSA also includes a bitvector D[1 . . n] that
sets D[i] = 1 to mark the positions i in A where the �rst symbol of the su�x pointed to from A[i] changes,
that is, D[i] = 1 i� i = 1 or S[A[i − 1]] < S[A[i]]. In our example, D = ⟨1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0⟩. The
symbol c = S[x], pointed from A[i] = x, can be obtained as c = rank1(D, i). Further, S[x+ 1] = rank1(D,Ψ[i]),
S[x+ 2] = rank1(D,Ψ[Ψ[i]]), and in general S[x+ k] = rank1(D,Ψk[i]).

Regarding space, Ψ is composed of at most σ increasing sequences, which can be compressed by encoding dif-
ferences and applying run-length encoding for runs of +1 di�erences. The required space is nHk(S)+O(n lg lg σ)
bits for any k ≤ α lgσ n and constant α < 1 (Navarro and Mäkinen, 2007), where Hk(S) ≤ lg σ is the k-th order
entropy of S. Bitvector D adds n+ o(n) bits.

4.2. Indexing the data

The rdfcsa requires a particular mapping from dom(G) to integers. Di�erent alphabets [1 . . ns], [1 . . np], and
[1 . . no] must be considered, respectively, for subjects, predicates, and objects. From them, the �rst nso symbols
in the alphabets of subjects and objects are constants that could occur both as subjects and objects in a triple.
It then holds |U | = np + ns + no − nso.

Considering a sequence of n triples sorted in spo order, the rdfcsa creates a unique sequence of integers
T [1 . . 3n] where, for each triple (s, p, o) ∈ G, the string ⟨s′, p′, o′⟩ = ⟨s + gaps, p + gapp, o + gapo⟩ is appended
to T . The o�sets (gaps, gapp, gapo) = (0, ns, ns+ np) enforce disjoint identi�ers for subjects, predicates, and
objects, and ensure s′ < p′ < o′. Then, a CSA is built on T . Because of the o�sets, there are three regions in the
su�x array A (and D), A[1 . . n], A[n+1 . . 2n], A[2n+1 . . 3n], with entries pointing respectively to the subjects,
predicates, and objects in T . Consequently, Ψ[1 . . n] contains only values within [n+ 1, 2n], whereas the values
in Ψ[n + 1 . . 2n] and Ψ[2n + 1 . . 3n] are within [2n + 1, 3n] and [1, n], respectively. Finally, Ψ is modi�ed to
make it cycle on the triples, that is, we enforce Ψ[Ψ[Ψ[i]]] = i. This is easily done by decrementing the values in
Ψ[2n+1 . . 3n], except that Ψ[i] = 1 is converted to Ψ[i] = n. To reduce space, Ψ is represented as the sequence
Ψ[i]−Ψ[i− 1], using Hu�man and run-length encoding on those gaps. Access in time O(tΨ) to any Ψ[i] value
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is supported by sampling values Ψ[1 + k · tΨ], k ≥ 0, which requires O((n/tΨ) lgn) additional bits on top of the
compressed sequence (we will asume tΨ ∈ O(1)). Bitvector D takes 3n + o(n) further bits. Fig. 4 shows an
example.

Analogously, we create a second rdfcsa considering triples sorted in ops order, and with o�sets (gaps, gapp, gapo) =
(no+ np, no, 0). We refer to our two rdfcsa structures as rdfcsaspo and rdfcsaops. In either of them, the
triple content pointed at position i is retrieved in O(1) time by extracting rank1(D, i), rank1(D,Ψ[i]), and
rank1(D,Ψ[Ψ[i]])), permuting them to order spo, and subtracting the corresponding gap values. We now show
how we carry out the critical processes of LTJ with these structures.

4.3. Constants in triple patterns

We use the text searching capabilities of the rdfcsa to �nd a su�x array interval corresponding to all the
triples that match the constants of a given triple pattern. The subsequent variable intersection process then
starts from those intervals, which correspond to trie nodes in LTJ, as with the ring. Recall that, before �nding
any constant in the rdfcsa, it must be mapped by adding the corresponding gap. We use two operations:

� [l, r] := range(c). For a given constant c we obtain the su�x array range A[l, r] of the (cyclic) triples
starting with c, with l← select1(D, c) and r ← select1(D, c+1)− 1. This takes constant time. Note that,
since c can be a subject, a predicate, or an object, and those identi�ers have disjoint su�x array areas in
the rdfcsa, this operation lets us select all the triples with a given subject, a given predicate, or a given
object.

� [l, r] := down(lc, rc, d). Given a su�x array range [lc, rc] ⊆ range(c), so the triples in A[lc, rc] start with
constant c, this operation �nds the subrange [l, r] ⊆ [lc, rc] of those triples where the c is followed by
constant d. This is equivalent to stating that ∀i ∈ [l, r],Ψ[i] ∈ range(d). Since Ψ is increasing inside
range(c), we can binary search for the �rst (last) position l (r) in [lc, rc] such that Ψ[l] (Ψ[r]) falls into
range(d), in O(lgn) time.

If a triple pattern t has no constants, its range is [1 . . 3n] in both rdfcsaspo and rdfcsaops. If it has a single
constant c, then its range in both is range(c) (the mapping of c using gap and the resulting range di�ers in both
rdfcsas). Which rdfcsa will be used depends on whether the next variable to eliminate is to the left or to the
right of c. Therefore, some triple patterns will have a range in rdfcsaspo and others in rdfcsaops.

If t has two constants, we can use either rdfcsa because the next variable to eliminate will be both to the
left and to the right of the bound positions. Say we choose rdfcsaspo. Let cd be the two consecutive constants in
spo order (i.e., sp = cd, po = cd, or os = cd). We thus compute [lc, rc] := range(c) and then the desired range
is [ld, rd] := down(lc, rc, d).

4.4. Supporting leaps

To support the operation leap() we de�ne new primitives:

� l′ := findTargetΨ(l, r, tl, tr). Given a range [l . . r] where Ψ is increasing, it returns the smallest l′ ∈ [l . . r]
such that Ψ[l′] ∈ [tl . . tr], and 0 if there is none. It proceeds as for down, yet it needs only one binary
search in [l, r].

� l′ := findTargetΨΨ(l, r, tl, tr). Given a range [l . . r] where Ψ is increasing, it returns the smallest l′ ∈ [l . . r]
such that Ψ[Ψ[l′]] ∈ [tl . . tr], or zero if there is none.

� L := limitV(v). It returns the highest o�set in D for any constant of the same type as variable v. For
example, if v is a subject this is n in rdfcsaspo and 3n in rdfcsaops.

Recall that leap(t′i, c) returns the �rst constant cx ≥ c where a given variable x has occurrences in t′i, where
t′i is either a triple pattern ti from Q, or one of its progressively bound versions µ(ti). The way we solve leap()
depends on where the constant(s) and the variable x appear in t′i.

If there are no constants in t′i, the answer is simply cx := c, because our mapping makes all the symbols
appear in T .
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If there is only one constant d in t′i, then we have a range [l, r] for t
′
i in both rdfcsa

spo and rdfcsaops. If x follows
d in spo order, we use rdfcsaspo, otherwise we use rdfcsaops. We �rst compute l′ := findTargetΨ(l, r, lc, limitV(x))
where lc = select1(D, c). Then, if l′ ̸= 0 we return cx := rank1(D,Ψ[l′]), otherwise we return cx :=⊥.

Finally, if t′i contains two constants d and d′, they have a range [l, r] for dd′ or d′d in either rdfcsaspo

or rdfcsaops, so we complete the search in the corresponding structure. In this case, we �rst compute lc =
select1(D, c) and then l′ := findTargetΨΨ(l, r, lc, limitV(x)). Then, if l′ ̸= 0 we return cx := rank1(D,Ψ[Ψ[l′]]),
and cx :=⊥ otherwise.

As an example, recall that if we have a triple pattern (x, y, z) with no constants, the initial range in rdfcsa

is R := [1, 3n]. If we bind y := win (i.e., the 3rd predicate, which is mapped to id 8 = 3 + gapp), we
update R := range(8) = [23, 25] in rdfcsaspo (and also in rdfcsaops). Now, since Wheeler is the 4th object and
maps into id 12 = gapo + 4, if we call leap((x,8, z),12), since Wheeler follows win in spo order, we must use
rdfcsaspo. We �rst compute l′ := findTargetΨ(23, 26, select1(D,12), 39) = 26, and then solve leap((x,8, z),12) =
rank1(D,Ψ[26]) = rank1(D, 39) = 13. Therefore, leap() returns object 5 = 13 − gapo which corresponds to
Strutt, that is, the �rst object after Wheeler reached from the current range R.

5. URing: A Unidirectional Ring

Bidirectionality is the key to using just one ring to index the 3! = 6 orders required by LTJ. The rdfcsa,
instead, requires two copies of the index, thereby roughly doubling the space. We now explore the fact that
the wavelet tree representation of the ring columns C∗ supports an intersection algorithm (range_intersect,
Section 3.1) that is likely faster than the one implemented in LTJ, which is based on the primitive leap().

When we eliminate a new variable x, every triple pattern ti where it appears is represented by a range in
some column, C∗[li . . ri]. Assume x appears to the left of the positions already bound. The desired constants cx
for x are the values that appear in all those ranges C∗[li, . . ri]. We �nd them by running range_intersect on all
those ranges in order to obtain, one by one, the desired values cx (the algorithm runs even if the ranges are in
di�erent sequences C∗). We then add each such binding (x := cx) to the mapping µ and recurse on that branch.

The problem with using that intersection algorithm is that it works only if the variable to eliminate is to
the left of the current ranges, and therefore, analogously to the rdfcsa, we have a unidirectional index. Just
as for rdfcsa, we must then have two indices, ringspo and ringops to ensure that we always have a range that
can be extended to the left. The algorithm proceeds exactly as the rdfcsa over those two copies, except that
the intersection algorithm of LTJ is replaced by the custom algorithm range_intersect. An additional bene�t
is that going rightwards in the binding is somewhat more expensive on the ring than going leftwards, and this
new variant goes always leftwards.

6. Improved Variable Elimination Orders

Our second contribution is the study of improved VEOs in the context of compact indices for LTJ, which
deviate from the VEO de�ned in Section 2.3. The �rst improvement is the use of adaptive VEOs; the second is
on how to e�ciently compute (or approximate) wij in our compact index representations.

6.1. Adaptive VEOs

In previous work using the VEO described in Section 2.3, the VEO is �xed before running LTJ. The selectivity
of each variable xj is estimated beforehand, by assuming it will be the �rst variable to eliminate. In this case,
Eq. (1) takes the minimum of the number of children in all the trie nodes we must intersect, as an estimation
of the size of the resulting intersection. The estimation is much looser on the variables that will be eliminated
later, because the children to intersect can di�er a lot for each value of xj .

We then consider an adaptive version of the heuristic: we use the described technique to determine only
the �rst variable to eliminate. Say we choose xj . Then, for each distinct binding xj := c, the corresponding
branch of LTJ will run the VEO algorithm again in order to determine the second variable to eliminate, now
considering that xj has been replaced by c in all the triples ti where it appears. This should produce a much
more accurate estimation of the intersection sizes.
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In the adaptive setting, we do not check anymore that the new variable shares a triple with a previously
eliminated one; this aimed to capture the fact that those triples would be more selective when some of their
positions were bound, but now we know exactly the size of those progressively bound triples. The lonely variables
are still processed at the end.

Observe that, in the adaptive case, there is not anymore a single VEO; each di�erent branch can have one.
While this technique does not require any extra space, it could incur in an extra cost to repeatedly recompute
the VEO (in fact, only its �rst variable) for each binding. The cost to compute Eq. (1), on each of our compact
index representations, becomes then of paramount importance for adaptive VEOs.

6.2. Computing the VEO predictors

The ring cannot e�ciently compute wij as described in Section 2.3, because it does not know the number of
children of the node v: the ring only has the range C∗[l . . r] corresponding to v, which results from resolving the
constants in ti; recall Section 3.4. The size r− l+1 of the range was then used as a reasonable estimation of wij

(Arroyuelo et al., 2021, 2024). In the case ti has one constant and xj is to its right, we can also use r− l+ 1 to
estimate wij , because the range size would be the same in both directions. We do the same when implementing
the rdfcsa.

While the use of r − l + 1 as a predictor of the true weight wij can be seen as an approximation, it can be
argued to be a better predictor of the di�culty of binding xj in ti. Note that r − l + 1 is the number of leaf
descendants of the current node v of the trie τi, whose children are the bindings of xj in ti. The number of
descendants may be a more accurate estimation of the total work that is ahead if we bind xj in ti, as opposed
to the children, which yield the number of distinct values xj will take without looking further.

By using (additional) wavelet trees, we can also compute wij as the number of children of v on the ring,
in O(lgn) time (Gagie et al., 2013). What we need is to count the number of di�erent symbols in the range
C∗[l . . r]. Let M be such that M [i] is the largest value i′ < i such that C∗[i] = C∗[i

′], or 0 if there is no such i′.
This implies that C∗[q] is the �rst occurrence of a symbol in C∗[l . . r] i� l ≤ q ≤ r and M [q] < l. We can then
count the number of �rst occurrences of symbols in C∗[l . . r] by counting the number of values less than l in
M [l . . r]. This is accomplished by the range_count function (Section 3.1) if we have M represented as a wavelet
tree.

Note that the use of M requires that the new variable xj is to the left of the constants in ti; therefore we
need one sequence M per column C∗ in both the (actual) ring for the order spo and the (virtual) ring for the
order ops. So, even if we use just one bidirectional ring, we must add two sequences M (thus tripling the space).

6.3. Re�ning VEO predictors

The value wj obtained by using the VEO predictor where the estimator is the size of the range C∗[l . . r]
corresponds to the maximum number of triples that can participate in the intersection. Therefore, it is an upper
bound to the size of the intersection of the set of triples.

We can obtain a better approximation of the intersection size by splitting the values of C∗[l . . r] into disjoint
subsets of the alphabet and applying Eq. (1) to each. The sum of the weights of the subsets is a more re�ned
approximation to the intersection. We can then re�ne the heursitic of Eq. (1) as

wj =
∑

γ⊂[1,σ]

min{wγ
ij | xj appears in triple ti}, (5)

where wγ
ij is the weight of xj in ti for the partition γ of the alphabet. The partitions are disjoint and their union

is [1, σ].
The ring can exploit the wavelet trees to easily compute wγ

ij . Let us consider a variable xj that appears in
a triple pattern ti, with the possible values of xj in the range C∗[l . . r]. Our estimation algorithm starts in the
range B1,σ[l . . r] of the root. By mapping [l . . r] to its left child (B1,m), where m is ⌊(σ + 1)⌋/2, we retrieve the
range B1,m[l′ . . r′] of the symbols from C∗[l . . r] that belong to the �rst half of the alphabet [1,m]. That range
is computed in O(1) time as [rank0(B1,σ, l − 1) + 1 . . rank0(B1,σ, r)]. The length of this range is equivalent

to w
[1,m]
ij . By using rank1 instead of rank0 we compute the range of [l . . r] in the right child (Bm+1,σ), whose
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k γ wγ
ij wγ

i′j min wj

0 [1, 6] 4 4 4 4

1
[1, 3] 2 0 0

2
[4, 6] 2 4 2

2

[1, 2] 1 0 0

0
[3, 3] 1 0 0
[4, 5] 2 0 0
[6, 6] 0 4 0

Table 1: The partitions γ and weights obtained in the sequence of Fig. 2 with the ranges [1, 4] and [5, 8] of two triple patterns ti
and ti′ , respectively. Column k indicates the number of levels to traverse in the wavelet tree.

length is w
[m+1,σ]
ij . Since w

[1,m]
ij + w

[m+1,σ]
ij = wij for every i, j, (miniw

[1,m]
ij ) + (miniw

[m+1,σ]
ij ) ≤ miniwij is a

tighter upper bound on the size of the intersection.
In that procedure we obtain two partitions, [1,m] and [m+1, σ]. If we continue mapping the current ranges in

B1,m and Bm+1,σ to their children, each previous partition splits into two other halves. Therefore, by repeating
those steps k levels, we get up to 2k partitions. The length of each range in a node of the k-th level matches a
weight wγ

ij . As k increases, the approximation of the heuristic improves (indeed, if we reach k = lg σ we obtain
the actual size of the intersection, at cost O(σ)).

For example, consider two triples, ti and ti′ , whose de�ned ranges are [1 . . 4] and [5 . . 8], respectively, in
the sequence of Fig. 2. Note that their intersection is empty. Since both ranges have length 4, the weight
wj per Eq. (1) is 4. In order to apply Eq. (5), the algorithm starts at the root B1,6 and maps each range

to its children. For example, the range B1,6[1 . . 4] maps to B1,3[1 . . 2] and B4,6[1 . . 2], thus w
[1,3]
ij = 2 and

w
[4,6]
ij = 2. In the same way, from B1,6[5 . . 8] we just reach B4,6[3 . . 6], so w

[1,3]
i′j = 0 and w

[4,6]
i′j = 4. Consequently,

wj = min(w
[1,3]
ij , w

[1,3]
i′j ) + min(w

[4,6]
ij , w

[4,6]
i′j ) = 2, which is a closer bound to the actual intersection size. By

descending one more level from the ranges in B1,3 and B4,6, we will obtain four partitions and wj reaches 0.
The partitions and weights obtained for each level are shown in Table 1.

Note that we are assuming that the range in the ring contains the values of the variable to bind xj . However,
it is possible that in ti the de�ned range does not correspond to that variable. Those cases can occur when only
one position of ti is bound. For instance, if the predicate of ti is bound to a constant c, the ring de�nes the
range Cs[l . . r] (Tpos). When the variable xj is the object of ti, there is no direct access to the values of xj .

In that case, as in the main algorithm, we compute the size of each partition γ in Co[1 . . n] (Tspo), without
any interval restriction. With this approach, wγ

ij is the number of triples whose object belongs to γ. From
those, we just need to count the triples where its predicate has constant c. Since those partitions correspond
to non-overlapping consecutive intervals in Tosp, the number of triples whose predicate is c in each alphabet
partition γ is obtained as rankc(Cp, e) − rankc(Cp, s) + 1, where [s, e] is the range of γ in Tosp. This range is
computed as s = Ao[cs] + 1 and e = Ao[ce + 1], cs and ce being the �rst and last symbol, respectively, of each
alphabet partition γ.

7. Experimental results

We compare the compact indexing schemes described along the paper and various state-of-the-art alterna-
tives, in terms of space usage and time for evaluating various types of BGPs.

Our experiments ran on an Intel(R) Xeon(R) CPU E5-2630 at 2.30GHz, with 6 cores, 15 MB cache, and 378
GB RAM.

7.1. Datasets and queries

We run our benchmarks over the Wikidata graph (Vrandecic and Krötzsch, 2014), which we choose for its
scale, diversity, prominence, data model (i.e., labeled edges) and real-world query logs (Malyshev et al., 2018;
Bonifati et al., 2019). This is the largest public graph we are aware of. The graph features n = 958,844,164
triples, which take 10.7 GB if stored in plain form using 32 bits for the identi�ers.
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An important advantage of using Wikidata is that we have access to real queries posed by users, with a
mix of actual information needs (Malyshev et al., 2018). In search of challenging examples, we downloaded
queries that gave timeouts, and selected queries with a single BGP, obtaining 1,295 unique queries. Those
are classi�ed into three categories: (I) 520 BGPs formed by a single triple pattern, which mostly measure the
retrieval performance of the index; (II) 580 BGPs with more than one triple but only one variable appearing
in more than one triple, which measure the performance of joins but do not distinguish good from bad VEOs
(as long as the join variable is eliminated �rst, of course); (III) 195 complex BGPs, where the performance of
di�erent VEOs can be compared.

All queries are run with a timeout of 10 minutes and a limit of 1000 results (as originally proposed for
WGPB (Hogan et al., 2019)). This measures the time the systems need to display a reasonable number of
results. We also compare the systems without the limit of results, which measures throughput in cases where
we need all the results. The space of the indices is measured in bytes per triple (bpt); a plain 32-bit storage
requires 12 bpt.

7.2. Systems compared

Our experiments compare all indexing schemes described:

� Two ring variants (Section 3), Ring-large and Ring-small, corresponding to using plain or compressed
bitvectors in the wavelet trees, respectively (these are called Ring and C-Ring, respectively, in the original
paper (Arroyuelo et al., 2021, 2024)).

� Their corresponding unidirectional versions, which compute intersections using the wavelet tree (Section 5):
URing-large and URing-small.

� Their extension to compute the standard VEO based on number of children (Section 6.2): VRing-large,
VRing-small, VURing-large and VURing-small.

� Their extension to compute the re�ned estimators for the VEO (Section 6.3), both in their bidirectional
and unidirectional variantes: IRing-large, IRing-small, IURing-large, and IURing-small. The number of
levels that descend those estimators is con�gured to 3.

� Two rdfcsa variants (Section 4): RDFCSA-large represents Ψ in plain form; RDFCSA-small sets tΨ = 16 and
uses Hu�man and run-length encoding to compress Ψ.

� All the versions above compute the VEO in traditional (�global VEO�) and in adaptive form (Section 6.1).

We also compare various prominent graph database systems:

� MillenniumDB (Vrgoc et al., 2023): A recently developed open-source graph database. We use here a
specialized version that stores six tries in the form of B+-trees and supports full LTJ, with a sophisticated
(yet global) VEO. We run MillenniumDB over a RAM disk to avoid using external memory.

� Jena LTJ (Hogan et al., 2019): An implementation of LTJ on top of Apache Jena TDB. All six di�erent
orders on triples are indexed in B+-trees, so the search algorithm is always wco.

� RDF-3X (Neumann and Weikum, 2010): Indexes a single table of triples in a compressed clustered B+-
tree. The triples are sorted and those in each tree leaf are di�erentially encoded. RDF-3X handles triple
patterns by scanning ranges of triples and features a query optimizer using pair-wise joins.

� Virtuoso (Erling, 2012): The graph database hosting the public DBpedia endpoint, among others. It
provides a column-wise index of quads with an additional graph (g) attribute, with two full orders (psog,
posg) and three partial indices (so, op, gs) optimized for patterns with constant predicates. It supports
nested loop joins and hash joins.

� Blazegraph (Thompson et al., 2014): The graph database system hosting the o�cial Wikidata Query
Service (Malyshev et al., 2018). We run the system in triples mode, with B+-trees indexing orders spo,
pos, and osp. It supports nested-loop joins and hash joins.
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Figure 5: Index space and the averaged query times of the adaptive variants in msec, limiting outputs to 1000 results. Su�xes s
and l mean small and large, respectively.

The code was compiled with g++ with �ags -std=c++11 and -O3; some alternatives have extra �ags to
enable third party libraries. Systems are con�gured per vendor recommendations.

7.3. Results

Table 2 shows the index space in bytes-per-triple (bpt) and some general statistics on the query times
obtained on our benchmark, when we limit the results to 1000. We list all the ring and rdfcsa variants �rst, and
then other systems. Fig. 5 illustrates the tradeo� between index space and average query time for our adaptive
variants.

7.3.1. The general picture

It is immediately evident that adaptiveness and the use of the re�ned estimator is always a good strategy,
especially in terms of robustness: average times and timeouts are considerably reduced in all cases. Adaptiveness
speeds up all Ring variants by a factor of 2�11, whereas the re�ned estimation further speeds up the adaptive
variants by a factor of 1.7�2.5. The dominating strategies, each with its own space-time niche and all using the
adaptive variant, are:

� The tiny variant: IRing-small uses just 7.30 bpt (nearly half of a plain storage of the triples), and solves
queries with a median of 27 msec and an average of 0.70 sec.

� The small variant: IRing-large uses nearly the space of the triples in plain form (12.15 bpt) and solves
queries with a median of 8 msec and an average of 0.18 sec.

� The medium variant: RDFCSA-large roughly doubles that space (23.54 bpt) and reduces the median to
nearly 2 msec. It also o�ers much better average times on simple queries and with unlimited number of
results, as seen later. IURing-large, using the same space as RDFCSA-large, has a worse median but a better
average time, 0.16 sec. It is not so interesting, however, in comparison with IRing-large, which uses half
the space and is only marginally slower on average.

URing variants. The one-directional ring, URing, improves the times of Ring by 10%�50% depending on the
variant, in exchange for doubling its space. The largest improvements turn out not to be so relevant, however,
because they correspond to the small URing version, which loses by 20%�50% to the large corresponding Ring

version, while using about the same space. The large URing versions, on the other hand, are only 10% faster than
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System Space Average Median Timeouts
(bpt) Gl Ad Gl Ad Gl Ad

Ring-small 7.30 3056 1173 24 24 5 0
IRing-small 7.30 2568 696 27 27 4 0

Ring-large 12.15 2256 414 8 8 3 0
IRing-large 12.15 2021 176 8 8 3 0

URing-small 14.61 2779 872 20 20 4 1
IURing-small 14.61 2300 353 24 20 3 0
URing-large 23.53 1481 373 8 8 0 0
IURing-large 23.53 1319 161 8 8 0 0
VRing-small 35.42 4594 3198 24 24 4 3
VRing-large 40.28 3067 1265 8 8 5 1
VURing-small 42.74 3467 1727 20 20 1 2
VURing-large 51.65 2124 1059 8 8 0 1
RDFCSA-small 15.85 2323 1248 8 8 1 1
RDFCSA-large 23.54 579 390 2 2 0 0

MillenniumDB 156.78 96 27 0

Jena LTJ 168.84 1930 162 1
Virtuoso 60.07 4880 50 8
RDF-3X 85.73 8230 126 13
Blazegraph 90.79 9220 54 14

Table 2: Space and query times (in msec) of all the systems, limiting results to 1000, with Gl(obal) and Ad(aptive) VEOs. Timeouts
count queries exceeding 10 min.

their corresponding Ring version, while doubling their space. Using similar space as URing, RDFCSA-large turns
out to be more interesting in that it o�ers more stable times, with a median of 2 instead of 8. RDFCSA-small,
instead, is not competitive.

VRing variants. It is also apparent that computing wij as the number of leaf descendants for choosing VEOs
using Eq. (1) performs much better than the original formula (Hogan et al., 2019) that uses the number of
children of the node: the VRing variants are much larger and slower than their corresponding Ring counterparts.
In the case of adaptive VRing, where the VEO is recomputed for every binding, this is worsened by the fact that
computing wij on the VRing takes O(lg n) time, as opposed to O(1) on the Ring.

Classical systems. The best performing classical systems are generally wco: MillenniumDB and (way behind)
Jena LTJ, which use about 13 times more space than our �small� variant (IRing-large). MillenniumDB is almost
twice as fast as IRing-large on the average, but has a higher median. This suggests it incurs a base cost of a
few tens of milliseconds for every query, even the easy ones. No other classical index (including the non-wco
ones) is competitive with our compressed variants.

7.3.2. Query types and space-time tradeo�s

Fig. 6 shows the time distributions on each query type. As expected, adaptive query plans and re�ned
estimation of the intersections make no di�erence with respect to global ones in queries of type I and II, except
for a few small gaps. Instead, they make a big di�erence in queries of type III, more in terms of robustness
(lower average, less dispersion) than in the medians. The re�ned estimation of intersections has, as we have
seen, a large impact on averages, but is not noticeable in terms of distribution. This shows that the re�nement
is mostly useful to avoid few, but very high, query times that are produced when using the coarser measure.

Using twice the space of IRing-large, RDFCSA-large performs better, most clearly on the simpler query types,
where the time to extract the output tuples dominates. On those queries RDFCSA-large exploits its faster access
to the data. Its smaller version, RDFCSA-small, instead, is dominated by IRing-large on queries of type II and
III (but not on type I).

The table on top of the �gure shows only the best performing variants, which are all adaptive. It clearly
shows how times decrease steadily as we use more space. The exception is that, on type-III queries, IRing-large
fares better than RDFCSA-large. In this type of queries the query resolution strategy is more important than the
mere time to access the data.
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System Space Type I Type II Type III
(bpt) Avg Med Avg Med Avg Med

IRing-small 7.30 12 8.0 380 36 3455 97
IRing-large 12.15 3.9 2.9 93 11 881 32
IURing-large 23.53 4.6 4.0 75 12 832 36
RDFCSA-large 23.54 0.6 0.3 18 2.9 2611 14
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Figure 6: Time distribution, in milliseconds, per query type, limiting outputs to 1000 results. The �gures show boxplots for the
smaller variants, marking the median inside. Horizontal positions are slightly shifted for visibility; see Table 2 for the exact space
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7.3.3. Variable elimination orders

As already noted, the VRing variants increase the space while worsening query times. This shows up especially
on the average times of Table 2, where the VRing adaptive variants are 2�3 times slower than their corresponding
Ring variants. In part this is due to the O(lg n) time invested in computing the number of children, what can be
con�rmed by the fact that, on global VEOs where this computation is done only a few times, the VRing variants
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Figure 7: Comparing the (global) VEOs of VRing, Ring, and IRing on queries of type III limited to 1000 results, with variants that
choose the VEO at random or optimally.

are �only� 20%�50% slower. But still, with global VEOs, where this O(lgn) burden is insigni�cant, the results
show that the Ring variants generate better VEOs than their VRing counterparts, apart from computing them
faster. The fact that the medians and boxplot distributions are much closer than the averages show that, while
most generated VEOs are similar, Ring avoids very bad VEOs that VRing sometimes generates.

This leads to the question of how good is the original strategy described in Section 2.3. To answer it, we
created Ring variants that choose the VEO at random, in nonadaptive form for simplicity, and compare them
in Fig. 7. The variant RingR, which uses a completely random order, is not competitive at all. RingRNL,
which leaves the lonely variables to the end, does much better, showing the convenience of this strategy. The
results improve even more on RingRE, which in addition avoids eliminating variables that are disconnected from
previously eliminated ones, if possible. Note that this is just like Ring, yet using random values to estimate
the weights wij . VRing distributes only slightly better than such a random estimation (and, actually, worsens a
lot on the average), but Ring, which uses the number of leaf descendants to compute wij , performs noticeably
better. IRing, which re�nes the estimation of the intersections, performs similarly to Ring when using a global
VEO. This changes on the adaptive versions: RingA sharply outperforms Ring, and IRingA further outperforms
RingA.

An important question here is how much more margin for improvement do we have by choosing VEOs. To
partially answer it, we executed Ring with all the possible global VEOs, and chose the best time for each query
to create an ideal variant called RingB. As the number of orders to try is the factorial of the number of variables,
we reduced the search space by considering only the non-lonely variables and forcing the others to be connected
with some eliminated variable in some triple if possible, as Ring does; we believe the best time should always
be within that search space. Further, we did not optimize those queries with 7 or more variables; we just used
the time obtained by Ring on those. The times of RingB are then an upper bound to the best times Ring could
possibly obtain by choosing a good VEO (note that we also leave out adaptive orders). Even so, Fig. 7 shows
that RingB sharply outperforms IRing, our best global VEO, by a factor of about 4 on the average and 2 in
the median. RingB actually outperforms our best adaptive VEO, IRingA, by a factor of about 2 in the median,
but interestingly, IRingA is almost 4 times faster on the average. This shows that, in many cases, the adaptive
VEOs outperform the best possible global VEO. On the other hand, the experiment shows that it is still possible
to improve a lot upon our current VEOs.

7.3.4. Not limiting the number of results

The case without limits in the number of answers is shown in Table 3, where for succinctness we left only the
best performing of the classical indices. Fig. 8 shows space-time tradeo�s with respect to the average adaptive
times.

Although the times are much higher and thus the scale measures seconds, the dominant variants are the same
as before. An important di�erence, however, is that adaptiveness and re�ned estimation of intersections now
have little impact on the times. One reason for this is that now the cost to report so many results dominates the
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Figure 8: Index space and the averaged query times of the adaptive variants in seconds, not limiting outputs. Su�xes s and l mean
small and large, respectively.

overall query time, thereby reducing the relative impact of using better or worse techniques to produce them.
Indeed, our times limited to 1000 results suggest that adaptive VEOs produce results sooner along the query
process than global VEOs.

The fact that the enumeration of results dominates makes RDFCSA-large the clear winner of �medium� size, not
only on the median but also on the average, where it outperforms IRing-large by a factor of two. MillenniumDB
also bene�ts from reporting many results, because of its locality-friendly data layout. It outperforms IRing-large
by a factor of 3.5 and RDFCSA-large by a factor of 1.8 on the average. On the medians, MillenniumDB is 16
times faster than IRing-large and 4 times faster than RDFCSA-large.

Table 4 summarizes the main statistics on the best performing variants, separated by query type. It can
be seen that RDFCSA-large now clearly outperforms all the IRing variants even on type-III queries. The recom-
mendation for users is then to choose, from those alternatives, the largest one they can �t in main memory:
IRing-small using 7.30 bpt, IRing-large using 12.15 bpt, RDFCSA-large using 23.54 bpt, or, if possible, Millenni-
umDB using 156.78 bpt. We note that these systems may be part of wider applications where not all the main
memory can be allocated to them, so it is very valuable to have indices that can perform reasonably well within
little space.

8. Conclusions

We have introduced new compact indices, combined with novel query resolution strategies, to solve Ba-
sic Graph Patterns on graph databases using Leapfrog TrieJoin (LTJ), the leading worst-case-optimal (wco)
multijoin algorithm. Concretely:

� We uncover a space-time tradeo� formed by compact indices. The Pareto-optimal variants use from
about 0.6 to 2.0 times the space needed to store the triples in raw form. These compressed indices are
outperformed only by the classic LTJ implementation in MillenniumDB (Vrgoc et al., 2023), which uses
14 times the space needed to store the triples.

� We combine those new indices with adaptive variable elimination orders, in contrast with the global orders
in use. We show that adaptively choosing the next variable to eliminate along the query process yields
results much sooner: our adaptive query plans are up to 5 times faster to obtain the �rst 1000 results,
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System Space Average Median Timeouts
(bpt) Gl Ad Gl Ad Gl Ad

Ring-small 7.30 83.6 81.8 2.9 2.9 101 99
IRing-small 7.30 82.3 80.1 2.7 2.7 99 94

Ring-large 12.15 46.8 44.2 0.9 0.9 59 53
IRing-large 12.15 45.4 42.9 0.8 0.8 58 54

URing-small 14.61 75.1 71.9 2.2 2.0 94 86
IURing-small 14.61 72.7 73.9 2.0 2.0 89 90
URing-large 23.53 47.4 46.3 1.0 1.0 59 58
IURing-large 23.53 45.2 43.1 0.8 0.8 58 55
VRing-small 35.42 84.6 83.6 2.9 2.9 99 97
VRing-large 40.28 45.2 44.5 0.9 0.9 55 53
VURing-small 42.74 75.1 72.5 2.2 2.1 89 85
VURing-large 51.65 46.7 46.3 1.0 1.0 55 56
RDFCSA-small 15.85 43.3 42.2 0.9 0.9 44 43
RDFCSA-large 23.54 22.5 21.3 0.2 0.2 31 26

MillenniumDB 156.78 12.0 0.05 16

Table 3: Space and query times (in sec) of all the systems, with Gl(obal) and Ad(aptive) VEOs, not limiting the results. Timeouts
count queries exceeding 10 min.

System Space Type I Type II Type III
(bpt) Avg Med Avg Med Avg Med

IRing-small 7.30 25.5 0.100 105.4 7.80 150.4 21.89
IRing-large 12.15 10.3 0.034 52.1 2.23 103.1 5.85
IURing-large 23.53 10.2 0.036 51.8 2.53 104.7 7.14
RDFCSA-large 23.54 3.1 0.004 24.5 0.74 60.6 1.84

Table 4: The best performing indices, separated by query type, without limiting the results. Times are given in seconds.

and they even outperform in many cases the best possible non-adaptive plan. The time to obtain all the
results, instead, is nearly the same.

� We show that using the total number of leaves descending from an LTJ trie node yields much better
variable elimination orders compared with the classic measure of the number of children of the node: while
the latter approximates the cost of performing the next intersection, the former better estimates the whole
future cost. Our better estimation speeds up query resolution by a factor over 2, and almost 8 when
combined with adaptive plans.

� We also show that the estimation of the intersection size can be re�ned by using features that are unique
of our compact representation, which further speeds up the adaptive query times by a factor of up to 2.4.
Further, we show that there is much space for improvement in terms of choosing a good variable ordering
when generating query plans.

Overall, our new representations outperform the original ring by a factor up to 13 to produce the �rst 1000
results, while using the same space, and by 2 overall using about twice the space; this doubled space is still several
times less than those of classical indices. Classical wco and non-wco indices are (often sharply) outperformed
by our fastest variants. Only one of those, using 4 times the space of our largest relevant variant, outperforms
it by a factor 2 on the average.

We remark that our compact indices run in main memory and would not be disk-friendly. While their
compactness make them �t in memory for larger datasets, a relevant future work direction is to design com-
pact representation formats for disk or distributed memory, where compactness translates into fewer I/Os or
communication at query resolution time.

Another limitation of our compact indices is that they do not yet support updates. A way to support updates
is to replace the wavelet tree bitvectors of all the ring structures by dynamic variants (Mäkinen and Navarro,
2008). In this case, a node or triple can be inserted or deleted in the graph in O(lgn lg σ) time. This, however,
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multiplies all the operation times by O(lg n), which is a high price especially if we consider that updates are not
only infrequent in many use cases, but also that queries require many more accesses than updates. A recent
development of dynamic bitvectors that are sensitive to the frequency of queries versus updates (Navarro, 2025)
yields a promising implementation of dynamism in our scenario: we anticipate almost no increase in query times
by supporting e�cient updates in the graph. Further, we believe that several of our �ndings, in particular those
related to better variable orderings, are independent from dynamism and would hold unchanged in the dynamic
scenario.
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