
Departamento de Computación

Algorithms and

Compressed Data Structures

for Information Retrieval

Tesis Doctoral

Doctoranda: Susana Ladra González

Directores: Nieves Rodríguez Brisaboa, Gonzalo Navarro Badino

A Coruña, Abril de 2011

PhD thesis supervised by

Tesis doctoral dirigida por

Nieves Rodríguez Brisaboa

Departamento de Computación
Facultade de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 1243
Fax: +34 981 167160
brisaboa@udc.es

Gonzalo Navarro Badino

Departamento de Ciencias de la Computación
Universidad de Chile
Blanco Encalada 2120 Santiago (Chile)
Tel: +56 2 6892736
Fax: +56 2 6895531
gnavarro@dcc.uchile.cl

iv

A mis padres y hermanas

vi

Acknowledgments

I have left this page of the thesis until the last moment, being, undoubtedly, one of
the most difficult pages to write. The rest haven’t been easy (Nieves knows), but
in this one I test my expertise in the area I work: I must compress into just a few
lines my gratitude to all who have helped, encouraged and taught me throughout
this thesis. I hope to be lossless in the attempt.

First I would like to make a special mention to my thesis advisors, Nieves and
Gonzalo, for all the knowledge you have transmitted to me and the time you devoted
to my thesis during the whole process, from the birth of each idea to the very
thorough review of the final document. But above all I thank and appreciate the
luck of having two advisors so close and accessible.

I also want to thank Sebastiano Vigna and Jorma Tarhio for their reviews of
the thesis, improving it with their observations, and all the members of my thesis
committee: Isidro Ramos, Ricardo Baeza-Yates, Josep Díaz, Alejandro López-Ortiz
and Paolo Ferragina.

Thanks to all the members of the Database Laboratory. Especially to my third
advisor behind the scenes, Antonio Fariña, whose help and encouragement have
been constant since I started doing research. I’ve been surrounded by great people,
who have been excellent travelling companions, sharing professional and personal
experiences, and have become good friends.

During my two research experiences abroad I met a lot of people. Among them
I would like to acknowledge for their hospitality and help in research topics to
Francisco Claude, Diego Arroyuello, Rodrigo Paredes, Rodrigo Cánovas, Miguel A.
Martínez, Veli Mäkinen, Niko Välimäki and Leena Salmela.

I cannot forget all those friends with whom I spent many memorable moments
outside research. To my basketball referees colleagues, with whom I have enjoyed
every game or evening out. And many friends, with whom I spent less time than I
would have liked.

And my biggest gratitude to my family. My parents and sisters. And all the
others, for your constant encouragement. Because you have given me everything,
and I know you will always do. This thesis is as mine as yours.

vii

viii

Agradecimientos

He dejado para el final esta página de la tesis, sin duda, una de las más difíciles de
escribir. Si bien es cierto que el resto han costado lo suyo (Nieves lo sabe), en esta
página pongo a prueba mi pericia en el área en la que trabajo: tengo que comprimir
en pocas líneas mi agradecimiento a todos los que me han ayudado, animado y
enseñado a lo largo de esta tesis. Espero no perder información en el intento.

En primer lugar me gustaría hacer una mención especial a mis directores de tesis,
Nieves y Gonzalo, por todos los conocimientos que me habéis transmitido y el tiempo
que habéis dedicado a mi tesis en todo su proceso, desde el nacimiento de cada idea
hasta la revisión tan minuciosa del texto final. Pero sobre todo agradezco y valoro
la suerte de poder contar con unos directores de tesis tan cercanos y accesibles.

Además me gustaría agradecer a Sebastiano Vigna y Jorma Tarhio por sus revi-
siones de la tesis y sus comentarios, que me han permitido mejorarla, y a todos los
miembros del tribunal: Isidro Ramos, Ricardo Baeza-Yates, Josep Díaz, Alejandro
López-Ortiz y Paolo Ferragina.

Gracias a todos los miembros del Lab. de Bases de Datos. A mi tercer director
de tesis en la sombra, Antonio Fariña, cuya ayuda y ánimo han sido constantes
desde mis comienzos en la investigación. Además he estado rodeada de compañeros
fantásticos, tanto de viajes como de experiencias laborales y personales, ejerciendo
hasta de consejeros en viajes de metro, y se han convertido en amigos.

Durante las dos estancias que he tenido la fortuna de disfrutar he conocido a
mucha gente entre los que destaco tanto por su hospitalidad como por la ayuda en
temas de investigación a Francisco Claude, Diego Arroyuelo, Rodrigo Paredes, Ro-
drigo Cánovas, Miguel A. Martínez, Veli Mäkinen, Niko Välimäki y Leena Salmela.

Tampoco puedo olvidar a todos los compañeros y amigos con los que he pasado
muchos momentos inolvidables al margen de la investigación. A mis compañeros
árbitros, con los que he disfrutado en cada partido o quedada. O a muchos amigos,
con los que he pasado menos tiempo del que me hubiese gustado.

Y mi mayor agradecimiento a mi familia. A mis padres y hermanas. Y a los
demás, por vuestros ánimos constantes. Porque me lo habéis dado todo, y sé que
seguiréis haciéndolo siempre. Esta tesis es tan mía como vuestra.

ix

x

Abstract

In this thesis we address the problem of the efficiency in Information Retrieval
by presenting new compressed data structures and algorithms that can be used in
different application domains and achieve interesting space/time properties.

We propose (i) a new variable-length encoding scheme for sequences of integers
that enables fast direct access to the encoded sequence and outperforms other so-
lutions used in practice, such as sampling methods that introduce an undesirable
space and time penalty to the encoding; (ii) a new self-indexed representation of
the compressed text obtained by any word-based, byte-oriented compression tech-
nique that allows for fast searches of words and phrases over the compressed text
occupying the same space than the space achieved by the compressors of such type,
and obtains better performance than classical inverted indexes when little space is
used; and (iii) a new compact representation of Web graphs that supports efficient
forward and reverse navigation over the graph using the smallest space reported in
the literature, and in addition it also allows for extended functionality not usually
considered in compressed graph representations.

These data structures and algorithms can be used in several scenarios, and
we experimentally show that they can successfully compete with other techniques
commonly used in those domains.

xi

xii

Resumen

En esta tesis abordamos el problema de la eficiencia en la Recuperación de Informa-
ción presentando nuevas estructuras de datos compactas y algoritmos que pueden
ser usados en diferentes dominios de aplicación y obtienen interesantes propiedades
en espacio y tiempo.

En ella proponemos (i) un nuevo esquema de codificación de longitud variable
para secuencias de enteros que permite un rápido acceso directo a la secuencia codi-
ficada y supera a otras soluciones utilizadas en la práctica, como los métodos de
muestreo que introducen una penalización indeseable en tiempo y espacio; (ii) una
nueva representación autoindexada del texto comprimido obtenido por cualquier
técnica de compresión orientada a byte y palabra que permite búsquedas eficientes
de palabras y frases sobre el texto comprimido usando el mismo espacio que el
obtenido por técnicas de compresión de dicho tipo, y que obtiene mejores resultados
que índices invertidos clásicos cuando se usa poco espacio; y (iii) una nueva repre-
sentación compacta de grafos Web que soporta una navegación directa y reversa
eficiente usando el menor espacio de la literatura, y además permite una funciona-
lidad extendida no considerada usualmente por otras representaciones comprimidas
de grafos.

Estas estructuras de datos y algoritmos pueden utilizarse en diferentes esce-
narios, y probamos experimentalmente que compiten exitosamente con otras técni-
cas comúnmente usadas en esos dominios.

xiii

xiv

Resumo

Nesta tese abordamos o problema da eficiencia na Recuperación de Información
presentando novas estruturas de datos compactas e algoritmos que poden ser usados
en diferentes dominios de aplicación e obteñen interesantes propiedades en espazo
e tempo.

Nela propoñemos (i) un novo esquema de codificación de lonxitude variable para
secuencias de enteiros que permite un rápido acceso directo á secuencia codificada
e supera a outras solucións utilizadas na práctica, como os métodos de mostraxe
que introducen unha penalización indesexable en tempo e espazo; (ii) unha nova
representación autoindexada do texto comprimido obtido por calquera técnica de
compresión orientada a byte e palabra que permite buscas eficientes de palabras e
frases sobre o texto comprimido usando o mesmo espazo que as técnicas de com-
presión de dito tipo, e que obtén mellores resultados que índices invertidos clásicos
cando se usa pouco espazo; e (iii) unha nova representación compacta de grafos Web
que soporta unha navegación directa e reversa eficiente usando o menor espazo da
literatura, e que ademais permite unha funcionalidade estendida non considerada
usualmente por outras representacións comprimidas de grafos.

Estas estruturas de datos e algoritmos poden utilizarse en diferentes escena-
rios, e probamos experimentalmente que compiten exitosamente con outras técnicas
comunmente usadas neses dominios.

xv

xvi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 5

1.3 Structure of the thesis . 7

2 Previous concepts 11

2.1 Concepts of Information Theory . 11

2.1.1 Entropy in context-dependent messages 13

2.2 Redundancy and Data Compression 14

2.2.1 Classic Huffman Code . 14

2.2.2 Classification of compression techniques 18

2.2.3 Measuring the efficiency of compression techniques 20

2.3 Rank and select data structures . 21

2.3.1 Rank and select over binary arrays 21

2.3.2 Rank and select over arbitrary sequences 24

I Directly Addressable Variable-Length Codes 29

3 Introduction 31

3.1 Encoding Schemes for Integers . 33

3.1.1 Vbyte coding . 34

3.2 Previous Solutions to Provide Direct Access 35

3.2.1 The classical solution: Sparse sampling 35

3.2.2 Dense sampling . 36

3.2.3 Elias-Fano representation of monotone sequences 38

xvii

xviii Contents

4 Our proposal: Directly Addressable Codes 39

4.1 Conceptual description . 39

4.1.1 Implementation considerations 43

4.2 Minimizing the space . 44

4.2.1 Optimization Problem . 44

4.2.2 Optimization Algorithm . 45

4.2.2.1 Limiting the number of levels 52

5 Applications and experiments 55

5.1 Influence of the parameter b . 56

5.2 Applications . 62

5.2.1 LCP array representation . 63

5.2.2 High-Order Entropy-Compressed Sequences 68

5.2.3 Natural language text compression 77

5.3 Other experimental results . 80

6 Discussion 85

6.1 Main contributions . 85

6.1.1 Interest of the rearrangement 86

6.2 Other Applications . 87

II Reorganizing Compressed Text 89

7 Introduction 91

7.1 Natural Language Text Compression 92

7.2 Word-based Bytewise Encoders . 96

7.2.1 Plain Huffman . 96

7.2.2 Tagged Huffman . 96

7.2.3 End-Tagged Dense Code . 97

7.2.4 Restricted Prefix Byte Codes 99

7.3 Indexing . 100

7.3.1 Inverted Index . 100

7.3.1.1 Compressed inverted indexes 101

7.3.2 Suffix arrays . 102

7.3.3 Self-indexes . 104

7.4 Our goal . 108

Contents xix

8 Our proposal: Byte-Oriented Codes Wavelet Tree 109

8.1 Conceptual description . 109

8.2 Algorithms . 114

8.2.1 Construction of BOC-WT . 114

8.2.2 Random extraction . 115

8.2.3 Full text retrieval . 117

8.2.4 Searching . 119

9 Experimental evaluation 123

9.1 Experimental framework . 124

9.2 Implementation details . 125

9.3 Evaluating the compression properties 133

9.4 Searching and displaying . 134

9.4.1 Influence of the snippet length on extract operation 139

9.4.2 Locating phrase patterns versus list intersection 140

9.5 BOC-WT versus inverted indexes . 141

9.6 BOC-WT versus other self-indexes 148

9.6.1 BOC-WT versus word-based Wavelet Trees 153

9.6.2 Comparison with word-based self-indexes 156

9.6.3 Comparison with word-based preprocessed full-text self-indexes163

10 Discussion 173

10.1 Main contributions . 173

10.2 Other Applications . 174

10.2.1 A compressed self-indexed representation of XML documents 174

10.2.2 Searching document collections 175

III Compact Representation of Web Graphs 179

11 Introduction 181

11.1 Motivation . 181

11.2 Basic concepts on Web graphs . 182

11.3 State of the art . 184

11.3.1 Boldi and Vigna: WebGraph Framework 184

11.3.2 Claude and Navarro: Re-Pair Based Compression 187

11.3.3 Asano, Miyawaki and Nishizeki 188

11.3.4 Buehrer and Chellapilla: Virtual Node Miner 191

xx Contents

11.3.5 Apostolico and Drovandi: Compression by Breadth First Search192

11.4 Our goal . 193

12 Our proposal: k2-tree representation 195

12.1 Conceptual description . 195

12.1.1 Navigating with a k2-tree . 198

12.2 Data structures and algorithms . 202

12.2.1 Data structures . 202

12.2.1.1 Space analysis . 203

12.2.2 Finding a child of a node . 203

12.2.3 Navigation . 204

12.2.3.1 Time analysis . 205

12.2.4 Construction . 207

12.3 A hybrid approach . 208

12.4 Extended functionality . 209

12.4.1 Single link retrieval . 209

12.4.2 Range queries . 211

12.5 An enhanced variation of the k2-tree technique 213

12.5.1 Using DACs to improve compression 213

12.5.2 Partition of the adjacency matrix 215

13 Experimental evaluation 217

13.1 Experimental framework . 217

13.2 Comparison between different alternatives 218

13.3 Comparison with other methods . 226

13.3.1 Space usage . 226

13.3.2 Retrieval times . 228

13.4 Extended functionality performance 235

13.4.1 Single link retrieval . 235

13.4.2 Range searches . 237

13.5 Comparison of the behavior between random graphs and Web graphs 239

13.6 Discussion . 243

14 Discussion 245

14.1 Main contributions . 245

14.2 Other Applications . 246

14.2.1 A Compact Representation of Graph Databases 246

Contents xxi

14.3 Future work . 247

IV Thesis Summary 251

15 Conclusions and Future Work 253

15.1 Summary of contributions . 253

15.2 Future work . 255

A Publications and other research results 257

Bibliography 261

xxii Contents

List of Figures

2.1 Building a classic Huffman tree. 16

2.2 Example of canonical Huffman tree. 18

2.3 Example of wavelet tree. 25

3.1 Example of sparse sampling. 36

3.2 Example of dense sampling. 37

4.1 Rearrangement of codewords using Directly Addressable Codes. . . . 40

4.2 Example using Directly Addressable Codes. 41

4.3 Optimal substructure in a small example. 49

5.1 Space/time trade-off for different configurations when decompressing
the whole text (top), and when accessing and decompressing random
positions of the text (bottom). 61

5.2 Space and average access time tradeoff for different configurations of
DACs and other integer encodings when accessing to random posi-
tions of three LCP arrays. 67

5.3 Space usage and average access time for several configurations of
DACs versus several encodings that represent the sequence of k-tuples
for a XML text when k = 1 (top) and k = 2 (bottom). 71

5.4 Space usage and average access time for several configurations of
DACs versus several encodings that represent the sequence of k-tuples
for a XML text when k = 3 (top) and k = 4 (bottom). 72

5.5 Space usage and average access time for several configurations of
DACs versus several encodings that represent the sequence of k-tuples
for a source code text when k = 1 (top) and k = 2 (bottom). 73

5.6 Space usage and average access time for several configurations of
DACs versus several encodings that represent the sequence of k-tuples
for a source code text when k = 3 (top) and k = 4 (bottom). 74

xxiii

xxiv List of Figures

5.7 Space usage and average access time for several configurations of
DACs versus several encodings that represent the sequence of k-tuples
for a natural language text when k = 1 (top) and k = 2 (bottom). . 75

5.8 Space usage and average access time for several configurations of
DACs versus several encodings that represent the sequence of k-tuples
for a natural language text when k = 3 (top) and k = 4 (bottom). . 76

5.9 Accessing consecutive words for DACs (b=8) and PH (with sampling). 80

5.10 Example of a trie and a PATRICIA tree for the set of strings S={‘alabar’,
‘a’, ‘la’, ‘alabarda’}, and a long unary path that is compacted. . . . 82

7.1 Example of false matchings in Plain Huffman but not in Tagged
Huffman codes. Note that we use special “bytes” of two bits for
shortness. 97

7.2 Suffix array for the text “cava_o_cabo_na_cova$”. 103

7.3 Ψ function for the text “cava_o_cabo_na_cova$”. 105

7.4 Sadakane’s CSA for the text “cava_o_cabo_na_cova$”. Arrays T
and SA are shown only for clarity, they are not actually stored. . . . 106

8.1 Example of BOC-WT data structure for a short text. 112

9.1 Frequency distribution of the byte values in the bytemaps at levels
0 (top), 1 (center) and 2 (bottom) from the BOC-WT built over the
ALL corpus using PH (left) and ETDC (right) encodings. 127

9.2 Space/time tradeoff for rank operation over a byte sequence at level
0 (top), level 1 (center) and level 2 (bottom) of the BOC-WT built
over the ALL corpus using PH (left) and ETDC (right) encodings. . 128

9.3 Space/time tradeoff for consecutive select operations over a byte se-
quence at level 0 (top), level 1 (center) and level 2 (bottom) of the
BOC-WT built over the ALL corpus using PH (left) and ETDC
(right) encodings. 129

9.4 Space/time tradeoff for random select operations over a byte sequence
at level 0 (top), level 1 (center) and level 2 (bottom) of the BOC-WT
built over the ALL corpus using PH (left) and ETDC (right) encodings.130

9.5 Space/time tradeoff for access operation over a byte sequence at level
0 (top), level 1 (center) and level 2 (bottom) of the BOC-WT built
over the ALL corpus using PH (left) and ETDC (right) encodings. . 131

9.6 Influence of the size of the structure of blocks and superblocks on
the performance of the display operation, comparing WTDC+ using
several sizes of rank structure versus ETDC compressed text. 137

List of Figures xxv

9.7 Influence of the size of the structure of blocks and superblocks on
the performance of the display operation, comparing WTDC+ using
several sizes of rank structure versus ETDC compressed text, when
the words sought are not very frequent. 138

9.8 Influence of the snippet length on the performance of the extract op-
eration for the BOC-WT strategy, comparing WTDC+ using several
sizes of rank structure versus ETDC compressed text. 139

9.9 Time/space trade-off for locating less frequent words with BOC-WT
strategy over PH against inverted indexes. 144

9.10 Time/space trade-off for locating more frequent words with BOC-WT
strategy over PH against inverted indexes. 145

9.11 Time/space trade-off for locating short phrase patterns with BOC-
WT strategy over PH against inverted indexes. 146

9.12 Time/space trade-off for locating long phrase patterns with BOC-WT
strategy over PH against inverted indexes. 147

9.13 Time/space trade-off for displaying the occurrences of less frequent
words with BOC-WT strategy over PH against inverted indexes. . . 149

9.14 Time/space trade-off for displaying the occurrences of more frequent
words with BOC-WT strategy over PH against inverted indexes. . . 150

9.15 Time/space trade-off for displaying the occurrences of short phrase
patterns with BOC-WT strategy over PH against inverted indexes. . 151

9.16 Time/space trade-off for displaying the occurrences of long phrase
patterns with BOC-WT strategy over PH against inverted indexes. . 152

9.17 Time/space trade-off for locating less frequent words with BOC-WT
strategy over PH against a word-based Huffman-shaped wavelet tree
and a balanced binary wavelet tree using RRR. 154

9.18 Time/space trade-off for locating more frequent words with BOC-WT
strategy over PH against a word-based Huffman-shaped wavelet tree
and a balanced binary wavelet tree using RRR. 155

9.19 Time/space trade-off for displaying the occurrences of less frequent
words with BOC-WT strategy over PH against a word-based Huffman-
shaped wavelet tree and a balanced binary wavelet tree using RRR. 157

9.20 Time/space trade-off for displaying the occurrences of more frequent
words with BOC-WT strategy over PH against a word-based Huffman-
shaped wavelet tree and a balanced binary wavelet tree using RRR. 158

9.21 Time/space trade-off for locating less frequent words with BOC-WT
strategy over PH against other word-based self-indexes. 159

9.22 Time/space trade-off for locating more frequent words with BOC-WT
strategy over PH against other word-based self-indexes. 160

xxvi List of Figures

9.23 Time/space trade-off for locating short phrase patterns with BOC-
WT strategy over PH against other word-based self-indexes. 161

9.24 Time/space trade-off for locating long phrase patterns with BOC-WT
strategy over PH against other word-based self-indexes. 162

9.25 Time/space trade-off for displaying the occurrences of less frequent
words with BOC-WT strategy over PH against other word-based
self-indexes. 164

9.26 Time/space trade-off for displaying the occurrences of more frequent
words with BOC-WT strategy over PH against other word-based
self-indexes. 165

9.27 Time/space trade-off for displaying the occurrences of short phrase
patterns with BOC-WT strategy over PH against other word-based
self-indexes. 166

9.28 Time/space trade-off for displaying the occurrences of long phrase
patterns with BOC-WT strategy over PH against other word-based
self-indexes. 167

9.29 Time results for count operation compared to other self-indexes. . . 170

9.30 Time results for locate operation compared to other self-indexes. . . 171

9.31 Time results for extract operation compared to other self-indexes. . . 172

11.1 Several blocks presented in the adjacency matrix. 190

11.2 Several links in a) are compressed into one virtual node in b). 192

12.1 Subdivision of the adjacency matrix into k2 submatrices, indicating
their ordering. 196

12.2 Representation of a Web graph (top) by its adjacency matrix (bottom
left) and the k2-tree obtained (bottom right). 197

13.1 Space/time behavior of the hybrid approach when we vary the level
where we change the value of k. 220

13.2 Space/time tradeoff to retrieve direct neighbors for EU (top) and
Indochina (bottom) graphs. 224

13.3 Space/time tradeoff to retrieve direct neighbors for UK (top) and
Arabic (bottom) graphs. 225

13.4 Space/time tradeoff to retrieve direct neighbors (top) and reverse
neighbors (bottom) for EU graph. 230

13.5 Space/time tradeoff to retrieve direct neighbors (top) and reverse
neighbors (bottom) for Indochina graph. 231

13.6 Space/time tradeoff to retrieve direct neighbors (top) and reverse
neighbors (bottom) for UK graph. 232

List of Figures xxvii

13.7 Space/time tradeoff to retrieve direct neighbors (top) and reverse
neighbors (bottom) for Arabic graph. 233

13.8 Space/time tradeoff for graph representations that retrieve only di-
rect neighbors (and ours) over graph EU. 234

13.9 Range query performance compared to simple list retrieval query for
different width of ranges. 238

13.10Checking the existence of a link in a range compared to finding all
the links in the same range. 239

13.11Adjacency list retrieval time (in ms) for Web graphs and random
graphs. 243

13.12Direct Neighbor retrieval time (in �/e) for Web graphs and random
graphs. 244

xxviii List of Figures

List of Tables

3.1 Examples of variable length encodings for integers 1 to 10. 34

5.1 Compression ratio obtained using different configurations for our DACs. 58

5.2 Description of the LCP arrays used. 63

5.3 Space for encoding three different LCP arrays and decompression
time under different schemes. 66

5.4 Size of the vocabulary composed of k-tuples for three different texts. 69

5.5 Description of the corpora used. 78

5.6 Space and time performance for DACs and byte-oriented Huffman
code (PH) when representing the sequence of words of three natural
language texts. 79

7.1 Code assignment in the byte-oriented End-Tagged Dense Code. . . . 99

9.1 Description of the corpora used. 124

9.2 Sizes of the byte sequences of the leftmost nodes at levels 0, 1 and 2
of the BOC-WT data structure built using PH and ETDC. 126

9.3 Compression ratio (in %) of BOC-WT built using PH, ETDC and
RPBC versus their classical counterparts for three different natural
language texts. 134

9.4 Compression time (s). 134

9.5 Decompression time (s). 135

9.6 Load time (in seconds) and internal memory usage for queries (% of
corpus size) for the ALL corpus. Load time including on-the-fly cre-
ation of rank/select structures for WPH+, WTDC+ and WRPBC+
is shown in parenthesis. 135

9.7 Search performance for the ALL corpus. 136

xxix

xxx List of Tables

9.8 Time results (in ms/pattern) to locate a 2-words phrase for two dif-
ferent algorithms using two sets of patterns S1 and S2. 141

11.1 Adjacency lists for some nodes of a graph. 186

11.2 Representation of the adjacency lists using copy lists. 186

13.1 Description of the graphs used. 218

13.2 Comparison of our different approaches over graph EU. 219

13.3 Space and time results when compressing graph EU using DACs for
the leaves representation. 221

13.4 Results of k2-tree technique (with DACs) over large graphs. 223

13.5 Space consumption (in bpe) of the most compact k2-tree representa-
tion for different Web graphs, and previous work. 226

13.6 Space comparison between k2-tree and Buehrer and Chellapilla’s
technique for several graphs. Columns VNM(∞)×2 and VNM×2 are
estimations. 235

13.7 Comparison with approach Asano on small graphs. The second col-
umn is an estimation. 236

13.8 Checking individual links over Web graphs with the extended func-
tionality of the k2-tree representation. 236

13.9 Comparison between our proposal and Apostolico and Drovandi’s
technique when checking individual links. 237

13.10Effect of the reordering of the nodes and behavior of uniformly dis-
tributed graphs. 242

List of Algorithms

4.1 Optimize(m, fc) . 51

8.1 Construction algorithm of BOC-WT 116

8.2 Display x . 117

8.3 Full text retrieval x . 118

8.4 Count operation . 119

8.5 Locate jtℎ occurrence of word w operation 120

8.6 List intersection . 121

12.1 Direct(n, p, q, z) returns direct neighbors of element xp 206

12.2 Reverse(n, q, p, z) returns reverse neighbors of element xq 206

12.3 Build(n, ℓ, p, q), builds the tree representation 207

12.4 CheckLink(n, p, q, z) returns 1 iff Web page p points to Web page q
and 0 otherwise . 211

12.5 Range(n, p1, p2, q1, q2, dp, dq, z) . 212

xxxi

xxxii List of Algorithms

Chapter 1

Introduction

1.1 Motivation

Information Retrieval (IR) is a very active research area focused on studying proce-
dures to help users to locate data of their interest. Since new information needs are
constantly arising, easy and fast access to the data is highly demanded. Informa-
tion retrieval systems are everywhere: in addition to those well-known Web search
engines, library and store catalogs, cookbook indexes, and so on are used in our
everyday life. These IR systems are manual or computerized processes for storing,
organizing and accessing information, such that the relevant information, that is,
the information that the user needs, can be efficiently provided to the user when it
is demanded.

Moreover, in the last years the information on the Web has also increased ex-
plosively, introducing new problems on the field. Finding useful information among
the billion Web pages that it contains becomes a tedious and challenging task. In
order to satisfy their information needs, users might navigate the Web links search-
ing for information of interest. The analysis of those links is also a very interesting
research area. For instance, it can help IR systems to find good sources of content
for a given query, since a good source of content is generally linked by many pages
which are also related with that query.

Information retrieval relies on complex systems that facilitate the access to large
volumes of data in order to satisfy the user’s information needs. Behind a user
friendly interface where the user can write a query, IR systems hide an intricate
architecture that includes multiple algorithms and data structures. The efficiency of
the whole system depends significantly on this low-level layer, where the information
must be represented and indexed so that the relevant information can be found
and displayed to the user. In order to make efficient that search, most of the IR

1

2 Chapter 1. Introduction

systems use some indexing techniques that reduce the sequential scan over the data
when searching for the desired information. In addition, indexes and data are also
represented in a compact way so that efficient retrieval can be achieved. In this way,
data compression and indexing work together in order to improve the efficiency of
IR systems.

In this context, our aim is the study of compressed data structures and algo-
rithms to represent data in little space while allowing efficient access to it. Com-
pression techniques do not only aim at reducing the size of the data structure, but
they can also add some extra benefits: by reducing its space requirements, the com-
pressed data structure might fit in main memory rather than swapping out to disk,
operating in higher and faster levels of the memory hierarchy. Then, a compressed
data structure is interesting when it maintains (or improves if possible) all the ca-
pabilities and properties of the plain representation of the same data and allows
to perform fast queries to the data directly over the compressed form, without de-
compressing it before its use. In this case, the compressed data structure becomes
a more efficient alternative against operating over the plain representation of the
data if it does not fit in main memory and it is stored in secondary memory.

In this thesis we address the problem of the efficiency in Information Retrieval
by presenting some new general low-level data structures and algorithms that can
be adapted to different domains and achieve interesting space/time properties com-
pared to other techniques of the state-of-the-art in those domains.

More concretely, in this thesis we present three proposals that deal with three
different problems of Information Retrieval. In order to understand the particulari-
ties of each domain, we explain the motivation and context for each problem in the
following sections.

Variable-Length Codes

Variable-length coding is present in several techniques used in information retrieval,
the best known examples are the compression of the lists of the inverted indexes
[WMB99] or some other compact structures such as compressed suffix arrays for
text retrieval [Sad03]. Variable-length codes can achieve better compression ratio
than using a fixed-length encoding. One of the best known variable-length encoding
technique was introduced by Huffman [Huf52].

However, apart from the compression ratio obtained, other important aspect
consists in the possibility to access directly to the symbol encoded at any position
of the encoded sequence, without the need to decompress all the sequence first.
However, it is not possible to access directly to a symbol at a certain position if the
sequence is compressed with variable-length codes, since the start of the codeword
assigned to that symbol depends on the lengths of all the codewords previous to
that position of the sequence.

1.1. Motivation 3

The classical solution to permit direct access to random positions consists in
regularly sampling some symbols of the original sequence and storing the starting
positions of their codewords within the encoded sequence. The more samples are
stored, the faster the direct access to a single position of the encoded sequence is,
but this can lead to an undesirable worsening of the compression ratio. Different
variants of this classical solution are used to provide random access to compressed
inverted indexes [CM07, ST07].

Hence, it would be interesting to obtain a variable-length encoding scheme that
represents sequences of integers in a compact way and supports fast direct access
to any position without the need of any extra sampling.

Text Retrieval

Word-based text searching is a classical problem in Information Retrieval. Given
a natural language text T composed by a sequence of words from a vocabulary Σ,
searching a pattern P , also composed by a sequence of words from Σ, consists in
finding all the occurrences of P in T .

There are two general approaches for solving this search problem: sequential
and indexed text searching. The sequential searching approach consists in scanning
the complete plain representation of T from the beginning to the end, searching
for pattern P . This naive technique is only used in practice when the text is
small, so it is affordable. If the length of the text T is n and the length of the
pattern is m, the number of comparisons among the words of text and the words
of the pattern is O(mn). Then, if the size of the text increases, this approach
becomes highly inefficient. There are some compression techniques that permit
searching for words directly on the compressed text so that the search can be up
to eight times faster than searching the plain uncompressed text [MNZBY00]. This
speed-up is due to the fact that there are less data to process, since the text is in
compressed form. In addition, search times can also be improved with the use of
byte-oriented encoding schemes, which permit faster comparisons than bit-oriented
encodings. Moreover, some of these compression methods allow the use of efficient
pattern-matching algorithms, such as Boyer-Moore [BM77] or Horspool [Hor80],
which reduce the portion of text scanned during the search, skipping some bytes
of the compressed text. However, the complexity of the search continues being
proportional to the size of the text, even if some improvement is obtained.

Hence, it becomes necessary to construct some kind of data structure over the
text, an index, to reduce that number of comparisons between the whole text and
the pattern, so that the search becomes independent of the size of the text. With
the indexed text, searching is improved at the expense of increasing the space re-
quirement, due to the index structure. This approach is of great interest in several
scenarios, for instance, when the text is so large that a sequential scan is pro-
hibitively costly or many searches (using different patterns) must be performed on

4 Chapter 1. Introduction

the same text.

Compression methods and indexes improve searches separately, but they can also
be combined to achieve interesting effects. Classical indexes [BYRN99, WMB99]
require a considerable extra space in addition to the text representation, so some
compression techniques can be used in order to minimize that extra space. In
addition to the compression of the index, the text can also be compressed. If
the text is compressed with a technique that allows direct searching for words in
the compressed text, then the compressed text supports efficient pattern-matching
algorithms, and therefore the scanning of the text, when needed, becomes quicker
than over plain text.

Current indexes aim to exploit the text compressibility. This concept has evolved
in a more complex concept called self-indexes. They are space-efficient indexes that
contain enough information to reproduce the whole text, since they are designed to
support efficient searches without the need to store the original text in a separate
structure. Thus, a self-index is, in itself, an index for the text and its representa-
tion, requiring very little memory, close to the compressed text size. In fact, they
can be regarded as a compression mechanism that offers added value, as efficient
searching capabilities, to the pure reduced space demand. This field is still open
to improvements, especially for word-based self-indexes, where very few structures
have been proposed.

Web Graph Compression

We also address the problem of information retrieval on the Web, and more par-
ticularly, the study of the Web as a graph. The graph representation of the Web,
which consists of all the Web pages (nodes) with the hyperlinks between them (di-
rected edges), is commonly used as the basis for multiple algorithms for crawling,
searching and community discovery. The Web graph represents all the hyperlinks
of the Web, so it can be used to extract relevant information from the study of
those links between Web pages, which is called link analysis. For instance, Web
graphs can be used to crawl the Web, starting with an initial set of Web pages
and following the outgoing links of the new discovered Web pages. It is also used
to study the Web structure, such that it is possible, for example, to know if there
are local substructures, how many hops there are from one Web page to another
or to identify Web communities [RKT99]. It has been proved that the study of the
link structure, represented in Web graphs, can be useful to improve the information
retrieval on the Web. For example, the PageRank algorithm [PBMW99] ranks Web
pages according to the number and importance of the pages that link to them; for
instance, it is used by Google search engine to decide which Web pages are more
relevant to a user query. Web graphs are also used to classify pages, to find related
pages, or for spam detection, among other tasks. There are entire conferences de-
voted to graph algorithms for the Web (e.g. WAW: Workshop on Algorithms and

1.2. Contributions 5

Models for the Web-Graph).

The main problem of solving these IR problems using the Web graph represen-
tation is the size of the graphs. As they represent the whole Web, which contains
billions of Web pages and hundreds of billions of links, Web graphs are large and
their plain representation cannot be completely stored in the current main memo-
ries. In this scenario, several compressed representations of Web graphs have been
proposed [BBH+98, BKM+00, AM01, SY01, RSWW01, RGM03, BV04], most of
them allowing some basic navigation over the compressed form so that it is not
necessary to decompress the entire Web graph to obtain, for instance, the list of
Web pages pointed by a particular Web page. Therefore, Web graphs (or a big part
of them) can be stored and manipulated in main memory, obtaining better process-
ing times than the plain form, which must be stored in secondary memory. New
strategies can be studied in order to achieve better spaces or times and increase the
navigation possibilities over the compressed representation of the Web graph.

1.2 Contributions

In this thesis we propose several new techniques that can be applied to different
information retrieval systems. We present some compact data structures and algo-
rithms that operate efficiently in very little space and solve the problems that have
been briefly presented in the previous section. We now enumerate each contribution
detailing the problem it addresses.

Variable-Length Codes: Directly Addressable Codes

The first of our contributions consists in the design, analysis, implementation and
experimental evaluation of a new variable-length encoding scheme for sequences of
integers that enables direct access to any element of the encoded sequence. We
call our proposal Directly Addressable Codes (DACs). Basically, it divides the bits
of the binary representation of each integer of the sequence into several chunks of
bits and rearranges these chunks into different levels. The chunks with the least
significant bits of each integer are placed in the first level, then the next chunks with
the second least significant bits are placed in the second level and so on until the
last level, which contains the chunks with the most significant bits. Each integer is
encoded with a variable number of chunks: a smaller integer is encoded with fewer
bits than a larger integer, so a very compact space can be achieved. Moreover,
it is possible to directly access to the first chunk of the code for each integer and
continue obtaining the rest of the code in a quick way.

Our proposal is a kind of implicit data structure that introduces synchronism
in the encoded sequence without using asymptotically any extra space. We show
some experiments demonstrating that the technique is not only simple, but also

6 Chapter 1. Introduction

competitive in time and space with existing solutions in several applications, such
as the representation of LCP arrays or high-order entropy-compressed sequences.

In addition, we propose an optimization algorithm to obtain the most compact
space given the frequency distribution of the sequence of integers that we want to
represent, and we explain how our strategy can be generalized and used to provide
direct access over any sequence of symbols encoded with a variable-length code by
just a rearrangement of the codeword chunks.

The conceptual description of the technique and some of the application results
were published in the proceedings of the 16th International Symposium on String
Processing and Information Retrieval (SPIRE 2009) [BLN09a].

Text Retrieval: Byte-Oriented Codes Wavelet Tree

Our second contribution is the design, analysis, implementation and experimen-
tal evaluation of a new data structure that permits the compact representation
and efficient manipulation of natural language texts. Our proposal, called Byte-
Oriented Codes Wavelet Tree (BOC-WT), is a tree-shaped structure that maintains
the properties of the compressed text obtained by any word-based, byte-oriented
prefix-free encoding technique (same compression ratio and comparable compres-
sion and decompression times) and drastically improves searches, since some im-
plicit self-indexing capabilities are achieved. This method, inspired by the Direct
Addressable Codes, rearranges the bytes of the compressed text obtained by the
byte-oriented encoding scheme following a wavelet tree shape [GGV03]. Besides
placing the bytes of the codewords in several levels, so direct access is obtained
as with the Direct Addressable Codes, the bytes of each level are separated into
different branches building a tree. Then, each word is associated with one leaf of
this tree and can be searched independently of the length of the text.

BOC-WT obtains efficient time results for counting, locating and extracting
snippets when searching for a pattern in a text without worsening the performance
as a compression method. In fact, this proposal can be compared to classical in-
verted indexes and it obtains interesting results when the space usage is not high.

This new data structure was presented in preliminary form at the 31st Interna-
tional Conference on Research and Development in Information Retrieval (SIGIR
2008) [BFLN08].

Web Graph Compression: k
2-tree

The third contribution of this thesis consists in the design, analysis, implementation
and experimental evaluation of a new compact representation for Web graphs, called
k2-tree. Conceptually, it is a tree that represents the recursive subdivision of the
adjacency matrix of the Web graph, but this tree representation can be stored as a

1.3. Structure of the thesis 7

couple of bitmaps in a very compact space. This compact data structure supports
basic navigation over the Web graph, that is, retrieving the direct and reverse list of
neighbors of a page, in addition to some interesting extra functionality. We compare
our results with the current methods of the state of the art in the field, and show
that our method is competitive with the best alternatives in the literature, offering
an interesting space/time tradeoff. Moreover, we show how our first contribution,
the Directly Addressable Codes, can be applied in this context as well, improving
simultaneously both time and space results. When using DACs, we achieve the
smallest representation for Web graphs compared to the methods of the literature
that also support direct and reverse navigation over the representation of the graph.

This approach can be generalized to any kind of binary relation so it can be
applied in different scenarios in Information Retrieval. For instance, we could con-
sider the relation between documents and terms (keywords) in those documents, so
that we could represent the index of a text collection with our proposal.

The main ideas of this work were published in the proceedings of the 16th
International Symposium on String Processing and Information Retrieval (SPIRE
2009) [BLN09b].

We note that all the techniques proposed in this thesis are conceived to oper-
ate in main memory, mainly due to the random access pattern presented in all of
them. This fact can be, at first, regarded as a serious restriction since we want to
index huge volumes of data. However, recent hardware developments, such as the
availability of 64−bit architectures and the increase of the usage of cluster envi-
ronments, have led to a scenario where large collections can be entirely addressed
on main memory. In this way, there has been a lot of recent research in efficient
document retrieval in main memory [SC07, CM07] where indexes are stored com-
pletely in main memory. Therefore, the cost of random reads, which is one of the
greatest bottleneck of traditional information systems, is minimized. Hence, it is
important to focus on another key aspect of the efficiency of information retrieval
systems: the huge volume of data. Then, the goal is to process less amount of data,
that is, to read fewer bytes. In this scenario, compact data structures achieve great
importance and they were the main objective of this thesis.

1.3 Structure of the thesis

First, in Chapter 2, some basic concepts about Information Retrieval and succinct
data structures are presented. After that, the remainder of this thesis is organized
in three parts corresponding to each contribution and a concluding part for the
thesis. Each part is organized in chapters as follows.

Part one is focused on the study of the direct access problem when variable-
length codes are used. Given a sequence of integers that we want to represent in a

8 Chapter 1. Introduction

little space, we propose a new variable-length encoding scheme, Directly Addressable
Codes, that supports direct access to any position of the sequence (achieving con-
stant time per symbol of the target alphabet) in an easy and fast way. In Chapter
3 we present the motivation of the problem, some notation and basic concepts of
variable-length codes. We finish the chapter by enumerating some existing solutions
from previous work.

Chapter 4 presents our proposal to represent variable-length codes allowing di-
rect access to any position, including an optimization algorithm to improve the
space usage of our technique.

Our Directly Addressable Codes are applied over different scenarios in Chapter
5, where the experimental results are shown and discussed. Finally, Chapter 6 sum-
marizes the main contributions and other applications for this proposal.

Part two presents a new data structure, Byte-Oriented Codes Wavelet Tree
(BOC-WT), that represents a natural language text in a compressed form and
supports efficient searches, close to other indexing structures. Chapter 7 revises
the basic properties of some word-based byte-oriented variable-length compression
methods, emphasizing their self-synchronization condition.

Chapter 8 explains the Byte-Oriented Codes Wavelet Tree (BOC-WT) in detail
and presents the algorithms to compress, decompress and search words and phrases
using this new data structure.

Chapter 9 presents the empirical evaluation, comparing the performance of the
BOC-WT structures and algorithms with the compression methods of the state of
the art. In addition, we analyze its indexing properties by comparing the time re-
sults for searches with other indexing structures using the same amount of space.
Finally, Chapter 10 discusses the conclusions and other applications.

In Part three we address the problem of the Web graph compression. We
present a compact representation of Web graphs called k2-tree. In Chapter 11 we
study the Web graph compression problem and its current state of the art, detailing
the main properties that have been identified and exploited to achieve compression.

In Chapter 12 we propose the compact representation of a Web graph called
k2-tree. We describe the conceptual idea of the representation and detail practical
implementation aspects. All the algorithms of construction and navigation over the
compact representation of the Web graph are included. We also present several
variants of the method proposed.

Chapter 13 presents the empirical evaluation of our technique, comparing the
performance of the structure and algorithms with the methods of the literature in
Web graph compression. Finally, Chapter 14 presents the main conclusions, other
applications and future work, including the possibility of the usage of the k2-tree
technique as a more general purpose method for indexing binary relations.

1.3. Structure of the thesis 9

To complete the thesis, we include a concluding chapter in Part four. Chapter
15 summarizes the contribution of the thesis and enumerates some future directions
of the research. Finally, Appendix A lists the publications and other research results
derived from this thesis, and the works published by other researchers that take our
proposals into consideration.

10 Chapter 1. Introduction

Chapter 2

Previous concepts

Information retrieval systems deal with large collections of information. During the
last years the amount of such data has dramatically increased, requiring techniques
such as compression and indexing of the data in order to efficiently handle the
available information. In this thesis we propose new algorithms and compressed data
structures for Information Retrieval, hence we need to introduce some notions of
Information Theory that will help us to understand the basis of Data Compression.

This chapter presents the basic concepts that are needed for a better under-
standing of the thesis. A brief description of several concepts related to Infor-
mation Theory are first shown in Section 2.1. Section 2.2 introduces the basis of
data compression, including the description of one of the most well-known and used
compression techniques, the classic Huffman algorithm, in Section 2.2.1. Finally,
Section 2.3 describes some succinct data structures to solve basic operations over
sequences, which are commonly used to improve the efficiency of other high-level
structures.

2.1 Concepts of Information Theory

Information theory deals with the measurement and transmission of information
through communication channels. Shannon’s work [SW49] settled the basis for the
field. It provides many useful concepts based on measuring information in terms
of bits or, more generally, in terms of the minimum amount of the complexity of
structures needed to encode a given piece of information.

Given a discrete random variable X with a probability mass function pX and
domain X , the amount of information or “surprise” associated with an outcome
x ∈ X is defined by the quantity IX(x) = log2

1
pX (x) . Therefore, if the outcome is

less likely, then it causes more surprise if it is observed, that is, it gives us more

11

12 Chapter 2. Previous concepts

information. If we observe an outcome with probability 1, then there is no surprise,
since it is the expected outcome, and consequently no information is obtained from
that observation.

The entropy of X measures the expected amount of surprise, that is, the entropy
H of X is defined as H(X) = E[IX] =

∑

x∈X pX(x) log2
1

pX (X) . This is a measure
of the average uncertainty associated with a random variable, or, in other words,
the average amount of information one obtains by observing the realization of a
random variable.

A code C of a random variable X is a mapping from X to D∗, where D is an
alphabet of cardinality D and D∗ is the set of finite-length strings of symbols from
D. Hence, the encoding scheme or code C defines how each source symbol x ∈ X
is encoded. C(x) is called the codeword corresponding to x. This codeword is
composed by one or more target symbols from the target alphabet D. The most used
target alphabet is D = {0, 1}, with D = 2, generating binary codes. The number
of elements of D (i.e., D) determines the number of bits (b) that are needed to
represent a symbol in the target alphabet D. For instance, bit-oriented codewords,
which are sequences of bits, require b = 1 bits to represent each of the D = 21

elements of D. Byte-oriented codewords, which are sequences of bytes, require
b = 8 bits to represent each one of the D = 28 elements of the target alphabet D.
Different codewords might have different lengths. Let us denote l(x) the length of
the codeword C(x), then the expected length of a code C is given by the expression
L(C) =

∑

x∈X pX(x)l(x).

Given a message consisting in a finite string of source symbols, the extension of
a code C is the mapping of that message to a finite string of target symbols. It is
obtained by the concatenation of the individual codewords for each source symbol
of the message. Hence, C(x1, x2, ..., xn) = C(x1)C(x2)...C(xn). Coding consists in
substituting each source symbol that appears in the input string by the codeword
associated to that source symbol according to the encoding scheme. The process of
recovering the source symbol that corresponds to a given codeword is called decod-
ing.

A code is a distinct code if each codeword is distinct from any other, that is,
if x1 ∕= x2, x1, x2 ∈ X , then C(x1) ∕= C(x2). A code is said to be uniquely de-
codable if every codeword is identifiable from a sequence of codewords. A uniquely
decodable code is called a prefix code (or prefix-free code) if no codeword is a proper
prefix of any other codeword. Prefix codes are instantaneously decodable, that is,
an encoded message can be partitioned into codewords without the need of any
lookahead examining subsequent code symbols. This property is important, since
it enables decoding a codeword without having to inspect the following codewords
in the encoded message, so being instantaneously decodable improves the decoding
speed. A code is said to be an optimal code if it is instantaneous and has minimum

2.1. Concepts of Information Theory 13

average length, given the source symbols and their probabilities. The entropy gives
us a lower bound on average code length for any uniquely decodable code of our
data stream.

Example Let us consider three different codes C1, C2 and C3 that map the source
symbols from the source alphabet X = {a, b, c, d} to target symbols from the target
alphabet D = {0, 1} as follows:

x a b c d

C1(x) 1 11 10 101

C2(x) 00 10 11 110

C3(x) 00 10 111 110

C1, C2 and C3 are distinct codes, since they map from source symbols to code-
words one-to-one. However, not all of them are uniquely decodable or prefix free
codes. For instance, the following three strings ′′aaa′′, ′′ab′′ and ′′ba′′ map to the
target string ′′111′′ using code C1. Hence, C1 is not uniquely decodable. C2 is a
uniquely decodable code but not a prefix free code, since C2(c) is prefix of C2(d).
For example, we can uniquely decode string ′′11000010′′ to the sequence ′′caab′′,
but a lookahead is required to obtain the original sequence, since the first bits could
be decoded to ′′da′′ or ′′ca′′. However, by analyzing all the binary string we can
observe that the unique valid input sequence is ′′caab′′. C3 is a prefix code, since no
codeword is a prefix of another. A string starting by ′′1100000 . . .′′ can be univocally
and instantaneously decoded to ′′daa′′ without examining the following codewords.

2.1.1 Entropy in context-dependent messages

We can encode symbols depending on the context in which they appear. Until now,
we have assumed independence of source symbols and their occurrences. However,
it is usually possible to model the probability of the next source symbol x in a more
precise way, by using the source symbols that have appeared before x.

We define the context of a source symbol x as a fixed-length sequence of source
symbols that precede x. When the context has length m, that is, is formed by the
precedent m symbols, we can use an m-order model.

The entropy can be defined depending on the order of the model, so that the
kth-order entropy Hk is defined as follows:

∙ Base-order models assume an independent uniform distribution of all the
source symbols. Hence, H−1 = logD n.

∙ Zero-order models assume independence of the source symbols, whose fre-
quencies are their number of occurrences. Therefore, the zero-order entropy

14 Chapter 2. Previous concepts

is defined as already explained, H0 = −
∑

x∈X pX(x) logD pX(x).

∙ First-order models obtain the probability of occurrence of the symbol y con-
ditioned by the previous occurrence of the symbol x (Py∣x) and compute the
entropy as: H1 = −∑x∈X pX(x)

∑

y∈X Py∣x logD(Py∣x).

∙ Second-order models model the probability of occurrence of the symbol z con-
ditioned by the previous occurrence of the sequence yx (Pz∣yx) and compute
the entropy as:
H2 = −∑x∈X p(x)

∑

y∈X Py∣x

∑

z∈X Pz∣y,x logD(Pz∣y,x).

∙ Higher-order models follow the same idea.

Several distinct m-order models can be combined to estimate the probability
of the next source symbol. For instance, Prediction by Partial Matching (PPM)
[CW84, Mof90, BCW90] is a compression technique that combines several finite-
context models of order 0 to m.

2.2 Redundancy and Data Compression

Data Compression aims at converting the string of bits that represents the data into
a shorter string of bits, such that transmission, storage, or processing requirements
are reduced. Compression techniques exploit redundancies in the source message
to represent it using less space [BCW90], while maintaining the source information
IX . Redundancy is a measure of the difference between the average codeword length
of the code used and the value of the entropy, that is, if l(x) is the length of the
codeword assigned to symbol x, redundancy can be defined as follows:

R =
∑

x∈X pX(x)l(x) −H =
∑

x∈X pX(x)l(x)−∑x∈X −pX(x) logD pX(x)

Noticing that the entropy is determined by the distribution of probabilities of the
source message, redundancy is decreased by reducing the average codeword length.
A code is said to be a minimum redundancy code if it has minimum codeword length.

We now describe Huffman algorithm to construct a minimum-length prefix code.

2.2.1 Classic Huffman Code

The classic Huffman algorithm [Huf52] is a commonly used technique that generates
optimal prefix codes for any source. The goal of Huffman code is that the bit rate
of the encoded data can come close to the entropy of the data itself, which is
achieved by using a code in which the length of each codeword is proportional to
its frequency. Hence, the basic idea of Huffman coding consists in assigning short

2.2. Redundancy and Data Compression 15

codewords to those symbols with high probabilities and long codewords to those
with low probabilities (ideally, length log(1/pi)).

Huffman algorithm builds a tree that is used in the encoding process, and it
generates prefix codes for each symbol. Huffman tree is a full tree where each leaf is
associated to a codeword and every intermediate node has D child nodes. Classical
Huffman tree is binary (D = 2), hence, every node of the tree has either zero or two
children. The leaves are labeled with the weights that represent the probabilities
associated with the source symbols. Their position (level) in the tree depends on
their probability: the number of occurrences of a leaf in a higher level can never be
smaller than the number of occurrences of a leaf placed in a lower level.

The Huffman tree is built as follows. Firstly, a list of leaf nodes is created,
one node for each distinct input symbol, storing the frequency of the symbol for
each node. This list is sorted by frequency. Then, the two least frequent nodes
are removed from the list and a new internal node is created storing the sum of
the frequencies of the removed nodes. This new node is added to the list. Then,
the two least frequent nodes from the list are removed again and the procedure is
repeated until there is just one node in the list. The last internal node created is
the root of the Huffman tree (and its frequency will be the sum of occurrences of
all the input symbols). Assuming that the source symbols are already sorted, the
cost of building a Huffman tree is O(n) [MK95] where n is the number of symbols
(leaf nodes) in the tree.

Codewords are assigned to each leaf by setting to 0 the left branch of each
node and to 1 the right branch. The path from the root node of the Huffman tree
to the leaf node where a symbol appears gives the (binary) codeword of that symbol.

Example Figure 2.1 shows an example of Huffman tree built from a source alpha-
bet {a, b, c, d, e} with relative frequencies 0.40, 0.20, 0.20, 0.15 and 0.05 respectively.
The figure illustrates the process step by step:

1. First, the list of nodes associated to the input symbols is created.

2. Then, the two least frequent nodes (d and e) are chosen, and they are joined
into a new internal node whose frequency is the sum of the frequencies of the
two chosen nodes, that is, 0.20.

3. Now, the least frequent nodes are b, c and the internal node just created, since
all of them have frequency 0.20. Any two of them can be chosen in the next
step. In our example we choose the internal node and c, and join them in a
new internal node of frequency 0.40, which is added to the set.

4. The next step consists in joining the previous internal node and b into a new
internal node, with frequency 0.60.

16 Chapter 2. Previous concepts

Figure 2.1: Building a classic Huffman tree.

2.2. Redundancy and Data Compression 17

5. Finally, only two nodes remain to be chosen, which are joined into the root
node. Notice that the weight associated to the root node is 1, since it repre-
sents the sum of the frequencies of all the source symbols.

The branches of the Huffman tree are labelled as explained, and codewords are
assigned to the symbols as follows: a 7→ 0, b 7→ 11, c 7→ 100, d 7→ 1010, e 7→ 1011.

The compressed file consists in the concatenation of the codewords for each
source symbol of the message to encode. In addition, it must include a header
representing the source alphabet and information about the shape of the Huffman
tree, such that the decompressor can decode the compressed file. Then, the decom-
pression algorithm reads one bit at a time and traverses the Huffman tree, starting
from the root node, in order to obtain the source symbol associated with each code-
word. Using the bit value read we can choose either the right or the left branch of
an internal node. When a leaf is reached, a symbol has been recognized and it is
output. Then the decompressor goes back to the root of the tree and restarts the
process.

Canonical Huffman tree

Several Huffman trees can be built over the same sequence of source symbols and
probabilities, generating different codes. Huffman’s algorithm computes possible
codewords that will be mapped to each source symbol, but only their lengths are
relevant. Once those lengths are known, codewords can be assigned in several ways.
Among all of them, the canonical Huffman code [SK64] is the most used one since
its shape can be compactly stored.

The canonical code builds the prefix code tree from left to right in increasing
order of depth. At each level, leaves are placed in the first position available (from
left to right). The following properties hold:

∙ Codewords are assigned to symbols in increasing length order where the
lengths are given by Huffman’s algorithm.

∙ Codewords of a given length are consecutive binary numbers.

∙ The first codeword cℓ of length ℓ is related to the last codeword of length ℓ−1
by the equation cℓ = 2(cℓ−1 + 1).

The canonical Huffman tree can be compactly represented with only the lengths
of the codewords. It only requires O(ℎ) integers, where ℎ corresponds to the height
of the Huffman tree. Hence, the header of the compressed file will include this in-
formation in addition to the source alphabet, which is stored sorted by frequency.

18 Chapter 2. Previous concepts

0,20

a
0,40

b
0,20

c
0,20

d
0,15

e
0,05

0,40

0,60

1,00

Figure 2.2: Example of canonical Huffman tree.

Figure 2.2 shows the canonical Huffman tree for the previous example. The
codeword assignment is now a 7→ 0, b 7→ 10, c 7→ 110, d 7→ 1110, e 7→ 1111.

We have only described the canonical representation for the bit-oriented Huffman
approach, but it can also be defined for a byte-oriented approach. More details
about how a byte-oriented canonical Huffman code can be built appear in [MK95,
MT96].

2.2.2 Classification of compression techniques

Compression techniques represent the original message in a reduced space. This
reduction can be performed in a lossy or a lossless way. If a lossless compression
technique is used, then the data obtained by the decompressor is an exact replica
of the original data. On the other hand, lossy compression techniques may recover
different data from the original. These lossy methods are used in some scenarios,
such as image or sound compression, where some loss of source information can
be permitted during compression because human visual/auditive sensibility cannot
detect small differences between the original and the decompressed data. Some
other scenarios, such as text compression, require lossless techniques, and we will
focus on them in this thesis.

We can classify compression techniques depending on how the encoding process
takes place. Two families are defined: dictionary and statistical based techniques.

∙ Dictionary techniques replace substrings of the message with an index to an
entry in a dictionary. Compression is achieved by representing several symbols

2.2. Redundancy and Data Compression 19

as one output codeword. The best known examples of dictionary techniques
are based on Ziv-Lempel algorithm [ZL77, ZL78], which uses the sliding win-
dow model and replaces substrings of symbols by pointers to previous occur-
rences of the same substring. They build a dictionary during the compression
process to store the replaceable substrings. Hence, encoding consists in substi-
tuting those substrings, where found, by small fixed-length pointers to their
position in the dictionary, and compression is achieved as long phrases are
now represented with pointers occupying little space.

∙ Statistical methods, also called symbolwise methods, assign codewords to the
source symbols such that the length of the codeword depends on the proba-
bility of the source symbol. Shorter codes are assigned to the most frequent
symbols and hence compression can be achieved. The most known statistical
methods are based on the Huffman codes [Huf52] and arithmetic methods
[Abr63], and they differ mainly in how they estimate probabilities for sym-
bols. Since statistical compression methods are recurrently used in this thesis,
especially in Part II, we will explain these methods more in detail.

A statistical compression method starts by dividing the input message into sym-
bols and estimating their probability. Once this first step is done, it obtains a model
of the message and an encoding scheme can be used to assign a codeword to each
symbol according to that representation. Therefore, compression can be seen as
a “modeling + coding” process and different encoding schemes can be used for the
same model of the message. Hence, the model of the message for a statistical
technique consists of the vocabulary of different source symbols that appear in the
message and their number of occurrences. A good modeling is crucial to obtain
good compression, since better compression can be achieved if the estimations of
the probabilities are made more accurately, as considering the context of the symbol,
as seen in Section 2.1.1.

Depending on the model used, compression techniques can be classified as using
a static, semi-static or dynamic model.

∙ If static or non-adaptive models are used, the assignment of frequencies to
each source symbol is fixed. The encoding process employs pre-computed
probability tables. These probabilities are generally extracted from experience
and do not follow the real distribution of the source symbols in the input
message, loosing some compression capabilities. However, they can be suitable
in specific scenarios. An example of this approach occurs when transmitting
data using Morse code.

∙ Semi-static models are usually used along with two-pass techniques. In the
first pass, the whole message is processed to extract all the source symbols that
conform the vocabulary and to compute their frequency distribution. Then,

20 Chapter 2. Previous concepts

an encoding scheme is used to assign a codeword to each source symbol whose
length depends on the frequency of the source symbol. In the second pass, the
whole message is processed again and source symbols are substituted by their
codewords. The compressed text is stored along with a header where the cor-
respondence between the source symbols and codewords is represented. This
header will be needed at decompression time. The best known examples are
those based on Huffman-based codes [Huf52]. Some semi-static compression
techniques for natural language text, such as are Plain Huffman and Tagged
Huffman [MNZBY00], or those based on Dense Codes [BFNP07] or Restricted
Prefix Bytes [CM05] will be explained in Chapter 7.

∙ Dynamic or adaptive models are usually known as one-pass techniques. Hence,
they do not perform a first step to compute the frequencies of the source sym-
bols of the message. They start with an initial empty vocabulary and then
they read one symbol at a time. For each symbol read, a codeword is as-
signed depending on the current frequency distribution and its number of
occurrences is increased. When a new symbol is read, it is appended to the
vocabulary. Hence, the compression process adapts the codeword of each sym-
bol to its frequency as compression progresses. The decompressor adapts the
mapping between symbols and codewords in the same way as the compressor.
Therefore, this mapping is not included with the compressed data. This prop-
erty gives one-pass techniques their main advantage: their ability to compress
message streams. These models are commonly used along with Ziv-Lempel
algorithms [ZL77, ZL78, Wel84] and arithmetic encoding [Abr63, WNC87].
Another compression technique that usually uses adaptively generated statis-
tics is PPM [CW84]. Some compression techniques based on Huffman codes
and using a dynamic model have also been presented [Vit87].

2.2.3 Measuring the efficiency of compression techniques

In order to measure the efficiency of a compression technique we take into account
two different aspects:

∙ The performance of the algorithms involved, which can be analyzed by the
complexity of the compression and decompression algorithms. The theoret-
ical complexity gives an idea of how a technique will behave, but it may be
also useful to obtain empirical results such that we can compare the perfor-
mance of the technique with other methods in real scenarios. We will measure
their performance as compression and decompression times, which are usually
measured in seconds or milliseconds.

∙ The compression achieved, which can be measured in many different ways.
The most usual one consists in measuring the compression ratio. It represents

2.3. Rank and select data structures 21

the percentage that the compressed file occupies with respect to the original
file size. Assuming that i is the size of the input file (in bytes), that the
compressed file occupies o bytes, it is computed as: o

i × 100.

2.3 Rank and select data structures

Succinct data structures aim at representing data (e.g., sets, trees, hash tables,
graphs or texts) using as little space as possible while still being able to efficiently
solve the required operations over the data. Those representations are able to
approach the information theoretic minimum space required to store the original
data. Even though these succinct data structures require more complex algorithms
than the plain representation in order to retain the original functionality, they
improve the overall performance as they can operate in faster levels in the memory
hierarchy due to the reduction of space obtained.

One of the first presented succinct data structures consists in the bit-vectors
supporting rank/select operations, which are the basis of other succinct data struc-
tures. We describe them more in detail. We will also describe some solutions to
support these rank and select operations over arbitrary sequences.

2.3.1 Rank and select over binary arrays

Given an offset inside a sequence of bits B1,n, we define three basic operations:

∙ rankb counts the number of times the bit b appears up to that position.
Hence, rank0(B, i) returns the number of times bit 0 appears in the prefix
B1,i and rank1(B, i) the number of times bit 1 appears in the prefix B1,i. If
no specification is made, rank stands for rank1 from now on.

∙ selectb returns the position in that sequence where a given occurrence of
bit b takes place. Hence, select0(B, j) returns the position i of the j − tℎ
appearance of bit 0 in B1,n and select1(B, j). Analogously to rank, select
stands for select1 if no bit specification is made.

∙ access operation allows one to know if a given position of the sequence contains
0 or 1.

The importance of these operations for the performance of succinct data structures
has motivated extensive research in this field [MN07]. Full-text indexes are a good
example in which the performance of these two operations is especially relevant
[NM07].

Several strategies have been developed to efficiently compute rank and select
when dealing with binary sequences. They are usually based on building auxiliary

22 Chapter 2. Previous concepts

structures that lead to a more efficient management of the sequence.

The previously explained operations, rank and select, were defined by Jacobson
in one of his first research works devoted to the development of succinct data struc-
tures [Jac89b]. In his paper, Jacobson proposed an implementation of rank and
select that was able to compute rank in constant time and was used as the basis of
a compact and efficient implementation of binary trees.

Given a binary sequence B[1, n] of size n, a two-level directory structure is built.
The first level stores rank(i) for every i multiple of s = ⌊logn⌋⌊logn/2⌋. The second
level stores rank′(j) for every j multiple of b = ⌊logn/2⌋, where rank′(j) computes
rank within blocks of size s. Notice that s = b⌊logn⌋. To compute rank1(B, i) we
can use these two directory levels to obtain the number of times the bit 1 appears
before the block of size s containing the position i. The same happens in the second
level of the directory structure. The final result is obtained using table lookups :
the bits of the subsequence of size b containing the position i that could not be
processed with the information of the directories, are used as the index for a table
that indicates the number of times bit 1 or 0 appears in them. Therefore rank can
be computed in constant time. However, with this approach select is computed in
O(log logn), since it has to be implemented using binary searches.

There are n/s superblocks in the first level of the directory, each of them requir-
ing logn bits to store the absolute rank value, that is, the first level of the directory
occupies a total space of n/s logn = O(n/ logn) bits; there are n/b blocks in the
second level of the directory, each of them requiring log s bits to store the relative
rank value inside its superblock, that is, the second level of the directory occupies a
total space of n/b log s = O(n log logn/ logn) bits; and there is a lookup table that
stores the rank value for each position within each stream of length b, that is, the
table occupies O(2b ⋅ b ⋅ log b) = O(

√
n logn log logn) bits. Hence, the space needed

by these additional directory structures, which is the sum of the space required by
the first level, the second level and the lookup table, is o(n).

Later works by Clark and Munro [Cla96, Mun96] improved these results, obtain-
ing constant time implementations for rank and select and using n+o(n) bits, where
n bits are used for the binary sequence itself and o(n) additional bits for the data
structures answering rank and select queries. The solutions proposed by Jacobson,
Clark and Munro [Jac89b, Cla96, Mun96] are based on the idea of using additional
data structures for efficiently computing rank and select without taking into account
the content of the binary sequence and its statistical properties (number of 1 bits
and their positions in the sequence). Pagh [Pag99] and Raman, Raman and Rao
[RRR02] explored a new approach working with compressed binary sequences which
are also able to efficiently compute rank and select.

2.3. Rank and select data structures 23

Pagh [Pag99] first explored the possibility of representing the sequence as a set
of compressed blocks of the same size, each of them represented by the number of
1 bits it contains and the number corresponding to that particular subsequence.
Since with this scheme the number of blocks grows almost linearly with the size of
the sequence, an interval compression scheme that clusters suitable adjacent blocks
together into intervals of varying length was also proposed.

The compressed representation of binary sequences proposed by Raman et al.
[RRR02] is based on a numbering scheme. The sequence is divided into a set of
blocks of the same size, each of them represented by the number of 1 bits it contains
and an identifier, in such a way those blocks with few 1 bits or many 1 bits require
shorter identifiers. More concretely, every block is represented as a tuple (ci, oi),
where the first component, ci, represents the class of the block, which corresponds
to its number of 1s, and the second, oi, represents the offset of that block inside
a list of all the possible blocks in class ci. If each block has length u, each ci is
represented with ⌈log(u + 1)⌉ bits and each oi is represented using ⌈log

(

u
ci

)

)⌉ bits.
This approximation obtains zero-order compression and is currently the best com-
plete representation of binary sequences [MN07] (that is, it supports access, rank
and select in constant time for both 0 and 1 bits). This paper also shows how this
binary sequence data structure can be used for the optimal representation of k-ary
trees and multisets.

Several practical alternatives achieving very close results have been proposed by
Okanohara and Sadakane [OS07]. They present four novel rank/select directories:
esp, recrank, vcode and sdarray, which support fast queries. Each of them is based
on different ideas and has different advantages and disadvantages in terms of speed,
size and simplicity. The size is small when the bitmap is sparse and can even ap-
proach to the zero-th order empirical entropy.

Another research line aims at compression of binary sequences when the num-
ber of 1 bits is small. The approach known as gap encoding obtains compressed
representations of binary sequences encoding the gaps between consecutive 1 bits in
the sequence. Several works [Sad03, GHSV06, MN07] present several developments
and improvements for this approach.

Practical implementations Two different implementations of Rodrigo González
[GGMN05] has been used in this thesis. One of them follows the constant-time
classical solution proposed by Jacobson, where precomputed popcount tables are
used. Popcounting consists in counting how many bits are set in a bit array. By
using tables where this counting is already computed for small arrays of 8 bits, rank
and select operations can be efficiently solved with a space overhead of 37.5% of the
size of the bitarray. The other solution, which is also used in this thesis, requires
a parameterizable extra space, which will be usually fixed to 5% of the size of the

24 Chapter 2. Previous concepts

sequence. This reduction of the overhead is obtained by using a directory of just
one level, that is, having a single level of blocks, one per 32 ⋅ k bits. Notice that
a sequential scan to count all the set bits in at most k blocks is required, while
the space overhead is 1/k. Hence, this alternative offers an interesting space/time
tradeoff compared to the previous alternatives. We will use this solution with k = 20
such that just 5% of extra space is needed, while still computing rank and select in
efficient time.

We have also used in Section 9.6.1 the compressed representation implemented
by Francisco Claude1 based on the proposal by Raman, Raman and Rao [RRR02].

2.3.2 Rank and select over arbitrary sequences

Rank, select and access operations can be extended to arbitrary sequences S with
an alphabet Σ of size �. In this case, given a sequence of symbols S = S1S2 . . . Sn

and a symbol s ∈ Σ:

∙ ranks(S, i) returns the number of times the symbol s appears in the sequence
up to position i, that is, in S[1, i].

∙ selects(S, j) returns the position of S containing the j-th occurrence of the
symbol s.

∙ access(S, i) returns the i-th symbol of sequence S, that is, Si. It may be a
necessary operation, since S is commonly represented in a compact way.

The strategies used with binary sequences cannot be directly applied to the gen-
eral case or, if applied, they may require a significant amount of memory. For some
scenarios, they can be efficiently adapted, as we probed in Section 9.2, where we
propose a simple representation of byte sequences using these approaches. How-
ever, rather than directly applying those techniques, most of the approaches for the
general case try to adapt them or to transform the problem in such a way that it
can be reduced to using rank and select in binary sequences. We now describe some
of the approaches to this problem that are based on the use of binary sequences.

Constant time rank and select using bitmaps

The easiest way to efficiently compute rank and select in arbitrary sequences consists
in using indicator bitmaps (binary sequences) for each symbol of the alphabet of
symbols Σ [NM07]. For each position of the original sequence, only the bitmap
corresponding to its symbol has a 1 bit in that position. Therefore, as we can
compute rank and select over binary sequences in constant time, we can also do it
in the case of sequences of bytes. The price to pay for this efficient implementation

1It is available at the Compact Data Structures Library (libcds)2.

2.3. Rank and select data structures 25

is the space used by the bitmap for each symbol of the alphabet Σ and the necessary
additional data structures for computing rank and select in constant time in each
one of them. One can use Okanohara and Sadakane rank/select solution to represent
each bitmap to reduce the space, at the expense of degrading access time, which
must be solved in O(�) time.

Wavelet trees

A wavelet tree [GGV03] consists in a balanced binary tree that divides the alphabet
Σ into two parts at each node. In consequence, each symbol from an alphabet
Σ = {s1, s2, . . . , s�} is associated to a leaf node.

Given a sequence S = S1 . . . Sn composed of symbols from the alphabet Σ,
a wavelet tree is built as follows. The root of the tree is given a bitmap B =
b1 . . . bn of the same length (n) as the sequence of symbols, such that bi = 0 if
Si ∈ {s1, . . . , s�/2}, and bi = 1 if Si ∈ {s�/2+1, . . . , sn}. Those symbols given a 1
in this vector are processed in the right child of the node, and those marked 0 are
processed in the left child of the node. This process is repeated recursively in each
node until reaching the leaf nodes when the sequence is a repeat of one symbol. In
this way, each node indexes half the symbols (from Σ) indexed by its parent node.
Each node stores only its bitmap B, and the portion of the alphabet that it covers
can be obtained by following the path from the root of the tree to that node. With
this information it is not necessary to store the sequence separately, since it can be
recovered from these bitmaps.

Figure 2.3 shows a simple example with a sequence of symbols from the alphabet
Σ = {a, b, c, d} (the text is shown only for clarity, but it is not actually stored).

a a c b d d a b c c

0 0 1 0 1 1 0 0 1 1

a a b a b

0 0 1 0 1

c d d c c

0 1 1 0 0

a a a b b c c c d d

Original sequence: “a a c b d d a b c c”

S = {a,b,c,d}

S = {a,b} S = {c,d}

S = {a} S = {b} S = {c} S = {d}

B1

B2 B3

Figure 2.3: Example of wavelet tree.

Access and rank queries over the sequence S are solved via log � binary ranks

26 Chapter 2. Previous concepts

over the bitmaps, by performing a top-down traversal of the wavelet tree, while a
select query is similarly solved by performing log � bottom-up binary selects.

Access query: Let us obtain the symbol at position i of the sequence. Bit bi of the
bitmap B at the root node determines whether the symbol is indexed in the left child
(bi = 0) or in the left child (bi = 1) of the root node. Besides, rankbi (B, i) returns
the position of the symbol in the bitmap of the child. This process is repeated until
the last level is reached. The leaf reached using this procedure corresponds to the
symbol represented at the desired position of the sequence.

Rank query: Obtaining the number of times that a symbol s appears up to the
position i of the sequence is solved in a similar way as access. By applying a binary
rank in the bitmap of each node we obtain the position in which the binary rank is
applied at the next level of the tree. Let the path from the root node to the leaf
node for symbols s be b0b1 . . . bk and the bitmaps stored in the nodes from the path
be B0, B1, . . . , Bk. We first count how many times b0 appears up to position i, that
is, rankb0(B0, i). This gives us the position i1 of the second level of the wavelet tree
that is used for the rank operation in this level. Hence, we perform rankb1 (B1, i1)
at the second level to count how many times b1 appears up to position i1. We
proceed computing rank operations rankbk(Bk, ik) up to the last level of the tree.
At the leaf, the final bitmap position corresponds to the answer to rank(s, i) in the
sequence S.

Select query: Each symbol of the sequence is represented by one unique leaf
in the tree. Hence, to compute the position of the i-th occurrence of symbol s in
sequence S, we start from the leaf node that represents this symbol s (this leaf
node is determined by its position in the alphabet Σ) and traverse the tree up to
the root node. Let the path from the root node to the leaf node be b0b1 . . . bk and
the bitmaps stored in the nodes from the path be B0, B1, . . . , Bk. To compute
select(s, i) we proceed as follows. First we calculate ik = selectbk(B

k, i), so that ik
is the position of the i-th occurrence of s in Bk. We repeat this step in the previous
level, obtaining ik−1 = selectbk−1

(Bk−1, ik), and move through the levels of the tree
up to the root node. The last i0 = selectb0(B

0, i1) returns the position of the i-th
occurrence of s in the sequence S.

A practical variant to zero-th order entropy is to give the wavelet tree the shape
of the Huffman tree of the sequence or using Raman, Raman and Rao data structures
for rank/select operations [GGV03, NM07].

Golynski, Munro, and Rao solution

Golynski, Munro, and Rao [GMR06] presented another representation for arbitrary
sequences that supports rank and access operations in O(log log �) time and select
in O(1); alternatively, they can achieve O(1) time for access, O(log log �) for select,
and O(log log � log log log �) for rank. It uses n log� + no(log �) bits.

2.3. Rank and select data structures 27

Their representation follows a similar idea to the one that uses bitmaps for each
symbol of the alphabet. Hence, the sequence S is represented using a table T of size
�×n where rows are indexed by 1, . . . , � and columns by positions in the sequence,
that is, from 1 to n. One entry of this table T [s, i] indicates whether the symbol
s ∈ Σ occurs in position i in the sequence S. A large bitmap A is built by writing
T in row major order (note that ∣A∣ = � ⋅ n). A is then divided into blocks of size
�. Restricted versions of rank and select are defined and implemented to answer
the operations over these blocks. Sequence A is not directly stored. Instead, a
bitmap B is built by writing the cardinalities of all the blocks in unary, that is, the
number of 1s inside each block, such that if ki is the cardinality of block i, then B is
built as B = 1k101k20 . . . 1kn0. Each block is then represented using two sequences.
One of them indicates the positions of all the occurrences for each symbol s in
the block in alphabetical order. Hence, this sequence consists in a permutation
of the sequence of block positions 1, . . . , �. The other sequence is a bitmap called
X , of length 2�. The bitmap X stores the multiplicity of each symbol s inside
the block, that is, X = 01l101l20 . . . 1l� , where ls is the multiplicity of symbol s in
the block. If these structures are used, rank, select and access operations can be
efficiently solved by first locating the corresponding block by means of restricted
rank and select operations over sequence B and then examining the block using the
permutation and the bitmap X . A complete description of the method can be read
in the original paper [GMR06].

28 Chapter 2. Previous concepts

Part I

Directly Addressable

Variable-Length Codes

29

Chapter 3

Introduction

Variable-length coding is at the heart of Data Compression [Sto88, BCW90, WMB99,
MT02, Sol07]. It is used, for example, by statistical compression methods, which
assign shorter codewords to more frequent symbols. It also arises when representing
integers from an unbounded universe: Well-known codes like
-codes and �-codes,
which will be explained in this chapter, are used when smaller integers are to be
represented using fewer bits.

A problem that frequently arises when variable-length codes are employed to
encode a sequence of symbols is that it is not possible to access directly the i-th
encoded element, because its position in the encoded sequence depends on the sum
of the lengths of the previous codewords. This is not an issue if the data is to
be decoded from the beginning, as in many compression methods. Yet, the issue
arises recurrently in the field of compressed data structures, where the compressed
data should be randomly accessible and manipulable in compressed form. A partial
list of structures that may require direct access to variable-length codes includes
Huffman [Mof89] and other similar encodings of text collections, such as Plain
Huffman and Tagged Huffman [MNZBY00], End-Tagged Dense Code and (s,c)-
Dense Codes [BFNP07] or Restricted Prefix Byte Codes [CM05], compression of
inverted lists [WMB99, CM07], compression of suffix trees and arrays (for example
the Ψ function [Sad03] and the LCP array [FMN09]), PATRICIA tree skips [Kre10],
compressed sequence representations [RRR02, FV07], partial sums [MN08], sparse
bitmaps [RRR02, OS07, CN08] and its applications to handling sets over a bounded
universe supporting predecessor and successor search, and a long so on. It is indeed
a common case that an array of integers contains mostly small values, but the need
to handle a few large values makes programmers opt for allocating the maximum
space instead of seeking for a more sophisticated solution.

The typical solution to provide direct access to a variable-length encoded se-
quence is to regularly sample it and store in an array the position of the samples

31

32 Chapter 3. Introduction

in the encoded sequence, so that decompression from the last sample is necessary.
This introduces a space and time penalty to the encoding that often hinders the
use of variable-length coding in many cases where it would be beneficial.

In this part of the thesis we propose a new variable-length encoding scheme for
sequences of integers that supports direct access without using any extra sampling
structure. This new encoding can be efficiently applied to sequences of integers when
the number of occurrences of smaller integer values is higher than the frequency of
larger integer values, or, more generally, to any sequence of symbols after it has been
mapped to a sequence of integers according to the frequency distribution obtained
by a statistical modeler1.

Our proposal, called Directly Addressable Codes (DACs), consists in using a
dense variable-length encoding to assign codewords to the integers of the sequence,
where each codeword is composed of several chunks. The number of chunks of the
assigned codeword depends on the magnitude of the integer, so that smaller integers
obtain shorter codewords. Once the codewords have been assigned, their chunks
are rearranged in several levels of a data structure in such a way that direct access
to any codeword of the encoded sequence is possible. DACs are explained in detail
in Chapter 4.

Moreover, the rearrangement strategy proposed, where the different chunks of
the codewords are placed in several levels of a data structure, can be seen as a con-
tribution by itself, which provides synchronism to the encoded sequence of symbols
obtained after using any variable-length encoding technique. Hence, direct access to
any codeword of the encoded sequence is achieved by just using some extra bitmaps.
Some examples of this usage are described in Chapter 6.

In this chapter, we study the direct access problem when variable-length codes
are used. We have briefly presented the need and usage of these variable-length
encoding schemes. The chapter continues by describing some encoding schemes for
integers in Section 3.1, and finishes by enumerating some solutions from previous
works in Section 3.2.

1More concretely, this mapping is done as follows. Firstly, a vocabulary with the different
symbols that appear in the sequence is created. Then, this vocabulary is sorted by frequency in
decreasing order, hence, the most frequent symbols become the first symbols of the vocabulary.
Finally, the sequence of symbols is translated into a sequence of integers by substituting each
symbol by the position of the symbol in the sorted vocabulary. With this procedure, a sequence
of integers is obtained such that smaller integer values, corresponding to more frequent symbols,
appear more times than larger integer values.

3.1. Encoding Schemes for Integers 33

3.1 Encoding Schemes for Integers

Let X = x1, x2, . . . , xn be the sequence of n integers to encode. A way to com-
press X is to use statistical compression, that is, we order the distinct values of
X by frequency, such that a vocabulary of the different integers that appear in
the sequence is extracted, and assign shorter codewords to those values xi that
occur more frequently. For instance, we can use Huffman encoding. However, in
some applications the smaller values are assumed to be more frequent. In this case
one can directly encode the numbers with a fixed instantaneous code that gives
shorter codewords to smaller numbers. This strategy has the advantage that it is
not necessary to store the vocabulary of symbols sorted by frequency, which may
be prohibitive if the set of distinct numbers is too large. Well-known examples are
unary codes,
-codes, �-codes, and Rice codes [WMB99, Sol07]. Table 3.1 shows
how these four techniques, which are explained next, encode the first 10 integers.
For the description of each encoding we assume that the integer to encode, x, is a
positive integer, that is, x > 0.

Unary Codes The unary representation is commonly used within other encod-
ings. A value x is represented as 1x−10, that is, x− 1 ones followed by a zero. For
instance, if we want to encode the integer 5 the codification would be 11110. The fi-
nal zero allows to delimit the code making it a prefix-free code. Notice that the ones
and zeros are interchangeable without loss of generality, so x can be represented as
0x−11 as well.

Gamma Codes The
-code of a given integer x consists in the concatenation of
the length of its binary representation in unary code, and the binary representa-
tion of x omitting the most significant bit. The codification for 5, whose binary
representation is (101)2, would be 11001, where the first bits 110 represent 3 (the
length of the binary representation) in unary code and the last bits 01 represent
the symbol 101 without its most significant bit. The representation of a symbol x
uses 2⌊log x⌋+ 1 bits, where ⌊log x⌋+ 1 are used to represent the symbol length in
unary code and the other ⌊log x⌋ bits are used to represent the symbol without its
most significant bit.

Delta Codes The �-codes are the natural extension of
-codes for larger symbols.
They represent the binary length of the symbol using
-codes instead of using unary
codes. The rest of the encoding does not change. Hence, the representation of a
symbol x uses 1 + 2⌊log log x⌋ + ⌊log x⌋ bits. For example, the representation of
the integer 5 will be exactly the same as the one using gamma codes, except for
the representation of the length of the symbol, which is encoded with
-codes now:
10101 (the length of its binary representation, 3, is represented as 101 in
-encoding
instead of using unary codes).

34 Chapter 3. Introduction

Symbol Unary code
-code �-code Rice code (b = 2)

1 0 0 0 000

2 10 100 1000 001

3 110 101 1001 010

4 1110 11000 10100 011

5 11110 11001 10101 1000

6 111110 11010 10110 1001

7 1111110 11011 10111 1010

8 11111110 1110000 11000000 1011

9 111111110 1110001 11000001 11000

10 1111111110 1110010 11000010 11001

Table 3.1: Examples of variable length encodings for integers 1 to 10.

Rice Codes Rice codes are parameterized codes that receive two values, the in-
teger x to encode and a parameter b. Then x is represented by the concatenation
of the quotient and the remainder of the division by 2b, more precisely, as q + 1 in
unary, where q = ⌊(x− 1)/2b⌋, concatenated with r = x− q ⋅ 2b − 1 in binary using
b bits, for a total of ⌊(x− 1)/2b⌋+ b+ 1 bits.

If we could assign just the minimum bits required to represent each num-
ber xi of the sequence X , the total length of the representation would be N0 =
∑

1≤i≤n (⌊log xi⌋+ 1) bits. For example, �-codes are instantaneous and it can be

proved that they achieve a total length N ≤ N0 + 2n log N0

n +O(n) bits.

3.1.1 Vbyte coding

Vbyte coding [WZ99] is a particularly interesting code for this thesis. In its general
variant, the code is obtained from the ⌊log xi⌋ + 1 bits needed to represent each
integer xi. The binary representation is split into blocks of b bits and each block is
stored into a chunk of b+1 bits. This extra bit, corresponding to the highest bit of
the chunk, is 0 if the chunk contains the most significant bits of xi, and 1 for the
rest of the chunks.

For clarity we write the chunks from most to least significant, just like the binary
representation of xi. For example, if we want to represent xi = 25, being b = 3 the
value of the value of parameter b, then we split the ⌊log 25⌋ + 1 = 5 bits needed
for the binary representation of 25, which is xi = 25 = 110012, into 2 blocks of 3
bits: the three most significant bits 011 and the three least significant bits 001. For

3.2. Previous Solutions to Provide Direct Access 35

the final Vbyte representation, one extra bit is added to each block, obtaining two
chunks of 4 bits each. Hence, the final representation of the integer 25 using Vbyte
codes is 0011 1001, where we underlined the extra bits that indicate whether the
block contains the most significant bits of the binary representation or not.

Compared to an optimal encoding of ⌊log xi⌋ + 1 bits, this code loses one bit
per b bits of xi, plus possibly an almost empty final chunk, for a total space of
N ≤ ⌈N0(1 + 1/b)⌉+ nb bits. The best choice for the upper bound is b =

√

N0/n,
achieving N ≤ N0 +2n

√

N0/n, which is still worse than �-encoding’s performance.
In exchange, Vbyte codes are very fast to decode.

The particular case of Vbyte that uses chunks of 8 bits is called byte codes. Its
decoding function is very fast due to the byte-alignments, becoming an interesting
alternative when time efficiency is demanded. However, since this variable-byte
coding uses at least 8 bits to encode each integer, using byte codes may not be as
space efficient as using a variable-bit scheme.

3.2 Previous Solutions to Provide Direct Access

From the previous section we end up with a sequence of n concatenated variable-
length codewords that represent a sequence of integer values. Being usually instan-
taneous, there is no problem in decoding them in sequence, starting from the first
position and decoding all the integers in order. However, there are multiple applica-
tions where this is not enough, and direct access to random positions of the encoded
sequence is needed. We now outline several solutions proposed in the literature to
solve the problem of providing direct access to the sequence, that is, extracting any
xi efficiently, given i.

3.2.1 The classical solution: Sparse sampling

The most commonly used solution consists in sampling the encoded sequence and
storing absolute pointers only to the sampled codewords, that is, to each ℎ-th
codeword of the sequence. Access to the (ℎ ⋅ k + d)-th element, for 0 ≤ d < ℎ, is
done by decoding d codewords starting from the k-th sample. This involves a space
overhead of ⌈n/ℎ⌉⌈logN⌉ bits, where N is the length in bits of the concatenated
variable-length codewords that represent the sequence of n integers, and a time
overhead of O(ℎ) to access an element, assuming we can decode each symbol in
constant time.

36 Chapter 3. Introduction

Figure 3.1: Example of sparse sampling.

Example Assume a sequence of seven integers that has been encoded obtaining
the following sequence of codewords:

⟨b1,1b1,2b1,3⟩, ⟨b2,1⟩, ⟨b3,1⟩, ⟨b4,1⟩, ⟨b5,1b5,2b5,3⟩, ⟨b6,1b6,2⟩, ⟨b7,1⟩,

that is, the first integer is represented with a codeword of three bits CW1 =
b1,1b1,2b1,3, the second integer with just one bit and so on.

If we sample the starting position of every ℎ = 3 codewords, then we store the
positions of the first bit of the codewords of the first, fourth and seventh integers,
which correspond with the following positions: 1, 6, 12. Figure 3.1 illustrates the
sparse sampling over this example, where the arrows point to the positions where
the sampled codewords start.

Now, if we want to extract the sixth element of the original sequence, we locate
the nearest previous sample and start decoding all the integers from that sampled
position until we decode the sixth integer. In this case, the nearest previous sample
is the second one, corresponding to the fourth integer. There is a pointer to the
sixth bit of the encoded sequence, which is where the codeword of the fourth integer
starts. Therefore, we decode the fourth codeword from the encoded sequence, also
the fifth codeword, and finally the sixth, obtaining the sixth element of the original
sequence.

3.2.2 Dense sampling

A different strategy is used by Ferragina and Venturini [FV07], who propose a dense
sampling approach to directly access the elements of the encoded sequence.

They represent each integer xi using just ⌊log xi⌋ bits and encode the set of inte-
gers consecutively following the series of binary strings {�, 0, 1, 00, 01, 10, 11, 000, . . .},
that is, the infinite sequence of binary strings ordered first by length and then lexi-
cographically by their content, with � denoting the empty string. The integer xi = 1
is represented with 0 bits (with the empty string �). Then, the integer 2 is encoded
with the next string "0", 3 with "1", 4 with "00" and so on.

In addition to the sequence of codewords that represent the sequence of inte-
gers, they store pointers to the beginning of the codeword of every element in the
encoded sequence. The encoding scheme is not a uniquely decodable code, but the

3.2. Previous Solutions to Provide Direct Access 37

Figure 3.2: Example of dense sampling.

set of pointers gives the beginning and ending positions of each codeword, so any
codeword can be decoded without ambiguity in constant time. For instance, two
consecutive pointers which point at the same position of the encoded sequence indi-
cate that the codeword has length 0, hence, the integer represented in that position
is 1.

A dense sampling implies a large number of pointers. To reduce the space
requirements, two levels of pointers are used: absolute pointers every Θ(logN)
values and relative ones for the rest. Then, the extra space for the pointers is
O(n(log logN + logL)), being L the length in bits of the longest codeword, and
constant-time access is achieved.

Example Assume another sequence of seven integers. The second integer of this
sequence is integer 1, so it is encoded with 0 bits (we represent this empty string of
bits as �). The rest of the encoded sequence is composed by codewords of different
length, as follows:

⟨b1,1b1,2b1,3⟩, ⟨�⟩, ⟨b3,1⟩, ⟨b4,1⟩, ⟨b5,1b5,2⟩, ⟨b6,1b6,2⟩, ⟨b7,1⟩

Using a dense sampling we set pointers to the start of each codeword. This
solution is shown in Figure 3.2, where the two-level structure of pointers has been
represented with large arrows for the absolute pointers and short arrows for the
relative ones.

Now, if we want to extract the sixth integer from the encoded sequence, we must
decode the bits represented between the sixth and the seventh pointers. This string
of bits can be decoded univocally (its length is extracted from the position of the
pointers) in constant time. All the other integers can be obtained in a similar way.
For instance, to extract the second integer we proceed as follows: since the second
and third pointers point to the same position of the encoded sequence, the second
codeword is an empty string of bits, thus the element encoded is integer 1.

38 Chapter 3. Introduction

3.2.3 Elias-Fano representation of monotone sequences

Given a monotonically increasing sequence of positive integers X = x1, x2, . . . , xn,
where all the elements of the sequence are smaller than an integer u, the Elias−Fano
representation [Eli74, Fan71] uses at most 2 + log(u/n) bits per element and also
permits to directly access any element of the given sequence.

The representation separates the lower s = ⌈log(u/n)⌉ bits of each element from
the remaining upper bits, and stores the lower bits contiguously in a bit array. In
addition, the upper bits are represented in a bit array of size n+ xn/2

s, setting the
bit at position xi/2

s + i for each i ≤ n.

Note that we can represent a monotonically increasing sequence Y = y1, y2, . . . , yn,
which may include some zero-differences, by setting bits i + yi in a bit array B of
length B[1, yn + n]. Hence, the integer at position i of the sequence Y can be
retrieved by computing yi = select(B, i)− i.

Example Let us suppose the following sequence Y = 4, 8, 15, 15, 23, 42, where the
third and the fourth integers are equal. We can represent this sequence using a
bitmap B of length 42 + 6 = 48 and setting up the bits at positions 4 + 1 = 5,
8+2 = 10, 15+3 = 18, 15+4 = 19, 23+5 = 28 and 42+6 = 48. Then, the bitmap
B is the following:

B = 000010000100000001100000000100000000000000000001

We can retrieve the third element of the sequence by performing a select oper-
ation y3 = select(B, 3)− 3 = 18− 3 = 15.

Hence, this solution is used by the Elias−Fano representation for the monotone
sequence of the upper bits xi/2

s, i ≤ n, supporting their random retrieval. As the
lowest bits are stored using a fixed-length representation, the overall representation
of any element of the original sequence X is directly addressable if the bitmap that
represents the upper bits supports select operations.

In general, we can represent any sequence of integers, including non-monotone
sequences. We just must store the binary representation of each element, excluding
the most significant one, concatenated consecutively in a bit array. In addition, we
store the positions of the initial bit of each element using the Elias−Fano representa-
tion for monotone lists explained above. This techniques achieves high compression
when the numbers are generally small. In the worst case scenario, the method does
not lose more than one bit per element, plus lower-order terms, compared to N0.

Chapter 4

Our proposal: Directly

Addressable Codes

In this chapter we introduce a new variable-length encoding scheme for sequences
of integers, called Directly Addressable Codes (DACs), based on a relocation of the
chunks of the Vbyte codification, explained in Section 3.1.1, into different levels.
Our proposal enables direct access to the i-th codeword of the sequence without the
need of any sampling method.

We explain our encoding scheme in Section 4.1, describing the rearrangement
we perform to provide direct access to any element of the encoded sequence. We
conclude the chapter by presenting in Section 4.2 an algorithm that computes the
configuration for the values of the parameters of our proposal that achieves the most
compact space.

4.1 Conceptual description

Given a sequence of integers X = x1, x2, . . . , xn we describe a new synchronized
encoding scheme that enables direct access to any element of the encoded sequence.

We make use of the generalized Vbyte coding described in Section 3.1.1 with a
given parameter b for the size of the blocks. We first encode the xis into a sequence
of (b + 1)-bit chunks. Next we separate the different chunks of each codeword in
different streams. Let us assume that a codeword CWi is assigned to the integer xi,
such that CWi needs r chunks Ci,r, . . . , Ci,2, Ci,1, where Ci,r is the most significant
chunk. A first stream, C1, will contain the n1 = n least significant chunks (i.e., the
Ci,1 rightmost chunks) of every codeword. A second one, C2, will contain the n2

second chunks of every codeword (where n2 is the number of codewords using more

39

40 Chapter 4. Our proposal: Directly Addressable Codes

Figure 4.1: Rearrangement of codewords using Directly Addressable Codes.

than one chunk). We proceed similarly with C3, and so on. If the maximum integer
of the sequence X is M , we need at most ⌈ logM

b ⌉ streams Ck.

Each stream Ck will be separated into two parts. The lowest b bits of the chunks
will be stored contiguously in an array Ak (of b ⋅nk bits), whereas the highest bits of
the chunks will be concatenated into a bitmap Bk of nk bits. Figure 4.1 illustrates
the rearrangement of the different chunks of the first five codewords of an exam-
ple sequence. Notice that the highest bit of every chunk determined in the Vbyte
encoding if it was the chunk containing the most significant bits of the binary rep-
resentation, therefore the bits in each Bk identify whether there is a chunk of that
codeword in Ck+1 or not, that is, if the codeword ends at that level (it is the most
significant chunk) or it continues at the next level of the representation.

We set up rank data structures on the Bk bitmaps, which answer rank in con-
stant time using O(nk log logN

logN) extra bits of space, being N the length in bits of the

encoded sequence1. As we have shown in Section 2.3.1, solutions to rank are rather
practical (unlike those for select, despite their similar theoretical performance).

The overall structure is composed by the concatenation of the Bks bitmaps, the
Aks arrays, and pointers to the beginning of the stream of each k. These pointers
need at most ⌈ logM

b ⌉⌈logN⌉ bits overall (remember that there were ⌈ logM
b ⌉ streams

Ck), and this space is in practice negligible. In total there are
∑

k nk = N
b+1 chunks

1This is achieved by using blocks of 1

2
logN bits in the rank directories [Jac89a, Cla96, Mun96].

4.1. Conceptual description 41

C1
A1 00 10 10 01 01 01 11

B1 1 0 1 0 1 1 1

C2
A2 01 10 01 01 00

B2 0 0 1 0 1

C3
A3 01 01

B3 0 0

Figure 4.2: Example using Directly Addressable Codes.

in the encoding (note N is a multiple of b + 1), and thus the extra space for the
rank data structures is just O(N log logN

b logN).

Extraction of the i-th value of the sequence is carried out as follows. We start
with i1 = i and get its first chunk Ci,1 = B1[i1] : A1[i1]. If B1[i1] = 0 we are done
with xi = A1[i1]. Otherwise we set i2 = rank(B1, i1), which gives us the correct
position of the second chunk of xi in C2, and get Ci,2 = B2[i2] : A2[i2]. If B2[i2] = 0,
we are done with xi = A1[i1] + A2[i2] ⋅ 2b. Otherwise we set i3 = rank(B2, i2) and
so on.

Example Let sequence X be X = 4, 2, 10, 1, 21, 5, 19. If we use a Vbyte encoding
with b = 2, the codewords of the symbols are:

∙ x1 = 4→ CW1 = 001 100

∙ x2 = 2→ CW2 = 010

∙ x3 = 10→ CW3 = 010 110

∙ x4 = 1→ CW4 = 001

∙ x5 = 21→ CW5 = 001 101 101

∙ x6 = 5→ CW6 = 001 101

∙ x7 = 19→ CW7 = 001 100 111

Then, we create the first stream C1 with the least significant chunk of each codeword.
The rightmost chunk of CW1 is 100, the rightmost chunk of CW2 is 010 and so on.
C1 is composed of the two arrays A1 and B1 previously defined. A1 consists of the
b = 2 last bits of those least significant chunks and B1 is the bit array containing the
first bit of each chunk, determining whether the code continues or not (we underlined
this bit to make it clearer). Then A1 = 00 10 10 01 01 01 11, B1 = 1 0 1 0 1 1 1
and n1 = n = 7. In the second stream, C2, there are only n2 = 5 chunks, since

42 Chapter 4. Our proposal: Directly Addressable Codes

the codewords CW2 and CW4 corresponding to the second and fourth elements
are encoded with just one chunk, so their codewords are completely contained in
the stream C1. Then, C2 is composed by the second rightmost chunk of all the
codewords that have more than one chunk. It is composed by the second least
significant chunk of CW1, that is 001, the second least significant chunk of CW3,
that is 010, and so on. We proceed in the same way for the rest of the streams and
we obtain the representation in Figure 4.2.

If we want to extract the integer at position 3, that is x3, then we proceed as
follows. We start with i1 = 3 and get its first chunk C3,1 = B1[3] : A1[3] = 110.
Since B1[3] = 1 we know that the codeword is not complete and we must obtain
the next chunk placed in the second stream C2. We set i2 = rank(B1, 3) = 2, so we
know that the second chunk is located in the second position of the arrays of C2.
We can retrieve the second chunk C3,2 = B2[2] : A2[2] = 010. Since B2[2] = 0, we
are done and x3 = A1[3] +A2[2] ⋅ 22 = (10)2 + (10)2 ⋅ 22 = 2 + 2 ⋅ 4 = 10.

Extraction of a random codeword requires ⌈ N
n(b+1)⌉ accesses, where N is the

length in bits of the encoded sequence, n is the number of integers of the sequence
and b the size of the blocks; the worst case is at most ⌈ logM

b ⌉ accesses, which is
the maximum number of levels of the representation (M is the maximum integer
of the sequence X). Thus, in case the numbers to represent come from a statis-
tical variable-length coding, and the sequence is accessed at uniformly distributed
positions, we have the additional benefit that shorter codewords are accessed more
often and are cheaper to decode.

The extraction of r consecutive codewords can be performed in a more efficient
way than just r independent accesses to the encoded sequence. In particular, we can
retrieve the complete original sequence of integers without using any rank operation,
by just sequentially processing the levels of the representation. Note that all the
chunks of the codewords are contiguously stored at each level according to the
position in the original sequence of the integer they are representing. Retrieving
the original sequence of integers consists in sequentially decoding all the codewords
of the representation. By using just one pointer at each level of the representation,
which indicates the last chunk read at that level, we can process all the levels in a
synchronized way to retrieve the whole sequence. At first, the pointers point to the
beginning of each level. The first codeword is decoded and the pointers are moved
to the next chunk at those levels containing part of the codeword of the first integer.
Then, the second codeword can be decoded considering the chunks pointed by the
pointers. This procedure is repeated until all the levels are completely processed,
that is, until all the codewords have been decoded and the original sequence of
integers has been obtained.

More generally, to extract r consecutive codewords starting from a random posi-
tion i, ⌈ logM

b ⌉ rank operations must be performed to initialize the pointers at each
level, that is, the pointer at the first level will point to position p1 = i of the stream

4.1. Conceptual description 43

C1 and the pointer at level k will point to position pk = rank(Bk−1, pk−1) of Ck,
for each k > 1. Finally, a sequential decoding of r codewords can be performed by
just reading the next pointed chunk at each level.

4.1.1 Implementation considerations

We now describe some implementation details that differ in some degree from the
theoretical proposal explained before. Most of the decisions were made in order to
obtain a better usage of the space of the representation.

The first practical consideration concerns the codification scheme. Vbyte codes
split the binary representation of an integer into several chunks. Due to the fact
that the most significant bit of the binary representation of any integer is different
to zero, the highest chunk of the Vbyte codification cannot be all zeroes. Hence,
in this way we lose a value in the highest chunk, namely the one that has all the
bits in zero, and consequently, the representation is not obtaining the best possible
space usage. To avoid this, we use in our implementation the variant of Vbytes
designed for text compression called ETDC [BFNP07], a dense encoding scheme
that will be explained in Section 7.2.3. This encoding scheme can make use of all
the combinations of chunks and obtains better spaces.

Another variation of the final implementation with regard to the presented pro-
posal is that the last bitmap BL (where L is the number of levels) is not stored in
the final representation of the sequence of integers. This is due to the fact that the
bits of this bitmap indicate whether a codeword continues in the next level or not,
and since BL corresponds to the last level, no codeword continues in the next level
of the representation. Hence, all the bits in BL are zeroes, so it can be omitted
from the final representation, saving some space.

A further practical consideration refers to the implementation of the rank data
structures over the bitmaps Bk. We have applied different practical solutions from
Section 2.3.1, obtaining excellent times when 37.5% extra space is used on top of
Bk, and decent ones using up to 5% extra space [GGMN05]. Then, one parameter
of the representation is X , that is, the extra space (in bits) per each bit of the
bit array (we will set X = 0.05 or X = 0.375 depending on the chosen practical
implementation).

Hence, the total size of the representation, computed as the sum of the size of
each level, is

∑L−1
k=1 nk ⋅ (b + 1 +X) + nL ⋅ b, where the parameters b and X can be

modified in order to obtain different space-time tradeoffs. The number of levels L
and the number of chunks in each level nk, k ≤ L, are determined by the value of
b and the frequency distribution of the sequence of integers to encode.

44 Chapter 4. Our proposal: Directly Addressable Codes

4.2 Minimizing the space

In the previous section we explained DACs by representing a sequence of integers
with a fixed parameter b, which remains constant for every level of the represen-
tation. However, the value of b could be chosen differently at each level of the
representation to fit a concrete application. In particular, this can be used to opti-
mize the overall compression. In this section we propose an algorithm to obtain the
optimal number of levels of the representation and the optimal b values to achieve
the most compact space as possible for a given sequence of integers.

4.2.1 Optimization Problem

As explained, the fact that the DACs separate the chunks of a code in several
independent levels can be exploited by using different b values for each level. Among
all the possible combinations of b values, those that obtain the minimal space are
particularly interesting. It can be vital to represent the list of integers in a very
compact way, especially in some applications with strict space restrictions. Notice
that we are just focusing on obtaining the most compact representation, without
taking into account its time performance. This optimization can generate a not so
efficient representation of the sequence in terms of time if it leads to many different
levels (which worsens the access time).

We present an algorithm that, given the sequence of integers to encode and
their frequency distribution, returns the optimal values for the parameters of DACs
(number of levels and b values for each level) that minimize the space of the encoded
sequence.

Following the notation used in Figure 4.1 and the implementation considerations
in Section 4.1.1, the total size of the representation is

∑L−1
k=1 nk ⋅ (b+ 1 +X)+nL ⋅b

if the same fixed parameter b is used for all the levels. Notice that there are two
modifiable parameters: b is the size of the blocks in the encoding, and X is the
extra space used for the rank structure over the bitmaps Bk. The number of levels
L and the number of chunks in each level nk, k ≤ L, are determined by the value
of b and the frequency distribution of the sequence of integers to encode.

If the value of b is not the same for every level, we have different bk values for
each level k ≤ L and the size of each level is:

size of level k in bits =

{

nk ⋅ (bk + 1 +X) if k < L

nL ⋅ bL for the last level
(4.1)

Hence, the formula for the total size of the representation of the sequence of
integers becomes

∑L−1
k=1 nk ⋅ (bk + 1 +X) + nL ⋅ bL.

4.2. Minimizing the space 45

Therefore, the optimization problem, which consists in obtaining the minimal
space usage for the representation of a sequence of integers, can be written as

follows: min
(

∑L−1
k=1 nk ⋅ (bk + 1 +X) + nL ⋅ bL

)

. The goal of the optimization is

to find the values number of levels L and the values bk, ∀k ≤ L, that minimize the
total size of the encoding, considering the given fixed parameter X .

To completely understand the formula above, we must mention that the number
of chunks nk of each level k is determined not only by the frequency distribution of
the integers of the sequence to encode, but also by the values bj, j < k. This can
be easily seen with the next example. Level 2 will contain chunks of the codewords
assigned to all the integers that cannot be totally represented at level 1. The integers
that are totally represented at level 1 will be those that are smaller than 2b1 . Then,
if we choose a very large b1, there will be more integers that are fully represented at
level 1 and are not continued at level 2, decreasing the size of level 2. Otherwise, if
a small b1 is chosen, the number of chunks of level 2 will be larger, since level 2 will
contain the representation of many integers that are not fully represented at level
1, since they are bigger than 2b1 . Hence, the size of level 2 depends on the value of
b1, and in general, the size of level k will depend on the sum of the values of bj for
each level j prior to level k.

4.2.2 Optimization Algorithm

In this section we present a dynamic programming algorithm that obtains the values
for L and bk, k ≤ L, that minimize the size of the representation of the given
sequence. The optimization problem can be solved using dynamic programming by
noticing that the subproblems are of the form “encode in the best way all the values
which are larger or equal to 2x, ignoring their x lowest bits”.

Given the sequence of integers to represent, where the maximum value is M and
m = ⌊log(M)⌋, it is trivial to compute a vector fc with the cumulative frequencies
of all the integers 2i, with 0 ≤ i ≤ m, such that fc[i] would be the number of times
that all the integers lower than 2i appear in the sequence to be encoded. That is,

if f (i) is the frequency of integer i, fc[i] =
∑2i−1

1 f(j). In addition, we include an
extra value for this vector, fc[m+ 1] with the cumulative frequency for integer M ,
that is, fc[m + 1] = n, since the length of the sequence to encode is equal to the
number of times that all the integers appear in the sequence. This vector fc of size
m+ 2 will be the only input of the algorithm.

Now, we will show the suitability of the problem for the dynamic programming
paradigm. We will prove that our problem exhibits an optimal substructure, that
is, that the solution can be obtained by the combination of optimal solutions to its
subproblems.

For convenience, let us adopt the notation < AmAm−1 ⋅ ⋅ ⋅A1A0 > for the binary

46 Chapter 4. Our proposal: Directly Addressable Codes

representation of the maximum value of the sequence of integers (denoted by M),
where Am is the most significant bit and A0 is the least significant bit. The binary
representation of any integer of the sequence will be < Ar ⋅ ⋅ ⋅A1A0 >, where r ≤ m,
since any integer of the sequence is lower or equal to M .

We define the subproblem t, 0 ≤ t ≤ m as the problem to obtain the optimal
value for Lt and btk , k ≤ Lt, for the representation of the r − t+ 1 most significant
bits < ArAr−1 ⋅ ⋅ ⋅At > of each integer of the sequence greater or equal to 2t. Hence,
the solution to the subproblem t encodes in the best way all the values greater or
equal to 2t, ignoring their t lowest bits. Following the previous definition, the orig-
inal problem, which consists in the computation of the optimal values to represent
the sequence of integers in the minimal space, is solved when we obtain the solution
to the subproblem 0, that is, when we have obtained the optimal values to encode
in the best way all the values of the sequence (which are greater or equal to 20),
ignoring their 0 lowest bits (that is, we compute the complete space usage of the
representation).

Analogously to the meaning of the values of L and bk, k ≤ L, for the original
problem, the value Lt associated with the subproblem t represents the optimal num-
ber of levels used to represent the r − t + 1 bits of every integer of the sequence
(with r ≥ t), and the values btk are the sizes of the blocks in each level k. The
minimal number of levels Lt to represent those bits is 1, if we create just one level
with blocks of size bt1 = m − t + 1 (note that r = m for the maximum integer of
the sequence, so it is necessary that the size of the blocks in this unique level is
m − t + 1 so the m − t + 1 most significant bits of M can be represented). The
maximum value of Lt is m− t+ 1 if just 1 bit is represented in each level. Hence,
the value of Lt can be 1 ≤ Lt ≤ m − t + 1. For each subproblem t the following
equation holds:

∑Lt

k=1 btk = m − t + 1, that is, the values btk define a partition of
the bits < AmAm−1 ⋅ ⋅ ⋅At >, such that the optimal solution to the subproblem t
obtains the optimal partition that encodes all the integers of the sequence greater
or equal to 2t in the minimal space, ignoring their t lowest bits.

We have seen that the solution to the original problem is obtained when we
solve the subproblem 0. We describe now how we can obtain this solution from
the optimal values of the higher subproblems. We start by computing the optimal
solution to the subproblem m, which is trivial, then the optimal solution to the
subproblem m − 1, using the already computed solution to the subproblem m,
then the optimal solution to the subproblem m− 2 from the optimal values of the
subproblems m and m−1 and so on, up to subproblem 0, whose solution is obtained
from the optimal values of the subproblem m, subproblem m− 1, . . . , subproblem
2 and subproblem 1. That is, the solution to a subproblem t is obtained from all
the solutions to the subproblems i with i = t + 1, . . . ,m. Therefore, we follow a
bottom-up approach where we obtain the solution for the trivial subproblem, that

4.2. Minimizing the space 47

is, when just 1 bit is considered and m bits are ignored, then we obtain the optimal
values for the intermediate subproblems using the values obtained for the shorter
problems, and finally the optimal value for the complete problem is obtained when
all the bits are considered.

Let us show now how to obtain the solution to a subproblem t from the solutions
to the subproblems i with i = t+1, . . . ,m, which we assume that have been already
computed. In the subproblem t a new bit At is considered, and the algorithm must
decide the optimal partition for < Am ⋅ ⋅ ⋅At >, that is, the number of levels Lt and
the size of the blocks for each level btk , k ≤ Lt. This bit At belongs to the first level
of the optimal representation of the bits involved in the subproblem t. The size of
this first level is bt1 , and 1 ≤ bt1 ≤ m − t + 1, as we have previously mentioned.
Depending on the size of this first new level, which includes the new bit considered
At, we can create the solution of the subproblem t as follows:

∙ If bt1 = m− t + 1, then Lt = 1 since just one level is created for all the bits
involved in the subproblem t.

∙ If bt1 = m− t, one level is created for the bits < Am−1 ⋅ ⋅ ⋅At >. There is just
one bit that is not included in this level, that is, < Am >. Then, the optimal
solution to the subproblem m can be used to solve it.

∙ If bt1 = m− t− 1, one level is created for the bits < Am−2 ⋅ ⋅ ⋅At >. The rest
of the bits that are not included in this level, that is, < AmAm−1 > must be
also partition in levels. Then, the optimal solution to the subproblem m− 1
can be used to solve it.

∙ ⋅ ⋅ ⋅

∙ If bt1 = 2, one level is created for the bits < At+1At >. The rest of the bits
< AmAm−1 ⋅ ⋅ ⋅At+2 > must be also partition in levels so the optimal solution
to the subproblem t+ 2 can be used.

∙ If bt1 = 1, one level is created for just the bit < At >, and the solution to the
subproblem t+ 1 is used for the rest of the bits < AmAm−1 ⋅ ⋅ ⋅At+1 >.

The optimal solution to the subproblem t will be obtained from the comparison
of these m−t+1 possible solutions, choosing the one that minimizes the space. The
procedure of the comparison in order to obtain the best alternative will be explained
in more detail later on. Thus, the optimal solution of the subproblem t is obtained
from the optimal solution of one of the previous subproblems i, i = t+ 1, . . . ,m.

We prove now that our problem exhibits an optimal substructure that enables
the usage of the dynamic programming paradigm.

48 Chapter 4. Our proposal: Directly Addressable Codes

Lemma 4.1 The optimization problem proposed in this section presents an optimal
substructure.

Proof The optimal subdivision in levels for the whole sequence, that is, for the
subproblem 0, which takes into account all the bits < AmAm−1 ⋅ ⋅ ⋅A0 >, must
contain an optimal subdivision of the bits < AmAm−1 ⋅ ⋅ ⋅Ab1 >, where b1 is the
size of the blocks for the first level of the representation. If there was a less costly
way to represent all the bits < AmAm−1 ⋅ ⋅ ⋅Ab1 > of the integers of the sequence
(that is, a better solution to the subproblem b1), substituting that new subdivision
in the optimal solution for the representation of the bits < AmAm−1 ⋅ ⋅ ⋅A0 > would
produce another representation of the sequence of integers whose cost would be lower
than the optimum: a contradiction. Thus, an optimal solution to the optimization
problem for a certain sequence of integers contains within it optimal solutions to
smaller subproblems.

Another key aspect that enables the applicability of dynamic programming,
apart from the optimal substructure of the problem that was proven before, is that
the problem has relatively few subproblems: one problem for each bit of the binary
representation of the maximum value M , that is, ⌊logM⌋+ 1 subproblems.

Example Figure 4.3 illustrates the optimal substructure of our optimization prob-
lem with a small example. In this case, the maximum value of the sequence is
encoded with 9 bits in its binary representation < A8A7 . . . A1A0 >. We label the
most significant bit with A8 and the least significant bit with A0 and we will cover
all the bits from most to least significant, so we start with the trivial subproblem
when t = m = 8 (just 1 bit is considered, and the 8 least significant bits are ig-
nored) and the optimal value of the problem is obtained for t = 0 (all the bits are
considered, 0 are ignored).

Let us consider that the algorithm has already obtained the optimal solution
to the subproblems from 8 to 4. We explain now the computation of the optimal
solution to the subproblem 3, that is, to encode in the best way all the values which
are larger or equal to 23, ignoring their 3 lowest bits. We make use of the previous
optimal solutions such that there are m− t+1 = 8− 3+1 = 6 possible alternatives
to consider and the optimal value to this subproblem is obtained by comparing the
size obtained by each one of these different alternatives. Then, to encode all the
values greater or equal than 23 = 8 (we ignore the 3 least significant bits, which can
encode values from 1 to 7), we must compare the following alternatives:

i) creating a new level with the 6 most significant bits,

ii) maintaining the optimal solution for the 1 most significant bit and creating a
new level for the other 5 bits,

4.2. Minimizing the space 49

A8A7A6A5A4A3A2A1A0

i)

ii)

iii)

iv)
v)
vi)

Figure 4.3: Optimal substructure in a small example.

iii) maintaining the optimal solution previously computed for the 2 most signifi-
cant bits and creating a new level with the other 4 bits,

iv) maintaining the optimal solution previously computed for the 3 most signifi-
cant bits and creating a new level with the other 3 bits,

v) maintaining the optimal solution previously computed for the 4 most signifi-
cant bits and creating a new level with the other 2 bits, and

vi) maintaining the optimal division for the first 5 bits and creating a new level
for the sixth bit.

Once we have shown that the optimal value of a subproblem t is obtained from
the solutions to the subproblems t+1, . . . ,m, we must define the value of this optimal
solution to the subproblem t in terms of the optimal solutions to the subproblems.
Let s[i] be the minimum size of the representation obtained for the subproblem i,
t < i ≤ m. The optimal space to represent the whole sequence of integers would be
s[0].

We can define s[t] recursively as follows. For the subproblem t, m−t+1 solutions
are computed and compared: m − t of them are obtained from the subproblems
i = t+ 1, . . . ,m and there is one more solution obtained trivially:

∙ Each of the m − t solutions of the subproblem t obtained by means of one
subproblem i, i = t+ 1, . . . ,m consists in maintaining the levels and the sizes
of the levels created for the subproblem i and adding a new level for the bits
< Ai+1 ⋅ ⋅ ⋅At >, whose size of blocks is i − t. The size in bits for this new
level will be (fc[m + 1] − fc[t]) ⋅ (i − t + 1 + X), following the formula (4.1),
where the number of chunks of the level created nt1 is fc[m+ 1]− fc[t], that
is, there is one chunk per each integer of the sequence that is greater or equal
than 2t, the size of the blocks for this level is bt1 = i− t and L > k = 1.

50 Chapter 4. Our proposal: Directly Addressable Codes

∙ The trivial subdivision for the subproblem t, which is not solved by means of
any of the previous subproblems, consists in creating one unique level with
all the bits < Am ⋅ ⋅ ⋅At >. Consequently, since this level includes the most
significant bit Am, it is the last level of the representation. Thus, the bit array
Bk is not stored, and the size in bits of the level is (fc[m+1]−fc[t])⋅(m−t+1),
following the formula (4.1) with nt1 = fc[m+ 1]− fc[t], bt1 = m − t + 1 and
k = L = 1.

Following the above, the recursive definition for the minimum cost of the represen-
tation of the sequence of integers for the subproblem t, that is, to encode in the
best way all the values which are greater or equal to 2t, ignoring their t lowest bits,
becomes:

s[t] = min{ min
t<i≤m

{s[i] + (fc[m+ 1]− fc[t]) ⋅ (i− t+ 1 +X)},

(fc[m+ 1]− fc[t]) ⋅ (m− t+ 1)}
(4.2)

If the minimal value is obtained from the upper part of the expression (4.2),
then the solution of the problem is obtained from the solution of a subproblem i,
the one that minimizes the value of the expression. Hence, the number of levels Lt

will be Lt = Li + 1, since one extra level is created. The size of the new level (the
first level of the optimal solution to the subproblem t) is bt1 = i− t and the sizes of
the rest of the levels are identical to the sizes of the levels of the optimal solution
to the subproblem i, that is, btk+1

= bik , k < Lt. On the other hand, if the minimal
value is obtained from the bottom part of the expression (4.2), then only one level
is created, that is, Lt = 1. The size of this level is bt1 = m− t+ 1 bits.

For the computation of the values of Lt and btk , ∀k ≤ Lt for each subproblem
t using the dynamic programming algorithm described above, we use three vectors
of size m+ 1. The position t of each vector contains the following information:

∙ s[t]: contains a long value representing the optimal size of the encoding of all
the values greater or equal to 2t when the t lowest bits are ignored.

∙ l[t]: stores the optimal number of levels Lt for the subproblem t, which con-
siders only the m− t+ 1 highest bits.

∙ b[t]: stores the size of the blocks for the first level of the optimal subdivision
in blocks of the subproblem t. Once the optimal subdivisions for all the
subproblems have been created, the optimal values bk can be obtained from
the values of this vector.

The s[t] values give the costs in bits of the optimal solutions to the subproblems.
The other two vectors, l[t] and b[t] help us keep track of how to construct the optimal
solution.

4.2. Minimizing the space 51

Algorithm 4.1: Optimize(m, fc)

for t = m. . . 0 do
minSize← maxLongV alue
minPos← m
for i = m. . . t+ 1 do

currentSize← s[i] + (fc[m+ 1]− fc[t])× (i− t+ 1 +X)
if minSize > currentSize then

minSize← currentSize
minPos← i

end

end

if minSize < (fc[m+ 1]− fc[t])× (m− t+ 1) then
s[t]← minSize
l[t]← l[minPos] + 1
b[t]← minPos− t

else
s[t]← (fc[m+ 1]− fc[t])× (m− t+ 1)
l[t]← 1
b[t]← (m− t+ 1)

end

end

L← l[0]
t← 0
for k = 1 . . . l[0] do

bk ← b[t]
t← t+ b[t]

end

return L, bk

Algorithm 4.1 obtains the optimal number of levels L and the bk values, k ≤ L,
given a vector of cumulative frequencies of size m + 2. The optimal size for each
subproblem is stored in vector s[t], the optimal number of levels in l[t] and the
parameter for the first level of those optimal subdivisions in b[t]. Since we cover
all the bits from the most significant bit (Am) to the least significant bit (A0), the
values stored in l[0] and b[0] are the optimal values for the whole encoding.

Analysis Let us denote M the maximum value of the sequence and m + 1 the
number of bits needed for the binary representation of M .

We have few subproblems: one problem for each bit of the binary representation
of the maximum value of the sequence. Each subproblem computes its solution by
accessing to the values stored in an auxiliary table of size m+1, which contains the
solutions to all the previous subproblems.

Hence, as we can see in Algorithm 4.1, the algorithm is quadratic in the number

52 Chapter 4. Our proposal: Directly Addressable Codes

of bits of the binary representation of the largest integer of the sequence. Since
m = ⌊logM⌋, the optimization would cost just O(log2 M) time, provided that
vector fc has been previously computed.

The space consumption is O(logM), since the input fc has size m + 2 and the
three vectors used during the optimization algorithm, that is, s[t], b[t] and l[t] have
size m+ 1.

4.2.2.1 Limiting the number of levels

As we have said, the optimization algorithm presented above obtains the optimal
number of levels and b values that minimize the space of the representation given a
sequence of integers. However, the optimal number of levels can be high, degrading
the time efficiency. Hence, it would be interesting to obtain the configuration of
parameters that minimizes the space usage while limiting the number of levels of
the representation. If we restrict the number of levels of the representation, we are
limiting the access time for the worst case (the access time for the maximum value
of the sequence).

Thus, the new problem consists in, given the sequence of integers to encode,
their frequency distribution and an integer R, returning the optimal values for the
parameters of DACs (number of levels and b value for each level) that minimize the
space of the encoded sequence such that the number of levels is lower or equal to
R.

This can be trivially computed by modifying the optimization algorithm de-
scribed in Algorithm 4.1, including a new parameter v that restricts the number of
levels to use. For each subproblem t, its optimal solution is computed as follows:

1. If v = 1, then just one level is created to represent all the integers involved in
that subproblem.

2. If v > 1, we compute the solution to subproblem t as explained before using
the optimal solutions for the subproblems i with i = t+1, . . . ,m, which were
computed with the parameter v − 1.

Hence, the optimal configuration restricting the number of levels to R is obtained
when computing the optimal solution to subproblem t = 0 and v = R. The trivial
case when R = 1 consists in using one level with blocks of m + 1 bits, that is, we
use a fixed-length encoding where each integer is represented with the number of
bits required by the binary representation of the maximum integer of the sequence.
Being L the optimal number of levels (without restriction), we obtain the same
configuration than Algorithm 4.1 for R ≥ L. Varying the value of R, 1 ≤ R ≤ L,
we can obtain a space/time tradeoff where space improves as more levels can be

4.2. Minimizing the space 53

created, and access times become faster when limiting the number of levels to a
lower value.

Analysis Being R at most m+1, for the extreme case of building a representation
with m+1 levels, one level for each bit of the binary representation of each integer,
thus R = O(logM). Hence, the time complexity of the optimization limiting the
number of levels would be O(log3 M), as we must compute at most each one of the
previous subproblem t with the values of parameter v, for v ≤ R.

In addition, we can restrict the possible values of bk at each level of the repre-
sentation (except for the last level) to the values 1, 2, 4, and 8, that is, restricting
bk to be a power of two lower or equal to 8. This byte-aligned variation of the al-
gorithm generates a representation of the sequence where each chunk is completely
contained in a unique byte, and decompression and accesses can be implemented
more efficiently in practice.

In the next chapter we show the experimental evaluation of our technique applied
in different domains and we show how the optimal configuration of b values restrict-
ing the number of levels of the representation leads to an interesting space/time
tradeoff.

54 Chapter 4. Our proposal: Directly Addressable Codes

Chapter 5

Applications and experiments

The new technique presented in the previous chapter, the Directly Addressable
Codes (DACs), is practical and can be successfully used in numerous applications
where direct access is required over the representation of a sequence of integers.
This requirement is frequent in compressed data structures, such as suffix trees,
arrays, and inverted indexes, to name just a few. We show experimentally that the
technique offers a competitive alternative to other encoding schemes that require
extra structures to support direct access.

More generally, we can consider two different scenarios:

∙ Coding sequences of integers

There are several domains where integers are the symbols to encode. These
integers have values of different magnitudes, usually small, but some of them
have large values. We want to represent these integers in a compact way while
supporting direct access to any value of the sequence.

As we have seen in Section 3.1, there are several encoding schemes especially
designed for integers, such as �-codes,
-codes, Rice codes or Vbyte codes. If
direct access must be provided, we must include a sparse sampling over the
encoded sequence. We can compare the performance of DACs in this scenario
against the performance of the sparse sampling over the encoded sequences
using these encoding schemes for integers.

∙ Representing sequences of arbitrary symbols as sequences of inte-

gers via a statistical modeler

There are also multiple domains where we want to obtain a compressed rep-
resentation of a sequence of arbitrary symbols. A statistical modeler can be

55

56 Chapter 5. Applications and experiments

used to obtain a model of the sequence where the frequencies of the symbol are
obtained and used to assign them variable-length codewords: shorter code-
words are given to more frequent symbols and longer codewords are assigned
to those symbols that appear fewer times in the sequence. This strategy pro-
duces a compact representation of the sequence. In addition to the encoded
sequence, a vocabulary of symbols sorted by frequency and some information
about the encoding scheme must be also stored, such that the original se-
quence can be retrieved. Huffman encoding is one of the most used techniques
when compressing sequences of symbols, since it obtains a very compact space.
However, direct access is not possible over the compressed sequence obtained
by Huffman encoding, so a sparse sampling is used when this functionality is
required.

DACs can also be used in this scenario, by considering the sequence of po-
sitions of the symbols in the sorted vocabulary instead of the sequence of
symbols. This represents the original sequence in a compact way and sup-
ports fast access to any element of the encoded sequence and, consequently,
to any symbol of the original sequence, since the vocabulary of sorted symbols
is also stored.

This chapter is organized as follows. In Section 5.1 we start by analyzing the
space/time trade-off due to the value of parameter b. Section 5.2 shows some im-
mediate applications of our scheme, and compares the behavior of DACs with other
solutions that also support direct access. Finally, Section 5.3 describes some other
scenarios where DACs have been successfully applied.

5.1 Influence of the parameter b

We first analyze the influence of the chosen value for parameter b on the space/time
efficiency of our proposal. We implemented our technique with b values manually
chosen for each level (in many cases the same b for all) and also with the optimal
values obtained with the optimization algorithm described in Section 4.2, including
the variations where we limit the number of levels. We implemented rank operations
using the 5%-extra space data structure by González et al. [GGMN05] (this is space
over the Bk bitmaps).

The machine used in these experiments is an isolated Intel R⃝Pentium
R⃝-IV 3.00

GHz system (16Kb L1 + 1024Kb L2 cache), with 4 GB dual-channel DDR-400Mhz
RAM. It ran Debian GNU/Linux (kernel version 2.4.27). The compiler used was
gcc version 3.3.5 and -O9 compiler optimizations were set.

To study the behavior of our representation, DACs are applied over a large
sequence of integers. In this section, the sequence of integers represents a natural
language text, regarding the text as a sequence of words. Therefore, the integer at
position i of the sequence to encode represents the word at position i of the text.

5.1. Influence of the parameter b 57

We first extract the � different words of the text and create a vocabulary of
terms. We sort this vocabulary by frequency, and then assign an integer code to
each word according to the position of the word in this sorted vocabulary: we
assign the integer 1 to the most frequent symbol, the integer 2 to the next most
frequent symbol and so on, assigning the integer � to the least frequent symbol of
the vocabulary. Hence, the text can be regarded as a sequence of integers if we
replace each word of the text by the integer associated with it.

If we apply DACs over this sequence, we obtain a representation of the text
where decoding from any position, forward and also backwards, is supported. In
addition, since the integers associated with the words are assigned according to a
statistical modeling, that is, we assign smaller integers to those words that appear
more frequently and larger integers for words appear less frequently, we obtain a
compact representation of the text.

We took the trec-41 collection CR (Congressional Record 1993), of about 47
MB, composed of 10,113,143 words from a vocabulary of 117,713 different words.
We represented this text using DACs with different b values for the size of the blocks
for each level of the representation. More specifically, we analyzed the behavior of
the seven following configurations of the technique:

∙ We call opt the approach with the b values for each level of the representation
that minimize the space. These b values are computed using the optimization
algorithm presented in Section 4.2. For this collection CR, the optimal number
of levels (without restriction) is 7 and values of b are - starting from the first
level of the representation to the last level - 4, 4, 2, 2, 2, 1, 2. We also compute
the optimal configuration limiting the number of levels R, varying 1 ≤ R < 7.

∙ We call opt-aligned the approach using the variation of the optimization algo-
rithm that restricts to R the number of levels of the representation and uses
b values that are power of two. We compute the optimal configuration when
the number of levels is restricted to R with 1 ≤ R ≤ 7.

∙ ′8′, ′7′, ′4′, ′2′ stand for the alternatives where we maintain a fixed b value
for all the levels of the representation, with b = 8, b = 7, b = 4 and b = 2
respectively.

Space usage

Table 5.1 shows the compression ratio obtained by each alternative. The first col-
umn contains the name of the alternative. The second and third columns shows the

1One goal of the Text REtrieval Conference (TREC) consists in providing the infrastructure
necessary for large-scale evaluation of text retrieval methodologies. The TREC test collections are
available to the retrieval research community. More information in http://trec.nist.gov/

58 Chapter 5. Applications and experiments

Alternative Number of levels b values Compression ratio

opt (no restrict.) 7 4, 4, 2, 2, 2, 1, 2 28.88%

opt R = 6 6 4, 4, 2, 2, 2, 3 28.90%

opt R = 5 5 5, 4, 3, 2, 3 29.14%

opt R = 4 4 6, 4, 3, 4 29.51%

opt R = 3 3 6, 5, 6 30.45%

opt R = 2 2 8, 9 33.29%

opt R = 1 1 17 43.91%

opt-aligned R = 7 7 4, 4, 2, 2, 2, 1, 2 28.88%

opt-aligned R = 6 6 4, 4, 2, 2, 2, 3 28.90%

opt-aligned R = 5 5 4, 4, 4, 2, 3 29.25%

opt-aligned R = 4 4 4, 4, 4, 5 29.60%

opt-aligned R = 3 3 8, 4, 5 30.80%

opt-aligned R = 2 2 8, 9 33.29%

opt-aligned R = 1 1 17 43.91%
′8′ 3 8, 8, 8 33.45%
′7′ 3 7, 7, 7 32.02%
′4′ 5 4, 4, 4, 4, 4 29.67%
′2′ 9 2, 2, 2, 2, 2, 2, 2, 2, 2 30.56%

Table 5.1: Compression ratio obtained using different configurations for
our DACs.

number of levels used by the alternative and the values of b for those levels, respec-
tively. The last column shows the compression ratio obtained, which is measured
as the total space needed to represent the natural language text compared to the
total size of the uncompressed text. Not only the sequence of integers is stored,
but also the vocabulary of the different words that appear in the text (in uncom-
pressed form), such that the original text can be recovered from the compacted
representation.

As it was expected, the opt alternative without restricting the number of levels
obtains the minimal space. The most space-consuming approach is obtained by the
optimization algorithm if we restrict the number of levels to R = 1. In this case,
since there are 117,713 different words in the collection CR, each word is represented
in a unique level with blocks of 17 bits. The next most space-consuming approach is
the ′8′ alternative, which uses b = 8 for all the levels. Its worse compression ratio is
due to the fact that this alternative assigns very long codewords (9 bits codewords)
to highly repetitive words, so the size of the compressed text obtained is far from
optimal. Moreover, this ′8′ version obtains a compact representation with 3 levels,
using 8 bits in the last one. However, there is no need of such a large b for the last
level. The larger Vbyte codeword that would be assigned to the least frequent word
of the vocabulary would have 17 bits. If we use b = 8 for all the levels, only one bit
of the blocks in the last level is significant, the other 7 bits are all zeroes, wasting
that space. In fact, if we used a third level with b = 1 the compression ratio would

5.1. Influence of the parameter b 59

improve close to 0.10%, obtaining a compression of 33.35%.

Alternative ′7′ compresses to 32.02%, close to the ETDC ratio (31.94% for this
collection, as we will see in Section 9.3). Note that we use this variant of the Vbytes
codification in order to obtain better space results (so we can exploit chunks with all
zeroes as the highest chunks as explained in Section 4.1.1). Hence, the compressed
text obtained by DACs using chunks of 8 bits (since b = 7) is a relocation of the
bytes of the codewords of the compressed text obtained by the ETDC: the bytes
are rearranged in several levels and the most significant bit of each byte is placed
separately in the bit array of the corresponding level (indicating whether the code
continues or not in the following level). The space usage is slightly higher for DACs
than for ETDC since extra structures to support rank operations in efficient time
are stored. However, the compact representation of the text using DACs permits
an interesting additional functionality compared to the compressed text obtained
by ETDC: direct access to the i-th word of the text.

Both alternatives ′8′ and ′7′ are outperformed in terms of space by all the con-
figurations obtained by opt and opt-aligned approaches for R > 1. Even when using
only 2 levels, the optimization algorithm is able to obtain a more compressed rep-
resentation of the sequence. These two approaches, opt and opt-aligned, obtain the
same configuration for R = 1, 2, 6, 7, since the b values of the optimal configuration
are power of two. For R = 3, 4, 5, opt approach obtains better compression ratios
than opt-aligned. As expected, as we restrict the number of levels, the compression
ratio is degraded.

The compression obtained by alternative ′2′ shows that maintaining a small b
value for all the levels is not a good choice either. With this approach, there are
very few words whose codeword ends in the first level of the representation and
most of them need several levels to completely represent the codeword. Then, the
bit arrays of the first levels contain mainly 1s, indicating that most of the codewords
continue. These bit arrays and the extra structures for the rank operation consume
a substantial amount of space that can be reduced by noticing that it is not practical
to make a level subdivision where there are few codewords ending at the first level.
Hence, it may be a preferred choice to create fewer levels, such as with alternative
′4′, which obtains a better adjustment and improves the compression ratio.

Time efficiency

As we have already stated, the optimization algorithm presented in Section 4.2 ob-
tains the values of b that minimize the space usage of the representation, given a
sequence of integers. However, this optimization can lead to an inefficient repre-
sentation in terms of time, if the number of levels generated is high. Then we can
use the variation of the algorithm explained in Section 4.2.2.1 where we limit the
number of levels to decrease the worst-case time.

Figure 5.1 (top) shows the average time (in seconds) needed to decompress the

60 Chapter 5. Applications and experiments

whole text. For each alternative we draw a point where the x-coordinate represents
the compression ratio obtained by that alternative and the y-coordinate represents
the decompression time. Note that decompression is performed without using rank
operations as detailed in Section 4.1.

The faster alternatives, ′8′, opt with R = 1, 2 and opt-aligned with R = 1, 2, 3,
share a common property: a large value of b is used for the first level of the repre-
sentation, such that the decompression of most of the codewords of the compressed
text ends in that first level. This avoids the cost of jumping to the second level
of the representation, which is not located contiguously in main memory, in order
to find the continuation of the codeword in the next level, which slows down the
decompression speed. Alternative ′4′ gives a good compromise between time and
space, while the opt alternative with R = 7 (in red color), with the best compression
ratio, obtains a worse decompression time, since its representation is composed of
seven levels, whereas the representation produced by ′4′ alternative consists only
of five levels. For this sequence, the alternative opt-aligned with R = 7 obtains
the same compression ratio than opt with R = 7, and since the implementation
takes advantage of the byte-alignments, the decompression time for this alternative
is significantly better in practice. Alternative ′2′ is the worst configurations in both
time and space. The problem of using low b values in all the levels of the represen-
tation is not only of space, as previously explained for the alternative ′2′, but most
importantly in time, since a high number of levels is generated.

Figure 5.1 (bottom) shows the average time to extract a codeword at a random
position of the compressed text. We measured the average time to access to (and
decode) all the positions of the text in random order. Results are very similar to
those obtained for the decompression time and shown in the upper figure. However,
the time differences between all the alternatives have been enlarged due to the cost
of computing rank operations, which were not necessary when decompressing the
whole sequence.

The best times are obtained for opt and opt-aligned with R = 1, since no rank
operations are required (they consist of just one level). Then, the alternatives using
few levels are the ones that obtain the best times. The byte-alignment can also
significantly improve access times. For instance, alternative ′8′ obtains a very com-
petitive performance since at most 3 rank operations must be performed to extract
one codeword of the encoded sequence and it works with complete bytes at each level
of the representation2. The worst times are obtained when the number of levels of
the representation is high (alternative ′2′ may require 9 rank operations to extract
some of the codewords). The optimal alternative in terms of space (alternative opt)
obtains an intermediate access time. In this case, the opt-aligned configuration does
not always obtain better access times than the opt configuration using the same

2We omit in both figures the alternative ′7′, as its results are worse than alternative ′8′, as it
does not take advantage of byte-alignments.

5.1. Influence of the parameter b 61

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40 45

T
im

e
(s

)

Compression ratio (%)

Decompressing the whole text

opt
opt-aligned

opt (b=4,4,2,2,2,1,2)
8 (b=8,8,8)

4 (b=4,4,4,4,4)
2 (b=2,2,2,2,2,2,2,2,2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40 45

T
im

e
pe

r
qu

er
y

(µ
s/

ac
ce

ss
)

Compression ratio (%)

Accessing to random positions

opt
opt-aligned

opt (b=4,4,2,2,2,1,2)
8 (b=8,8,8)

4 (b=4,4,4,4,4)
2 (b=2,2,2,2,2,2,2,2,2)

Figure 5.1: Space/time trade-off for different configurations when decom-
pressing the whole text (top), and when accessing and decompressing random
positions of the text (bottom).

62 Chapter 5. Applications and experiments

number of levels. For instance, when R = 3, the opt-aligned configuration obtains
worse compression ratio but better access times, since it uses a large b value for the
first level than the opt configuration with R = 3 and it takes advantage of byte-
alignments. However, when R = 4 the first level of the opt-aligned configuration
uses blocks of 4 bits, while the first level of the opt configuration with R = 4 uses
blocks of 6 bits. Hence, even when it is faster to extract a block from the opt-aligned
representation, there are several integers that are completely represented with opt
but require an access to the second level of the representation and a rank operation
when using the opt-aligned approach. Hence, the opt-aligned approach does not
always lead to a better average time performance.

As we can see in the previous figures, we obtain the best compression ratio
when we use the configuration that the optimization algorithm calculates. However,
the representation obtained from those values does not obtain the best results in
terms of time, since there are other configurations of b values that obtain better
decompression speed and access time to any position of the text at the expense of
worsening the compression ratio. The speed-up is achieved when the number of
levels of the representation is reduced or due to byte-alignments.

5.2 Applications

We will now compare the performance of our DACs with other alternatives that
represent the sequence of integers and enable direct access over it.

We consider the two different scenarios that were previously described. In Sec-
tion 5.2.1 we compare DACs with sparse sampling over �-codes,
-codes, Rice codes
and Vbyte codes when direct access is provided to a encoded sequence of integers.
We use LCP arrays as an example of sequences of integers to encode.

Section 5.2.2 and Section 5.2.3 describe scenarios where we have sequences of
arbitrary symbols instead of sequences of integers. We compare the behavior of
DACs in this scenario with other statistical encodings such as bit-oriented and byte-
oriented Huffman encondings, which require a sparse sampling to provide direct
access over the sequence. We also compare our technique with the dense sampling
of Ferragina and Venturini, explained in Section 3.2.2, and with a Huffman-shaped
wavelet tree (see Section 2.3.2), which compactly represents a sequence of symbols
from an arbitrary alphabet and supports efficient access to any element of the
sequence. Section 5.2.2 studies the behavior of all these alternatives to represent
tuples of k characters of some texts so that they can be compressed to high-order
empirical entropy and Section 5.2.3 compares the performance of the byte-oriented
version of our technique with the byte-oriented Huffman to represent a natural
language text considering words as source symbols.

5.2. Applications 63

Table 5.2: Description of the LCP arrays used.

dat num. elem. max value avg value most freq. value

dblp 104,857,601 1,084 28.22 10 (2.15%)

dna 104,857,601 17,772 16.75 13 (24.59%)

proteins 104,857,601 35,246 195.32 6 (28.75%)

For all the experiments in this section the machine used is a AMD Phenom(tm)
II X4 955 Processor (4 cores) with 8 GB RAM. It ran Ubuntu GNU/Linux with
kernel version 2.6.31-22-server (64 bits). We compiled with gcc version 4.4.1 and
the option -O9.

5.2.1 LCP array representation

Consider a text T [1, n] of length n, and all the suffixes of the text, that is, T [i, n]
with 1 ≤ i ≤ n. Assume that we have all those suffixes lexicographically sorted.
The Longest Common Prefix Array (LCP array) is an array that stores, for each
suffix, how many symbols has in common with the previous suffix, that is, the length
of the longest common prefix between each suffix and its predecessor. Most LCP
values are small, but some can be much larger. Hence, a variable-length encoding
scheme is a good solution to represent this sequence of integers.

Our experiments were performed on 100 MB of the XML, DNA and protein
texts from Pizza&Chili corpus (http://pizzachili.dcc.uchile.cl). We denote dblp the
LCP array obtained from the XML file, which contains bibliographic information
on major computer science journals and proceedings. We denote dna the LCP ar-
ray obtained from the DNA text, which contains gene DNA sequences consisting of
uppercase letters A,G,C,T, and some other few occurrences of special characters.
We denote proteins the LCP array obtained from the protein text, which contains
protein sequences where each of the 20 amino acids is coded as one uppercase let-
ter. Some interesting information about this dataset is shown in Table 5.2. The
first column indicates the number of element of the LCP array. The second and
third column show, respectively, the maximum and average integer values stored
in the LCP array. The last column shows the most frequent integer value and its
frequency. For instance, we can observe that the most frequent value of the LCP
array in the XML file is 10, but its frequency is 2.15%, since the distribution is
more uniform than the values in the LCP array of DNA or protein texts. This
information will be useful to understand the behavior and different parameters of
each encoding scheme used to represent these LCP arrays.

The LCP arrays were computed and represented using DACs with different

64 Chapter 5. Applications and experiments

configurations for parameter b:

∙ “DACs b=2” stands for the alternative that uses a fixed value of b = 2 for all
the levels of the representation.

∙ “DACs b=4” stands for the alternative that uses a fixed value of b = 4 for all
the levels of the representation.

∙ “DACs b=8” stands for the alternative that uses a fixed value of b = 8 for all
the levels of the representation.

∙ “DACs opt” stands for the alternative that uses the optimal value for b at
each level of the representation. These values are b = 6, 1, 1, 1, 2 for dblp,
b = 4, 1, 1, 1, 2, 2, 2, 2 for dna and b = 3, 3, 2, 2, 2, 1, 1, 2 for proteins when no
restriction of number of levels is applied. These values were obtained using the
optimization algorithm explained in Section 4.2, which considers the frequency
distribution of the values to be encoded to compute the optimal values for the
number of levels and block sizes that minimize the space required by the
DACs. For instance, as we can see in Table 5.2, the most frequent value for
proteins is 6, and it appears the 28.75% of the times, hence, if we use just
3 bits for the first level, we can compactly represent all those occurrences
of integer 6 without wasting any extra bit. In fact, the next most frequent
values are 5 and 7, with frequencies 22.98% and 7.55%, which can also be
compactly represented in that first level with 3 bits. The same considerations
can be made for dna, whose most frequent value is 13 and it can be completely
represented in a first level of 4 bits. On the other hand, values of dblp are more
uniformly distributed, and the most frequent values are not that small. Hence,
6 bits for the first level is the optimal fit with its distribution. In addition,
we built several configurations limiting the number of levels R, using values
of 1 ≤ R ≤ 5 for dblp, 1 ≤ R ≤ 8 for dna and 1 ≤ R ≤ 8 for proteins.

∙ “DACs opt-aligned” stands for the alternative using the variation of the opti-
mization algorithm that limits the number of levels and uses b values that are
power of two. Several representations are built using values of 1 ≤ R ≤ 6 for
dblp, 1 ≤ R ≤ 8 for dna and 1 ≤ R ≤ 7 for proteins.

We implemented rank operations using the 5%-extra space data structure by González
et al. [GGMN05] (this is space over the Bk bitmaps).

We compare the space and time efficiency of our proposal with some integer
encodings3, more concretely:

∙ �-codes.
3I would like to thank Eduardo Rodríguez for providing efficient implementations of �-codes,

-codes and Rice codes.

5.2. Applications 65

∙
-codes.

∙ Byte codes, that is, Vbyte codes with b = 7 (using bytes as chunks).

∙ Rice codes, using the value of parameter b that minimizes the space of the
encoded sequence. This value is b = 5 for dblp, b = 4 for dna and b = 7
for proteins. These values depend on the average value for each sequence,
detailed in Table 5.2. For instance, the average value for sequence dna is
smaller than for the rest of the sequences, hence we also use a lower b value
as parameter for the Rice codes.

To support direct access over the compressed representation of the LCP array we
attach a sparse sampling to the encoded sequence obtained by all these integer
encoding schemes, so we can compare them with the representation obtained by
DACs, which support direct access without any extra structure.

We also compare our structure with the representation of the sequence of inte-
gers using the Elias−Fano representation of monotone lists as explained in Section
3.2.3. We use the implementation from the Sux4J project4 [Vig08], compiling with
java version 1.6.0_18.

We measure the space required by each technique in bits per element (bits/e),
that is, we show the average number of bits required to encode each value of the
LCP array. We also measure decompression and access time in seconds. Decom-
pression time measures the seconds needed to retrieve the original LCP array in
plain form. Access time is measured in microseconds per access as the average time
to retrieve the elements at random positions of the LCP array.

Table 5.3 shows the space required by �-codes,
-codes, byte codes and Rice
codes (without any sampling) to represent the three different LCP arrays, and the
space occupied by the different configurations of DACs. This is the space required
by each alternative to decompress the compressed representation of each LCP array
and retrieve the original one in plain form. Note that we do not require the use
of the samples to decompress the whole array. We also include the decompression
time in seconds.

We can observe that “DACs opt” (without restriction on the number of levels
used) obtains the best space among all the alternatives, except for dblp using Rice
codes, which is also the fastest bit-oriented alternative for this LCP array. Byte
codes obtain the fastest decompression times among all the alternatives, including
our byte-oriented DACs, that is, “DACs b=8”, since the sequential decoding pro-
cedure of the byte codes is faster than decompressing using DACs, which requires

4http://sux.dsi.unimi.it/

66 Chapter 5. Applications and experiments

Text dblp dna proteins

Method Space Time Space Time Space Time

(bits/e) (sec.) (bits/e) (sec.) (bits/e) (sec.)

�- codes 9.5421 1.04 8.3908 1.04 7.8635 1.31

- codes 10.0834 1.19 7.7517 1.15 8.2899 1.40

byte codes 8.4024 0.44 8.0612 0.43 9.2683 0.51

Rice codes 6.9194 0.91 6.0493 0.89 9.5556 0.93

DACs b = 2 8.6992 1.44 6.5008 1.15 7.9499 1.61

DACs b = 4 8.9410 0.99 6.0474 0.81 7.1516 0.97

DACs b = 8 9.0515 0.54 9.0900 0.50 9.8896 0.58

DACs opt (no restrict.) 7.5222 1.41 5.5434 1.35 6.5797 2.01

Table 5.3: Space for encoding three different LCP arrays and decompression
time under different schemes.

reading bytes at different levels of the representation that are not contiguously lo-
cated in memory. However, these byte-oriented representations occupy much more
space than the bit-oriented encoding schemes. Notice that byte codes cannot occupy
less than 8 bits per element and “DACs b=8” cannot occupy less than 9 bits. “DACs
b=4” offers an attractive space/time compromise for dna and proteins, obtaining
better spaces than any integer encoding over these LCP arrays and also better times
than those bit-oriented encodings (except for Rice codes over proteins, which ob-
tain slightly better decompression times but significantly worse space). Its times
are close twice the times obtained by byte-code encodings, but the space required
is significantly lower.

The main goal of our proposal is to provided fast direct access to the encoded
sequence. Hence, we tested the efficiency of DACs by accessing all the positions
of each LCP array in random order. Figure 5.2 shows the space/times achieved
for dblp (top), dna (center), and proteins (bottom) LCP arrays. The space for
the integer encodings includes the space for the sparse sampling, where we varied
the sample period to obtain the space/time trade-off. We also include Elias-Fano
representation in this comparative.

DACs obtain the most compact space among all the alternatives when the op-
timal values for b are computed using the optimization algorithm, except for dblp.
However, in this case, DACs are faster than those schemes that occupy less space,
more concretely, Rice codes. In all the figures we can observe that DACs dominate
the space/time trade-off.

5.2. Applications 67

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

bits per element

LCP - dblp

DACs opt
DACs opt-aligned

DACs opt (b=6,1,1,1,2)
DACs b=2
DACs b=4
DACs b=8

δ-codes + sampl.
γ-codes + sampl.

bytecodes + sampl.
Rice codes (b=5) + sampl.
Elias-Fano monotone lists

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

bits per element

LCP - dna

DACs opt
DACs opt-aligned

DACs opt (b=4,1,1,1,2,2,2,2)
DACs b=2
DACs b=4
DACs b=8

δ-codes + sampl.
γ-codes + sampl.

bytecodes + sampl.
Rice codes (b=4) + sampl.
Elias-Fano monotone lists

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

bits per element

LCP - proteins

DACs opt
DACs opt-aligned

DACs opt (b=3,3,2,2,2,1,1,2)
DACs b=2
DACs b=4
DACs b=8

δ-codes + sampl.
γ-codes + sampl.

bytecodes + sampl.
Rice codes (b=7) + sampl.
Elias-Fano monotone lists

Figure 5.2: Space and average access time tradeoff for different config-
urations of DACs and other integer encodings when accessing to random
positions of three LCP arrays.

68 Chapter 5. Applications and experiments

5.2.2 High-Order Entropy-Compressed Sequences

Ferragina and Venturini [FV07] gave a simple scheme (FV) to represent a sequence
of symbols S = S1S2 . . . Sn so that it is compressed to its high-order empirical en-
tropy and any O(log n)-bit substring of S can be decoded in constant time. This
is extremely useful because it permits replacing any sequence by its compressed
variant, and any kind of access to it under the RAM model of computation retains
the original time complexity. Then, the compressed representation of the sequence
permits us to answer various types of query, such as obtaining substrings or ap-
proximate queries, in efficient time without decompressing the whole compressed
data.

The idea of Ferragina and Venturini is to split the sequence S of length n into
blocks of 1

2 logn bits, and then sort the blocks by frequency. That is, they create
a vocabulary with the different blocks of length 1

2 logn bits, count the number of
times that each block appears in the sequence and then order those blocks in the
vocabulary from higher to lower frequency. Then, each block will be represented
by one integer pi: the relative position of the block among the sorted list of blocks,
that is, its position in the sorted vocabulary. The next step consists in replacing
each block in the sequence by the assigned integer such that a sequence of integers
is obtained. Then, the sequence is stored using a dense sampling, as explained in
Section 3.2.2.

We compare Ferragina and Venturini’s dense sampling proposal with our own
representation using DACs, as well as a classical variant using sparse sampling with
the bit-oriented and byte-oriented Huffman encodings (see Section 2.2.1). We also
include a binary Huffman-shaped wavelet tree built over the sequence of symbols,
which provides efficient access to any symbol of the sequence as explained in Section
2.3.2 for a balanced binary wavelet tree.

For the experiments of this section, we represent the sequence of k-tuples of a
text, that is, we consider substrings composed of k characters as the source symbols
of the text. We process the text obtaining the vocabulary of k-tuples that appear
in the text, compute their frequency and sort them by frequency to obtain the pi
values. We obtain the representation of the text as the concatenation of all the
codewords of the k-tuples of the text, the vocabulary of symbols and the codeword
assignment if needed5.

We took the first 200 MB of three different texts from Pizza&Chili corpus

5Our DACs and Ferragina and Venturini’s encoding do not require any additional information
about the codeword assignment, since this assignment does not depend on the probabilities of the
symbols and a dense encoding is used (the codewords are consecutively assigned). Huffman-based
encodings do require the storage of the codeword assignment as they need to reconstruct the
Huffman tree to properly encode and decode. However, this additional information is minimal,
since canonical Huffman is used, thus the extra space required is negligible.

5.2. Applications 69

Table 5.4: Size of the vocabulary composed of k-tuples for three different
texts.

k xml sources english

1 96 230 225

2 6,676 9,183 9,416

3 11,4643 208,235 77,617

4 585,599 1,114,490 382,398

(http://pizzachili.dcc.uchile.cl). We used a XML text, denoted by xml, containing
bibliographic information on major computer science journals and proceedings6.
We also used a text that contains source program code, denote by sources, formed
by the concatenation of some .c, .h, .C and .java files from C and Java source code.
Finally, we also used a natural language text, denoted by english, which contains
some English text files. Table 5.4 shows the size of the vocabulary for each text
when considering tuples of length k, with k = 1, 2, 3, 4.

We implemented the scheme FV proposed in the paper of Ferragina and Ven-
turini [FV07], and optimized it for each scenario. Using the encoding scheme ex-
plained in Section 3.2.2, where an integer pi is represented with ⌊log pi⌋, the longest
block description (corresponding to the least frequent block in the sorted vocabu-
lary) requires a different number l of bits depending on the size of the vocabulary
obtained. We use a two-level dense sampling, storing absolute pointers every c
blocks and relative pointers of ⌈log((c − 1) ⋅ l)⌉ bits for each block inside each of
those superblocks of c blocks. We adjust this setting for each text and k value to
obtain the best space possible. For text xml, c = 20 for k = 1, 2, c = 30 for k = 3
and c = 26 for k = 4. For text sources, c = 18 for k = 1, 2, c = 30 for k = 3 and
c = 24 for k = 4. For text english, c = 20 for k = 1, 2, c = 30 for k = 3 and c = 28
for k = 4.

We also implemented the classical solution to provide direct access to any
block of the sequence, by encoding the different blocks with bit-oriented and byte-
oriented Huffman codes and setting absolute samples every ℎ codewords, ℎ =
{16, 32, 64, 128, 256}, so that partial decoding is needed to extract each value. This
gives us a space-time tradeoff, which will be represented as curves in the figures.

In Section 2.3.2 we described how wavelet trees can represent a sequence of
arbitrary symbols and compute rank, select and access operations efficiently over
the sequence. Hence, we also include a Huffman-shaped wavelet tree as a solution
to provide direct access to a sequence of arbitrary symbols. For the comparison, we

6Notice that this XML text is the same text used to obtain the LCP array denoted by dblp in
Section 5.2.1.

70 Chapter 5. Applications and experiments

create several binary Huffman-shaped wavelet trees with different sizes, varying the
size for the extra structure used to compute fast binary rank and select operations.
We use the implementation of Francisco Claude available at the Compact Data
Structures Library (libcds)7.

We compare those solutions with several configurations of DACs. When we use
the same value for all the levels, we prefer powers of 2 for b, so that faster aligned
accesses are possible. More concretely, we use b = 2, b = 4 and b = 8. We also use
the b values obtained with the optimization algorithm, including the configurations
where we restrict the number of levels of the representation and the byte-aligned
approach.

We measure the space required by each alternative in terms of compression ratio
and the average access time (in microseconds per accessed k-tuple) by computing
the time to access all the k-tuples of the text in random order. We illustrate in the
figures the space/time tradeoff of Ferragina and Venturini’s dense sampling proposal
(“FV + dense sampl.”), bit-oriented Huffman code plus sparse sampling (“bit-Huff
+ sparse sampl.”), byte-oriented Huffman code plus sparse sampling (“byte-Huff
+ sparse sampl.”), the binary Huffman-shaped wavelet tree (“huff-wt”) and our
DACs with fixed b values for all the levels (“DACs b=2”,“DACs b=4”,“DACs b=8”),
and the optimal b values that minimize the space (“DACs opt”, where the optimal
configuration without levels restriction is emphasized in red color in the figures, and
“DACs opt-aligned” for the byte-aligned variant).

Figures 5.3 and 5.4 show the space/time tradeoff obtained by all the solutions
applied over the text xml for k = 1, 2 and k = 3, 4 respectively. Figures 5.5 and
5.6 show the space/time tradeoff obtained by all the solutions applied over the
text sources for k = 1, 2 and k = 3, 4 respectively. Figures 5.7 and 5.8 show the
space/time tradeoff obtained by all the solutions applied over the text english for
k = 1, 2 and k = 3, 4 respectively.

All the alternatives behave similarly over the three texts, where the differences
are due to the size of the vocabulary at each scenario. When k is increased from
k = 1 to k = 4, the compression obtained is generally better, since we are compress-
ing the text at its k-order entropy, but the compression ratio is higher for k = 4 for
some solutions (such as “huff-wt”) due to the size of the vocabulary (which must be
also stored). In fact, if we kept increasing k, we would obtain poorer compression
ratios for all the alternatives, since the size required to store the vocabulary would
be considerably larger than the reduction of size of the compressed text obtained
from the k-order compression. We can also observe that the average access times
are noticeably higher for large k values for some of the solutions employed. This
is due to the size of the vocabulary, which increases the number of levels of the

7http://libcds.recoded.cl/

5.2. Applications 71

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

compression ratio

XML k=1

DACs opt
DACs opt-aligned

DACs opt (b=4,1,2)
DACs b=2
DACs b=4
DACs b=8

bit-Huff + sampl.
byte-Huff + sampl.

huff-wt
FV + dense sampl.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

compression ratio

XML k=2

DACs opt
DACs opt-aligned

DACs opt (b=6,2,1,1,1,2)
DACs b=2
DACs b=4
DACs b=8

bit-Huff + sampl.
byte-Huff + sampl.

huff-wt
FV + dense sampl.

Figure 5.3: Space usage and average access time for several configurations
of DACs versus several encodings that represent the sequence of k-tuples for
a XML text when k = 1 (top) and k = 2 (bottom).

72 Chapter 5. Applications and experiments

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

compression ratio

XML k=3

DACs opt
DACs opt-aligned

DACs opt (b=7,3,2,2,1,2)
DACs b=2
DACs b=4
DACs b=8

bit-Huff + sampl.
byte-Huff + sampl.

huff-wt
FV + dense sampl.

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

compression ratio

XML k=4

DACs opt
DACs opt-aligned

DACs opt (b=8,3,3,2,1,1,2)
DACs b=2
DACs b=4
DACs b=8

bit-Huff + sampl.
byte-Huff + sampl.

huff-wt
FV + dense sampl.

Figure 5.4: Space usage and average access time for several configurations
of DACs versus several encodings that represent the sequence of k-tuples for
a XML text when k = 3 (top) and k = 4 (bottom).

5.2. Applications 73

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

compression ratio

Source Code k=1

DACs opt
DACs opt-aligned

DACs opt (b=4,1,1,2)
DACs b=2
DACs b=4
DACs b=8

bit-Huff + sampl.
byte-Huff + sampl.

huff-wt
FV + dense sampl.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

compression ratio

XML k=2

DACs opt
DACs opt-aligned

DACs opt (b=7,2,1,1,1,2)
DACs b=2
DACs b=4
DACs b=8

bit-Huff + sampl.
byte-Huff + sampl.

huff-wt
FV + dense sampl.

Figure 5.5: Space usage and average access time for several configurations
of DACs versus several encodings that represent the sequence of k-tuples for
a source code text when k = 1 (top) and k = 2 (bottom).

74 Chapter 5. Applications and experiments

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

compression ratio

Source Code k=3

DACs opt
DACs opt-aligned

DACs opt (b=9,3,2,1,1,2)
DACs b=2
DACs b=4
DACs b=8

bit-Huff + sampl.
byte-Huff + sampl.

huff-wt
FV + dense sampl.

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

compression ratio

Source Code k=4

DACs opt
DACs opt-aligned

DACs opt (b=11,3,2,2,1,2)
DACs b=2
DACs b=4
DACs b=8

bit-Huff + sampl.
byte-Huff + sampl.

huff-wt
FV + dense sampl.

Figure 5.6: Space usage and average access time for several configurations
of DACs versus several encodings that represent the sequence of k-tuples for
a source code text when k = 3 (top) and k = 4 (bottom).

5.2. Applications 75

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

compression ratio

English text k=1

DACs opt
DACs opt-aligned

DACs opt (b=3,1,1,1,2)
DACs b=2
DACs b=4
DACs b=8

bit-Huff + sampl.
byte-Huff + sampl.

huff-wt
FV + dense sampl.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

compression ratio

English text k=2

DACs opt
DACs opt-aligned

DACs opt (b=6,2,1,1,1,1,2)
DACs b=2
DACs b=4
DACs b=8

bit-Huff + sampl.
byte-Huff + sampl.

huff-wt
FV + dense sampl.

Figure 5.7: Space usage and average access time for several configurations
of DACs versus several encodings that represent the sequence of k-tuples for
a natural language text when k = 1 (top) and k = 2 (bottom).

76 Chapter 5. Applications and experiments

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

compression ratio

English text k=3

DACs opt
DACs opt-aligned

DACs opt (b=8,2,2,1,1,1,2)
DACs b=2
DACs b=4
DACs b=8

bit-Huff + sampl.
byte-Huff + sampl.

huff-wt
FV + dense sampl.

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

compression ratio

English text k=4

DACs opt
DACs opt-aligned

DACs opt (b=10,3,2,1,1,2)
DACs b=2
DACs b=4
DACs b=8

bit-Huff + sampl.
byte-Huff + sampl.

huff-wt
FV + dense sampl.

Figure 5.8: Space usage and average access time for several configurations
of DACs versus several encodings that represent the sequence of k-tuples for
a natural language text when k = 3 (top) and k = 4 (bottom).

5.2. Applications 77

representation when DACs and wavelet tree are used. Other solutions do not suffer
the influence of this parameter, such as FV, where constant time is obtained due to
the dense sampling.

The original FV method, implemented as such, poses much space overhead due
to the dense sampling, achieving almost no compression. This, as expected, is
alleviated by the bit-oriented Huffman coding with sparse sampling, but the access
times increase considerably. The FV method extracts each block in constant time,
while some extra decoding is always needed with the sparse sampling. Byte-oriented
Huffman encoding with sparse sampling obtains, as expected, better times than
bit-oriented Huffman encoding, but worsening the compression ratio. However, this
byte-oriented alternative outperforms FV in space while being comparable in time.
The binary Huffman-shaped wavelet tree behaves similarly to bit-oriented Huffman
coding with sparse sampling for low k values, however its compression ratio and time
efficiency are degraded as the size of the vocabulary grows, that is, as k increases.

The configuration of DACs with b = 8, which uses bytes as chunks, achieves
much better space and noticeably better access times than FV for lower k values
and comparable access times for k = 3, 4. When using the same space of a sparse
sampling, on the other hand, “DACs b=8” is significantly faster. “DACs b=2”
obtains competitive space and time results when k = 1. However, as the value of
k increases, the number of levels grows, worsening the results of this alternative.
“DACs b=4” behaves similarly, obtaining its best results when k is not high. DACs
can improve the compression ratio obtained if the optimal b values are computed
to minimize the space without restriction on the number of levels. As we can see
in the figures, these optimal b values are adjusted according to the distribution of
integers. For instance, we can observe how the size of the blocks at the first level
increases as k grows, since the vocabulary is also increased. “DACs opt” and “DACs
opt-aligned” obtain a competitive space/time tradeoff.

DACs using the b values obtained with the optimization algorithm can improve
the compression ratio, however, sparse sampling can get lower spaces, as just the
bare Huffman encoding, at the price of higher and higher access times. Hence,
DACs become a very attractive solution if direct access must be provided to an
encoded sequence, since it obtains fast times and considerably compact spaces.

5.2.3 Natural language text compression

We have seen in Section 5.1 that we can directly access to a compressed representa-
tion of a natural language text using our DACs. The faster alternative is obtained
when b = 8, that is, when bytes are used as chunks, since it avoids bit-wise opera-
tions and takes advantage of the byte alignments.

In this section, we compare our faster alternative, denoted by “DACs b=8”, with
byte-oriented Huffman encoding, which is also faster than any bit-oriented encod-

78 Chapter 5. Applications and experiments

Table 5.5: Description of the corpora used.

CORPUS size (bytes) num words voc. size

CR 51,085,545 10,113,143 117,713

ZIFF 185,220,211 40,627,131 237,622

ALL 1,080,720,303 228,707,250 885,630

ing. The byte-oriented Huffman compressor that uses words as source symbols,
instead of characters, is called Plain Huffman8. As we want to directly access to
random words of the original text, we include a sparse sampling over the compressed
sequence obtained by Plain Huffman. We denote this alternative “PH + sampl”.

We used three corpora:

∙ Congressional Record 1993 (CR) from trec-4.

∙ Ziff Data 1989-1990 (ZIFF) from trec-2.

∙ A large corpora (ALL), with around 1GiB, created by aggregating the follow-
ing text collections: AP Newswire 1988 and Ziff Data 1989-1990 (ZIFF) from
trec-2, Congressional Record 1993 (CR) and Financial Times 1991 to 1994
from trec-4, in addition to the small Calgary corpus9.

Table 5.5 presents the main characteristics of the corpora used. The first column
indicates the name of the corpus, the second its size (in bytes). The third column
indicates the number of words that compose the corpus, and finally the fourth col-
umn shows the number of different words in the text.

Table 5.6 shows the compression ratio, decompression time (in seconds) and
access time (microseconds per access) for the two alternatives over all the corpora
considered. “DACs b=8” uses the rank structure that occupies 5%-extra space over
the sequence. We have adjusted the sampling parameter of the alternative “PH
+ sampl” to obtain the same compression ratio than “DACs b=8”. The value of
this parameter is shown in the table for each text: we store one sample each 24
codewords for CR corpus, one sample each 26 codewords for ZIFF corpus and one
sample each 36 codewords for ALL corpus.

The decompression time includes the time, in seconds, to decompress the whole
text, retrieving an exact copy of the original text. This procedure does not require

8Plain Huffman will be explained in Section 7.2, which is devoted to byte-oriented word-based
text compression techniques. However, it can be briefly described as the word-based byte-oriented
variant of the original Huffman code.

9http://www.data-compression.info/Corpora/CalgaryCorpus/

5.2. Applications 79

Table 5.6: Space and time performance for DACs and byte-oriented Huff-
man code (PH) when representing the sequence of words of three natural
language texts.

DACs b=8 PH + samp

ratio t dec t access ratio words per t dec t access

Text (s) (�s) sample (s) (�s)

CR 0.3345 0.42 0.0544 0.3353 24 0.34 0.1938

ZIFF 0.3557 1.53 0.0761 0.3562 26 1.26 0.2581

ALL 0.3524 10.12 0.1088 0.3523 32 8.57 0.2838

the use of samples in the case of “PH + sampl”, nor does it require the use of
rank operations when “DACs b=8” is used, since all the levels of the representation
can be sequentially processed and the synchronization between the bytes of the
same codeword can be carried out using one pointer at each level, indicating the
last byte read. Decompression is faster for PH than for DACs. Decompression
just involves a sequential decoding of all the bytes of the encoded sequence in the
case of PH. If DACs are used, it requires reading bytes at different levels of the
representation, with are not contiguously located in memory. This procedure is not
as fast as the sequential reads of PH. In addition, the compressed sequence using PH
(without taking into account the sparse sampling) is shorter than the compressed
sequence using DACs. Hence, PH processes a smaller number of bytes during the
decompression procedure, which also speeds up the decompression time.

The access time was computed as the average time to access 10,000,000 words at
random positions of the text. We can observe that “DACs b=8” obtains considerably
better access times than “PH + sampl”, around 3-4 times faster. It is also noticeable
that for both alternatives, larger corpora obtain worse results than smaller corpora.
In the case of “DACs b=8” this is due to the size of the vocabulary: since there
are more different words in a larger text, there are many words that obtain larger
codewords, and consequently the number of levels is bigger than for smaller corpora,
which causes a higher number of rank operations when extracting those codewords.
In the case of “PH + sampl”, the sample period used is bigger for larger corpora, as
we can see in Table 5.6, and this slows down the accesses to random words of the
text.

Our proposal obtains better access time to individual words of the text, but
it becomes slower when decompressing the whole text. We now analyze the time
required by each alternative to access to t random consecutive positions of the text.
When t = 1, we have already shown that “DACs b=8” is faster than “PH +samp’.
When t = n, that is, when we are decompressing the whole text, PH is faster than
DACs. Therefore, there must be a value r, with 1 ≤ r ≤ n where PH becomes faster

80 Chapter 5. Applications and experiments

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

T
im

e
pe

r
ac

ce
ss

 (
µs

/w
or

d)

Number of consecutive accessed words

Access time over different texts

PH + samp (CR)
DACs b=8 (CR)

PH + samp (ZIFF)
DACs b=8 (ZIFF)
PH + samp (ALL)
DACs b=8 (ALL)

Figure 5.9: Accessing consecutive words for DACs (b=8) and PH (with
sampling).

than DACs for all t ≥ r. Figure 5.9 shows the average time to retrieve t consecutive
words for the three corpora CR, ZIFF and ALL using “DACs b=8” and “PH +samp”,
where the sampling used is the same as in Table 5.6. We observe in the figure that
“DACs b=8” outperforms “PH +samp” when the value of t is small, that is, when
we access to few consecutive words of the text. As we increase t, the benefits of PH
encoding, that is, the fact that we have a lower number of processed bytes that can
be sequentially decoded, become noticeable, and “PH +samp” outperforms “DACs
b=8” for larger t values. For instance, if we want to decompress 25 consecutive
words, “PH +samp” becomes the preferred alternative. However, when accessing
few consecutive words, such as five or less, “DACs b=8” obtains better time results,
especially when accessing to just one word.

5.3 Other experimental results

The applicability of the technique is wide, and DACs have been used by other
researchers and have been proved efficient in different domains, such as the rep-
resentation of PATRICIA trees or compressed suffix trees, as we explain more in
detail next.

5.3. Other experimental results 81

PATRICIA tree

A trie or digital trie is a data structure that stores a set of strings over an alphabet.
The height of the tree is the length of the longest string of the set. It has been
used, for instance, to store large dictionaries of English words in spelling-checking
programs. It can find all those strings of the set that are prefixed by a pattern in
time proportional to the pattern length.

A PATRICIA tree [Mor68] differs from the trie data structure in that the PA-
TRICIA tree stores only true branches. It collapses unary nodes, that is, those
internal nodes in the trie that have only one descendant. This is also done by com-
pact tries, but instead of storing the concatenation of the labels of the collapsed
nodes, PATRICIA trees just store the first character of the label string and its
length (we will call this length skip). This modification significantly reduces the
size of the tree when the set of keys is sparse.

Figure 5.10 illustrates an example of these two structures for the set of strings
S={‘alabar’, ‘a’, ‘la’, ‘alabarda’}. Figure 5.10(a) shows the trie built over this
set. Each node represents a distinct prefix in the set. We suppose that all strings
are ended by a special symbol $, alphabetically smaller than any element of the
alphabet. With this special character, the tree has exactly one leaf for each string
of the set (in this case, the trie has exactly 4 leaves). As we can observe, there are
long unitary paths which can be collapsed in just one edge. This is done by the
PATRICIA tree in Figure 5.10(b). Just the first character of the collapsed path is
stored in the tree, in addition to the skip. For instance, the path ‘labar’, which is
marked with thick lines in Figure 5.10(a) is collapsed with just one edge in Figure
5.10(b), and represented with the pair (l, 5), which consists of the first character of
the string and the skip.

The average value for the skips in a PATRICIA tree is usually very low, but there
are also long values in practice. Hence, these values can be efficiently represented
using DACs.

An LZ77-Based Self-Index. Kreft [Kre10, KN11] proposed a new self-index
oriented to repetitive texts and based on the Lempel-Ziv parsing, which parses the
text into phrases so that each phrase, except its last letter, appears previously in
the text, and compresses by replacing each phrase by a backward pointer. He uses
some compact data structures to achieve the minimum possible space. Since the
text is not stored, the self-index includes all the structures needed to randomly
extract any substring from the text. The structures used include two tries: one
sparse suffix tree that indexes all the suffixes of the text starting at the beginning
of a phrase, and one PATRICIA tree that indexes all the reversed phrases, stored
as a compact labeled tree. They are used to search the left and right side of the
pattern sought. The theoretical proposal does not store the skips of these tries, as
they can be computed from the trie and the text. However, this is a slow procedure,

82 Chapter 5. Applications and experiments

(a) Trie (b) Patricia tree

Figure 5.10: Example of a trie and a PATRICIA tree for the set of strings
S={‘alabar’, ‘a’, ‘la’, ‘alabarda’}, and a long unary path that is compacted.

so Kreft considered storing the skips for one or for both tries using DACs. In the
experimental evaluation of this new self-index, several variants are compared which
include different structures and algorithms, obtaining a space/time tradeoff. In all
those variants, skips are stored using DACs, because they give the best results.

Practical Compressed Suffix Trees

Cánovas and Navarro recently presented [CN10a] a new practical compressed suffix
tree implementation, based on a theoretical proposal by Fisher et al. [FMN09].
According to the authors, the efficient implementation of the proposal was not
trivial, so they developed different structures and solutions. Their implementations
offer a relevant space/time tradeoff between the two most well-known solutions to
the problem, which are inefficient in either time or space.

A suffix tree is a compact trie storing all the suffixes of a text T . If the children
of each node are ordered lexicographically by their string label, the leaves of the
suffix tree form the suffix array of T (suffix arrays will be explained more in de-
tail in Section 7.3.2). A compressed suffix tree (CST) of a text can be represented
using the compressed suffix array of the text and storing some extra information:

5.3. Other experimental results 83

the tree topology and the longest common prefix (LCP) information. The prac-
tical implementation of this new solution can be divided in two challenges: the
efficient representation of the LCP array and the efficient computation of some
common queries over the LCP (range minimum query and previous/next smaller
value query). These queries enable all the navigation over the suffix tree without
the need of representing the topology of the tree.

Among the solutions proposed, Cánovas and Navarro studied the use of DACs
and the optimization algorithm in order to represent the LCP array. The technique
takes advantage of the fact that, as we have already seen in Section 5.2.1, most LCP
values are small, and some can be much larger. Hence, a variable-length encoding
scheme is a good solution to represent that sequence of integers. Moreover, the
operations that are performed over the LCP array (which support the navigation
in the suffix tree, such as finding the next sibling, the parent or children of a
given node) must support direct access to any position of the array. Then, our
technique fits perfectly with the needs of the LCP array representation in this
context. They used two variants of DACs: one corresponds to a fixed b value for
all the levels of the representation, while the other uses the b values computed with
the optimization algorithm that minimizes the space of the representation. Both of
them offer interesting results in the space/time trade-off map, giving, by far, the
best time performance of all the alternatives proposed to efficiently represent the
LCP.

The final CST implementation using DACs for the LCP representation occu-
pies between 13-16 bits per symbol and carries out most operations within a few
microseconds, being faster than the previous existing implementations of CST (in-
cluding some that need more space), and requiring an affordable extra space.

Efficient representation of grammars

Claude and Navarro [CN09] proposed an indexed compressed text representation
based on Straight-Line Programs (SLP), a restricted kind of grammar, so that a
text T [1, u], over alphabet Σ = [1, �], can be represented with a grammar with n
rules, occupying O(n log n)+n logu bits. This last space term is due to the storage
of the lengths of the rules of the grammar. That is, if ℱ(X) is the expansion of
a non-terminal X into terminals, the representation of ∣ℱ(X)∣, the length of the
phrase ℱ(X), for each one of the n rules of the grammar requires n log u bits.
The proposed structure supports operations extract and find in o(n) time, where
operation extract returns any desired portion T [l, l+m] of the text and operation
find returns the positions of T where a given search pattern P [1,m] occurs in T . In
addition, this technique can also be used to represent a labeled binary relation. This
type of compression is very promising for highly repetitive sequences, which arise in
applications such as computational biology, software repositories, transaction logs,
versioned documents, temporal databases, etc.

84 Chapter 5. Applications and experiments

This theoretical proposal has been used to create a compressed index specialized
on searching short substrings (q-grams) on highly repetitive sequences [CFMPN10],
by representing the rules generated by Re-Pair [LM00], a dictionary-based compres-
sion algorithm. The practical implementation of the proposal uses DACs for the
representation of the lengths of the rules, reducing considerably the n logu space
term for real data. For instance, using a collection of repetitive texts, they obtain a
compression ratio close to 0.32%, where the generated grammar consists of 100,762
rules that would occupy 214,119 bytes using the n log u representation. However,
DACs with b = 4 occupied 134,151 bytes (62.65%). For another collection composed
of 27 biological sequences, they achieve a compression ratio close to 11.36%, where
the generated grammar consisted of 3,093,368 rules. These rules occupied 8,506,762
bytes using a n log u representation, but DACs with b = 4 occupied 3,863,681 bytes
(45.42%).

Chapter 6

Discussion

6.1 Main contributions

In this part of the thesis we have introduced the Directly Addressable Codes (DACs),
a new encoding scheme for sequences of integers that enables easy and direct access
to any element of the sequence. It achieves very compact spaces, bypassing the
heavyweight methods, based on sampling, used in current schemes. This is an
important achievement because the need of random access to variable-length codes is
ubiquitous in many sorts of applications, particularly in compressed data structures,
but also arises in everyday programming. Our method is simple to program and
is space- and time-efficient, which makes it an attractive practical choice in many
scenarios.

We first explained the proposal in Chapter 4. DACs divide each integer into
⌈l/b⌉ blocks of b bits, where l is the length of the binary representation of the
integer and b is a fixed parameter of the representation. Each block is stored
in a chunk of b + 1 bits, using 1 extra bit to indicate whether the code of the
integer continues in the next block or finishes in the current one. Those blocks
are rearranged in several levels, with the first level of the representation gathering
all the least significant blocks of all the integers, the second level with the second
least significant blocks, and so on, up to the last level of the representation, which
contains the most significant blocks for the largest integers. This rearrangement in
levels allows fast random access, so it is possible to directly access to any integer of
the sequence in an efficient way, without the need of any sampling method.

Space and time efficiency can be improved by using different b values at each
level of the representation, being b the size in bits of the blocks in each level.
Instead of using a fixed b value for all the representation, a variable b value for each
level permits a better adjustment to the frequency distribution of the integers of

85

86 Chapter 6. Discussion

the sequence to encode. Thus, the representation becomes most compact without
impairing the efficiency if it does not generate a high number of levels. Hence, we
propose in Section 4.2 an optimization algorithm that, given a sequence of integers
and their frequency distribution, obtains the b value for each level that minimizes
the space occupied by the compact representation of that sequence of integers.

In Chapter 5, we have shown experimentally that our technique competes suc-
cessfully with other solutions which encode and enable direct access to the repre-
sented sequence. We analyze the behavior of DACs in two different scenarios: when
the variable-length encoding is used along with a statistical modeling or when it is
used to represent sequences of integers that are frequently small, but they can also
be larger. In both scenarios, we want to support fast direct access to any element of
the encoded sequence. In the first case we compare our proposal with other statisti-
cal encodings such as bit-oriented Huffman and byte-oriented Huffman with sparse
sampling, a Huffman-shaped binary wavelet tree representing the sequence and the
dense sampling solution of Ferragina and Venturini. For the second scenario, we
study the space/time trade-off of our representation and compare it with the space
and time achieved by other integer encodings, such as �-codes,
-codes, Rice codes
and byte codes. In both scenarios, DACs outperform the other alternatives when
providing direct access to the encoded sequence, obtaining very compact spaces.

The conceptual description of the technique and some application results were
published [BLN09a].

6.1.1 Interest of the rearrangement

We have not only presented a new encoding scheme for integers. The rearrangement
strategy used in our proposal can be seen as a contribution by itself that could
provide synchronism to any encoded sequence of symbols obtained after using a
variable-length encoding technique.

We have presented a rearrangement of the Vbytes codewords in several levels in
order to obtain direct access to any codeword. In practice, we rearrange the chunks
of the codewords obtained by End-Tagged Dense Codes (see Section 7.2.3 for a
complete description of its encoding scheme). But more generally, we can rearrange
the codewords obtained by any encoding scheme by splitting them into chunks (or
bytes when using a byte-oriented encoding scheme) and relocating those chunks in
several levels, adding a bit array that indicates whether the codeword continues in
the next level or not.

We can also use this rearrangement over other encodings after using a statistical
modeler. For example, we could consider the byte-oriented Huffman encoding for
a sequence of symbols and then create the same data structure that we propose
for Vbyte encoding, that is, placing the bytes of the byte-oriented Huffman code
in levels. However, the use of the extra bit array to obtain the synchronization
between the bytes of the same codeword makes unbeneficial the use of the Huff-

6.2. Other Applications 87

man encoding, since the additional bit already produces a prefix free code. Hence,
instead of using a Huffman encoding in the chunks of the levels, a dense encoding
that uses all the possible combinations of codewords, as DACs encoding, becomes
the optimal solution. Therefore, the encoding scheme for integers we propose is the
preferred representation among any rearrangement of codewords obtained with a
statistical compression technique when direct access must be provided to a com-
pressed sequence of symbols.

However, we can also use the rearrangement strategy over the codewords ob-
tained using other non-statistical compression techniques. For instance, one can
provide direct access to a sequence of symbols compressed with Re-Pair [LM00],
which is a dictionary-based compression algorithm that assigns a fixed-length code-
word to a variable-length sequence of symbol. Let us imagine we have a sequence
of strings, such as a list of URLs, and we want fast direct access to each string. We
can compress those strings with Re-Pair, such that each string will be composed
of a variable-length sequence of codewords. Hence, those sequences can be split
in several levels, following the idea of DACs, and direct access can be achieved by
including one bitmap per level indicating if the representation of the string contin-
ues in the next level or not, instead of using sparse sampling. Hence, direct access
to any encoded sequence obtained after using any compression technique can be
supported following the rearrangement proposed in this thesis.

6.2 Other Applications

DACs obtain very attractive times results when direct access to a compressed se-
quence of symbols is required. As we have seen in Section 5.3, they have been
successfully used to improve the performance of classical data structures, such as
the representation of the LPC array or PATRICIA trees.

Compressed Suffix Trees [CN10a] can be efficiently implemented in practice us-
ing a compact and directly addressable representation of the LCP array. Hence,
Directly Addressable Codes are suitable for this scenario because most LCP val-
ues are small, and some can be much larger. The direct access obtained with our
technique is vital for the performance of their data structure, since it is required
to navigate over the suffix tree. Two variants of the DACs are used for the rep-
resentation of the LCP array. The first one corresponds to a fixed b value for all
the levels of the representation, while the other uses the b values computed with
the optimization algorithm that minimizes the space of the representation. Both of
them offer interesting results in the space/time tradeoff map, giving, by far, the best
time performance of all the alternatives proposed to efficiently represent the LCP.
The final CST implementation using any of the two alternatives for the LCP repre-
sentation occupies between 13-16 bits per symbol and carries out most operations

88 Chapter 6. Discussion

within a few microseconds, being faster than the previous existing implementations
of CST (including some that need more space), and requiring an affordable extra
space. This LCP representation using DACs was also compared in the proposal of
a sampled LCP array by Jouni Sirén [Sir10].

PATRICIA trees index a set of strings in a compact way by collapsing several
unary nodes and storing just one character and the length of the collapsed path
for each node. These lengths can be represented using a variable-length encoding
scheme, since they are usually small values. However, direct access to these val-
ues is required, so the use of Directly Addressable Codes has been proved to be a
very efficient solution. An example of this use is a recent work that implements a
self-index based on LZ77 [Kre10]. This self-index includes two tries that store all
the phrases obtained by the LZ77 parsing of the text, one of them in reverse order.
These tries are compacted by collapsing unary nodes, and DACs are used to repre-
sent the length of the collapsed paths. The experimental results of this self-index
indicates that the use of Directly Addressable Codes becomes the best alternative
to represent those values.

DACs have been successfully used to reduce the space usage of an indexed rep-
resentation of a grammar. A recent work [CN09] presented a self-index technique
for straight-line programs (SLPs), a restricted kind of grammar. This proposal has
been used to provide a compressed storage scheme for highly repetitive sequence
collections, while providing efficient indexed search for q-grams [CFMPN10]. In this
work, the length of the expansion of each rule of the grammar has been represented
with DACs, reducing the space requirements significantly.

DACs are also being used in ongoing research work on suffix trees (N. Herrera,
PhD thesis, personal communication), string B-trees (C. Ruano, MSc thesis, per-
sonal communication), representing in a more compact form the output of Re-Pair
compressors (D. Valenzuela, MSc. thesis, personal communication), representing
dictionaries, among others.

Finally, we will see how DACs can also be used in Web graph compression,
discussed in Part III of this thesis. We propose a technique to represent Web
graphs in a very compact space using a tree-shaped data structure. This data
structure supports extended navigability over the compressed graph. We will see
that DACs can be used to represent the leaves of the tree, obtaining better space
and time results than the initial proposal without DACs. Moreover, with the use of
DACs, the compression technique for Web graphs proposed in Chapter 12 becomes
the most space-efficient method of the state of the art that provides forward and
backward navigation over the graph. It obtains the smallest space compared to
other techniques, without considerably degrading navigational times.

Part II

Reorganizing Compressed Text

89

Chapter 7

Introduction

In the Part I of this thesis we presented a new strategy to represent sequences of
integers using variable-length codes. Directly Addressable Codes (DACs) enable
efficient direct access to any position of the encoded sequence by rearranging the
codeword chunks into different levels. If we use this encoding to represent a natural
language text, as in Section 5.2.3, we obtain a compressed representation of the text
where direct access to any word of the text is efficiently supported. However, finding
words or phrases on the compressed representation of the text, such as counting or
locating their occurrences, cannot be efficiently performed using DACs. This is due
to the fact that all the second chunks of the codewords are mixed together in the
second level, all the third chunks are located in the third level and so on, and so
sequential scans of the complete levels must be performed.

In this part of the thesis we propose a new data structure that represents a
natural language text in compressed way, which is inspired in the DACs strategy and
considerably improves the efficiency of searches in the text. As in the DACs, we will
also rearrange the codewords into several levels to obtain direct access. Therefore,
we can start decompressing from any position of the compressed text, and display
any portion of the text. Culpepper and Moffat [CM06] already proposed in 2006 a
separation between the fist byte of a codeword and the rest of the bytes in order
to gain efficiency in sequential pattern matching algorithms over compressed texts.
A code splitting strategy was already used to improve string matching algorithms
[RTT02]. The data structure we propose goes one step beyond. We separate the
chunks of the codewords into distinct branches depending on the preceding chunks,
forming a tree-shaped data structure. In this way, in addition to the relocation of
the chunks in several levels, as with the DACs, we follow a multi-ary wavelet tree
strategy to improve searches in the compressed text. Implicit indexing properties
are achieved by this separation of the levels into different tree nodes. The goal is to
have a single path from the root node of the tree to a leaf representing each complete

91

92 Chapter 7. Introduction

codeword, such that we will be able to search for any word in the compressed text
in time independent of the text length. This rearrangement can be applied to the
compressed text obtained by any word-based, byte-oriented prefix-free encoding
technique.

Hence, in the next chapters of this thesis we will show that by just performing a
simple rearrangement of the codeword bytes of the compressed text (more precisely,
reorganizing the bytes into a wavelet-tree-like shape) and using little additional
space, searching capabilities are greatly improved without a significant impact in
compression and decompression times. With this approach, all the codes achieve
synchronism and can be searched fast and accessed at arbitrary points. Moreover,
this new data structure can be regarded as an implicitly self-indexed representation
of the text, which can be searched for words in time independent of the text length.
That is, we achieve not only fast sequential search time, but indexed search time,
for almost no extra space cost.

Section 7.1 starts with a revision of the state of the art in text compression,
explaining how compression methods that consider words as source symbols obtain
better compression properties than those using characters. Section 7.2 describes
several word-based compression techniques of interest; some of them will be used
in the experimental evaluation of the new data structure proposed. Section 7.3
studies the indexing problem, describing more in detail the most used solutions,
that is, inverted indexes and suffix arrays, and introducing the newer concept of self-
indexes, that is, indexes that operate in space proportional to that of the compressed
text. Finally, Section 7.4 briefly summarizes the pursued goal in the next chapters,
which consists in a new data structure that represents a natural language text in
a compressed and self-indexed form, such that an interesting search performance is
obtained.

7.1 Natural Language Text Compression

Current Text Databases contain hundreds of gigabytes, and there are terabytes of
documents in the Web. Although the capacity of new devices to store data grows
fast and the associated costs decrease, the size of text collections increases faster.
Moreover, cpu speed grows much faster than that of secondary memory devices and
networks, so storing data in compressed form reduces not only space, but also the
i/o time and the network bandwidth needed to transmit it. Compression techniques
have become attractive methods that can be used in Text Databases to save disk
space, but more importantly, to save processing, transmission and disk transfer
time.

Compressing the text as much as possible is important. However, if the com-
pression scheme does not allow us to search directly the compressed text, then the

7.1. Natural Language Text Compression 93

retrieval over such compressed documents will be less efficient due to the necessity
of decompressing them before the search. Even if the search is done via an index,
some text scanning is needed in the search process [MW94, NMN+00]. Therefore,
even in these cases, it is important that the compressed text supports searches. In
addition, it is desirable that the compression technique supports direct access to
the compressed text, what enables decompressing random parts of the compressed
text without having to process it from the beginning. Summarizing, compression
techniques are well-suited for Text Retrieval systems iff:

i) they achieve good compression ratio,

ii) they maintain good search capabilities without decompressing the text, and

iii) they permit direct access to the compressed text.

Traditionally, classical compressors used characters as the symbols to be com-
pressed, that is, they regarded the text as a sequence of characters. Classical Huff-
man [Huf52] computes the frequencies of the characters of the text and assigns
shorter codes formed by variable length sequences of bits to more frequent charac-
ters. Then each character of the text is replaced by its codeword. Unfortunately, the
compression achieved when applying classical Huffman to English natural language
text is poor (around 65%).

Other techniques, such as Ziv and Lempel algorithms [ZL77, ZL78], replace text
substrings by pointers to previous occurrences. They are commonly used due to
their compression and especially decompression speeds, but their compression ratio
is still not that good (around 35-40%) on natural language text.

Some techniques obtain better compression ratios by using a k-order model of the
text, such as PPM (Prediction by Partial Matching) compressors [BCW84], which
couple such modeling with an arithmetic coder [Abr63]. Compression ratio is very
good, around 19-26%, but they are very slow at compression and decompression
and require much memory. Similar results are obtained by Seward’s bzip21, which
can use less memory than PPM and obtain attractive ratios (around 24-29%), while
being much faster at both compression and decompression.

There are some techniques that obtain very good compression ratios, by mak-
ing several passes over the source text, such that compression is improved after
each new pass. These so-called offline compressors are very time and/or space
demanding procedures, and they are not always suitable. However, they are fast
and memory-efficient at decompression. One well-known example of this approach
is Re-Pair [LM00], which successively replaces the most frequent pair of adjacent
source symbols by a new symbol until all the pairs occur only once, obtaining high
compression on natural language (around 20-31%)

1http://www.bzip.org

94 Chapter 7. Introduction

Classic compression techniques, like Ziv and Lempel [ZL77, ZL78] or classic
Huffman [Huf52], permit to search directly on the compressed text [NT00]. Em-
pirical results showed that searching the compressed text can take half the time
of decompressing that text and then searching it, but it is slower than searching
the uncompressed text. Therefore, searching over the compressed text obtained by
these techniques is useful if the text has to be kept compressed. However, storing
the plain version of the text becomes the preferred choice, instead of using these
classic compression techniques, when efficient searches are pursued and there are
not serious space restriction.

An important change in the history of text compression was produced by the
revolutionary idea of compressing natural language text using words as the source
symbols, instead of using characters [BSTW86]. Compression techniques following
this word-based model obtain better compression ratios and search performance,
since they permit searching the compressed text much faster than the original text
[TM97, MNZBY98] and achieve compression ratios around 25%-35%.

There are two empirical laws, Heaps’ and Zipf’s, which describe some of the
properties of natural language texts and explain why using words instead of char-
acters improves the compression achieved. Heaps’ law gives an approximation to
how a vocabulary grows as the size of a text collection increases, whereas Zipf’s law
gives an estimation of the word frequency distribution for a natural language text.
Therefore, they provide interesting information about the number of distinct source
symbols in the text, and help to estimate the frequency of those symbols.

∙ Heaps’ law [Hea78] establishes that the relationship between the number of
words in a natural language text (n) and the number of different words (V)
in that text (that is, words in the vocabulary) is given by the expression
V ≈ �n� , where � and � are free parameters empirically determined. In
English text corpora, their typical values are 10 ≤ � ≤ 100 and 0.4 ≤ � ≤ 0.6.
For natural language text corpora, Heaps’s law also predicts the vocabulary
size (V) from the size of the text in bytes (i), V = K × i� .

∙ Zipf’s Law [Zip49] gives a good estimation for the word frequency distribution
in natural language texts [BCW90]. Simplifying the formula, the frequency
of a word is f = k/r�, where � is a constant that depends on the analyzed
text (1 < � < 2) and r is the rank of the word in the vocabulary and k is a
constant. Hence, the frequency of a word is inversely proportional to its rank
in the vocabulary.

Following Zipf’s Law, words present a more biased distribution of frequencies
than characters [BYRN99]. Thus the text (regarded as a sequence of words) is
highly compressible with a zero-order model. By using words one captures k-th
order statistics for a reasonable value of k, while ensuring that the model is not

7.1. Natural Language Text Compression 95

too large (as the vocabulary grows sublinearly with the size of the text collection,
according to Heaps’ law). With Huffman coding, compression ratios approach 25%.
In addition, word-based compression techniques are especially interesting for IR
Systems, since words are the basic elements on which most IR systems are built.
The vocabulary of source symbols of the compressor is the same vocabulary used
by the IR system. This permits a natural integration between IR and word-based
compression methods.

Using words as source symbols instead of characters improves compression.
Using sequences of bytes instead of bits as target symbols improves time perfor-
mance. Different word-based compression methods follow this approach, such as
Plain Huffman [MNZBY00] or Restricted Prefix Byte Codes [CM05]. The com-
pression achieved is not as good as for binary Huffman code, since the use of bytes
instead of bits degrades ratios to around 30%. However, decompression speed is
significatively improved.

Still other encoding methods, such as Tagged Huffman codes [MNZBY00], End-
Tagged Dense Codes, and (s, c)-Dense Codes [BFNP07], worsen the compression
ratios a bit more in exchange for being self-synchronized. By using self-synchronized
codes, codeword boundaries can be distinguished starting from anywhere in the
encoded sequence, which enables random access to the compressed text, that is,
permitting the decompression to start at any position of the compressed text. In
addition, they also support very fast Boyer-Moore-like direct search [BM77, Hor80]
of the compressed text. These algorithms skip some bytes during the search, such
that it is not necessary to check every byte of the text against the pattern. They use
a search window corresponding to the search pattern that is moved along the text. It
is firstly aligned with the leftmost part of the text, and then the pattern is compared
right-to-left against the text in the window until they match (or until a difference
between the pattern and the text in the window appears). In each step, the longest
possible safe-shift to the right of the window is performed. Due to the property of
self-synchronization, since the boundaries of the codewords can be easily known, no
false matchings can happen when searching directly over compressed text obtained
by these techniques. Tagged Huffman obtains compression rations around 35% of
the original text and End-Tagged Dense Codes improve Tagged Huffman by around
2.5 percentual points. Finally, (s, c)-Dense Codes obtains better compression than
these two techniques, achieving compression ratios very close to Plain Huffman
(only +0.2 percentual points).

The next section is devoted to briefly explain these word-based byte-oriented
compression methods.

96 Chapter 7. Introduction

7.2 Word-based Bytewise Encoders

We now describe some byte-oriented encoding methods that are frequently used
when compressing natural language text. We only cover those techniques that will
be used in the next chapters of this thesis; many others exist, e.g. [MNZBY00,
BFNP07]. The main advantage of these techniques is that decompression and
searching are faster with byte-oriented codes than with bit-oriented codes because
no bit manipulations are necessary. This fact permits that searching can be up to
eight times faster for certain queries [MNZBY00].

7.2.1 Plain Huffman

The original bit-oriented Huffman coding achieves compression rations around 25%
when it is applied over natural language text and words are used as symbols instead
of characters [Mof89].

The basic word-based byte-oriented variant of the original Huffman code is called
Plain Huffman (PH) [MNZBY00]. Plain Huffman does not modify the basic Huff-
man code except for the use of bytes as the symbols of the target alphabet. This
change worsens the compression ratios to 30%, instead of the 25% achieved by
bit-oriented Huffman code. In exchange, as we have previously mentioned, decom-
pression and searching are much faster.

If Plain Huffman has been used to compressed a text, we cannot search for a
pattern in the compressed text by simply compressing the pattern and then using
a classical string matching algorithm that jumps over the compressed text. This
does not work because the pattern could occur in the text and yet not correspond
to our codeword. Concatenations of parts of two codewords may match with the
codeword of another vocabulary word (see Figure 7.1 for an example). Therefore,
searching for a word in a text compressed with the Plain Huffman scheme requires
a sequential search over the compressed text, reading one byte at a time. It first
performs a preprocessing phase that searches for and marks in the vocabulary those
words that match the search pattern. Then, a top-down traversal of the Huffman
tree is performed, returning all those words associated to leaves that have been
marked during the preprocessing step.

7.2.2 Tagged Huffman

Tagged Huffman (TH) [MNZBY00] is a variation of Plain Huffman that allows for
an improved search algorithm. This technique is like the previous one, differing
only in that the first bit of each byte is reserved to flag the first byte of a codeword.
Then, a Huffman code is assigned using the remaining 7 bits of each byte, in order
to obtain a prefix code.

7.2. Word-based Bytewise Encoders 97

Figure 7.1: Example of false matchings in Plain Huffman but not in Tagged
Huffman codes. Note that we use special “bytes” of two bits for shortness.

Since the first bit of each byte signals the beginning of a codeword, no false
matches can happen in Tagged Huffman Code. Therefore, Boyer-Moore-type search-
ing is possible over Tagged Huffman Code. We can observe a comparison between
Plain Huffman and Tagged Huffman in Figure 7.1, where false matches occur if
Plain Huffman is used but not with Tagged Huffman.

Another important advantage of using flag bits is that they synchronize the code-
words. Tagged Huffman permits direct access to the compressed text and therefore
random decompression. That is, it is possible to access a compressed text, and start
decompressing it without the necessity of processing it from the beginning. Those
encoding schemes that support these characteristics are called self-synchronizing
codes. In the case of Tagged Huffman, it is feasible to quickly find the beginning of
the current codeword (synchronization) by just looking for a byte whose flag bit is
1.

Tagged Huffman Code obtains all these benefits at the expense of worsening its
compression ratio: full bytes are used, but only 7 bits are devoted to coding. The
loss of compression ratio is approximately 3.5 percentage points. As a compensation,
Tagged Huffman searches compressed text much faster than Plain Huffman because
Boyer-Moore type searching algorithms can be used over Tagged Huffman.

7.2.3 End-Tagged Dense Code

End-Tagged Dense Code (ETDC) [BINP03, BFNP07] is also a word-based byte-
oriented compression technique, where the first bit of each byte is reserved to flag

98 Chapter 7. Introduction

whether the byte is the last one of its codeword. Since the flag bit signals the last
byte of the codeword instead of the first one, this is enough to ensure that the code
is a prefix code regardless of the content of the other 7 bits of each byte, so there is
no need at all to use Huffman coding in order to guarantee a prefix code. Therefore,
all possible combinations are used over the remaining 7 bits of each byte, producing
a dense encoding. ETDC is easier to build and faster than TH in both compression
and decompression.

As for TH, the tag bit in ETDC permits Boyer-Moore-type searching by simply
compressing the pattern and then running the string matching algorithm. However,
since ETDC is not a suffix free code (a codeword can be the suffix of another
codeword), each time a matching of the whole pattern occurs in the text, it is
mandatory to check whether the byte preceding the first matched byte is the last
byte of a codeword or a part of the current codeword, which is longer than the
pattern. It is also possible to start decompression at any point of the compressed
text, because the flag bit gives ETDC the self-synchronization property: one can
easily determine the codeword boundaries.

In general, ETDC can be defined over symbols of b bits, although in this thesis
we focus on the byte-oriented version where b = 8. Given source symbols with
decreasing probabilities {pi}0≤i<V , with V being the size of the vocabulary, the
corresponding codeword using the ETDC is formed by a sequence of symbols of b
bits, all of them representing digits in base 2b−1 (that is, from 0 to 2b−1−1), except
the last one which has a value between 2b−1 and 2b− 1, and the assignment is done
sequentially.

The code assigned to a word depends on the rank of that word in the sorted
vocabulary (which is sorted in decreasing order of frequencies), not on its actual
frequency. As a result, only the sorted vocabulary must be stored with the com-
pressed text for the decompressor to rebuild the model. Therefore, the vocabulary
will be slightly smaller than in the case of Huffman codes, where some information
about the shape of the Huffman tree must be stored (even for canonical Huffman
trees).

As it can be seen in Table 7.1, the computation of codes is extremely simple:
after sorting the source symbols by decreasing frequency, a sequential assignment of
codewords is performed. In addition, simple encode and decode procedures can be
efficiently implemented, since the codeword corresponding to the symbol in position
i is obtained as the number x written in base 2b−1, where x = i− 2(b−1)k−2b−1

2b−1−1
and

k =

⌊

log2(2b−1+ (2b−1−1)i)
b−1

⌋

, and adding 2b−1 to the last digit.

As we can observe from the code assignment for ETDC, the most significant bit
of each byte is used to signal the end of a codeword. Hence, there are 128 different
byte values, called continuers, that can be used as the first bytes of a codeword
(from 0 to 127). Likewise, there are 128 different byte values (from 128 to 255) that

7.2. Word-based Bytewise Encoders 99

Word rank codeword assigned # Bytes # words

0 10000000 1

1 10000001 1

2 10000010 1 27

...

27 − 1 = 127 11111111 1

27 = 128 00000000 10000000 2

129 00000000 10000001 2

130 00000000 10000010 2

...

255 00000000 11111111 2

256 00000001 10000000 2 2727

257 00000001 10000001 2

...

2727 + 27 − 1 = 16511 01111111 11111111 2

2727 + 27 = 16512 00000000 00000000 10000000 3

16513 00000000 00000000 10000001 3

...

Table 7.1: Code assignment in the byte-oriented End-Tagged Dense Code.

act as the last byte of a codeword (called stoppers).

An improved variant2, (s, c)-Dense Code (SCDC) [BFNE03, BFNP07], obtains
better compression ratios than ETDC, reaching less than 0.3 percentage points over
PH compression ratio, by noticing that a different number of continuers and stoppers
might compress better depending on the distribution of frequencies of the words.
Hence, two parameters are used, s and c for the number of stoppers and continuers
respectively, such that byte values between 0 and c− 1 are used as continuers and
byte values between c and c+ s− 1 = 2b− 1 are used as stoppers. Compression can
be optimized by computing the optimal values of c and s for a given corpus.

7.2.4 Restricted Prefix Byte Codes

In Restricted Prefix Byte Codes (RPBC) [CM05] the first byte of each codeword
completely specifies its length. The encoding scheme is determined by a 4-tuple
(v1, v2, v3, v4) satisfying v1+v2+v3+v4 ≤ R. The code has v1 one-byte codewords,
v2R two-byte codewords, v3R2 three-byte codewords and v4R

3 four-byte ones. They
require v1 + v2R+ v3R

2 + v4R
3 ≥ V where R is the radix, typically 256, and V the

size of the vocabulary. This method improves the compression ratio of ETDC as it

2Implementations of both compression techniques, ETDC and SCDC, can be download from
the public site http://vios.dc.fi.udc.es/codes/download.html.

100 Chapter 7. Introduction

can use 256 different byte values as second, third or fourth bytes of the codeword
instead of just 128 as ETDC does. It maintains the efficiency with simple encode
and decode procedures (it is also a dense code) but it loses the self-synchronization
property. If we seek to a random position in the text, it is not possible to determine
the beginning of the current codeword. It is possible to adapt Boyer-Moore searching
over text compressed with this technique, but it is slower than searching over text
compressed with ETDC.

7.3 Indexing

As we have already mentioned, searching is a very demanded feature when dealing
with Text Databases. A search can be solved in two different ways: in a sequential
or in an indexed way.

On one hand, a sequential search does not require any extra structure or prepro-
cessing of the text, but the whole text must be scanned. Searching over compressed
text can be more efficiently performed than over plain text. However, it is still a
sequential process and time complexity is proportional to the size of the compressed
text.

On the other hand, an indexed search requires an extra structure built over the
text, that is, an index, such that the occurrences of the searched pattern can be
located without examining the whole text. Indexed searches are generally used for
large texts, where a sequential scan of the text becomes prohibitive, provided there
is enough space for constructing and maintaining an index.

Inverted indexes [BYRN99, WMB99] and suffix arrays [MM93] are the best
known examples of classical indexes. We now describe these techniques in some
detail. We finish this section by introducing the recent revolutionary concept of
self-index, which is an index that contains a implicit representation of the text,
such that it can efficiently search and reproduce any portion of the original text
without explicitly storing it.

7.3.1 Inverted Index

An inverted index is a data structure built over a Text Database that permits to
efficiently locate all the positions where a search term appears. It keeps a vocabulary
of terms and maps each term (usually a word) to the part of the document where
it occurs: it stores a list of occurrences that keeps the positions where the term
appears.

The size of the index can vary depending on the granularity used [WMB99],
which determines the accuracy to which the index identifies the location of a term.
Hence, the length of the list of occurrences may vary. A coarse-grained index (e.g.,
if the index only tells the block where a term appears) stores a much smaller list

7.3. Indexing 101

of occurrences than indexes whose granularity is fine (e.g., if the index tells the
exact positions for each term). Using coarse granularity increases the possibilities
of maintaining the whole index in main memory, improving some searches [WMB99,
BYRN99]. However, if the exact location of an occurrence is required, a sequential
scan of the block must be performed.

Depending on the granularity of the index built over a document collection we
can distinguish:

∙ Word-addressing index (word level): it stores the documents identifiers and
offsets inside those documents for all the occurrences of all the terms in the
vocabulary. Therefore, it is the most space demanding index.

∙ Document index (document level): it only stores the identifiers of the docu-
ments where a term occurs. Hence, the exact locations of the terms must be
sequentially searched for inside those documents.

∙ Block addressing index (block level) [NMN+00]: it stores lists of occurrences
that point to blocks, and a block can hold several documents or portions of
a single long document. Hence, all searches require inspecting all the text
in those pointed blocks in order to know where the search pattern appears.
There is a space-time trade-off regarding the block size. Block addressing
indexes take special advantage of compression. Since a compressed document
requires less space, more documents can be held in the same block. This
reduces considerably the size of the inverted index.

Searching for phrase patterns (finding a sequence of words in the text) involves
obtaining the list for all the words that compose the pattern, and then intersect
those lists. There are several algorithms to efficiently intersect inverted lists, such
as a merge-type algorithm or a set-versus-set algorithm (based on searching for the
elements of the smallest list over the longest one, typically using either binary or
exponential search). For word-addressing indexes, it is necessary to check if the
positions stored in the lists correspond to contiguous positions in the document
collection. In the case of document or block addressing indexes, the index can be
used to select those candidate documents/blocks where both words appear, and
then a sequential search must be performed to check if the words appear together
in the text.

7.3.1.1 Compressed inverted indexes

Compression has been used along with inverted indexes with good results [NMN+00,
ZMR98]. Using compression along with block addressing indexes usually improves
their performance. The index size is reduced, since the compressed text size is
smaller and thus the number of documents that can be held in a block increases.

102 Chapter 7. Introduction

Moreover, if the text is compressed with a technique that allows direct searching
for words in the compressed text, searching inside candidate blocks becomes much
faster.

On the other hand, compression techniques can also be used to compress the
inverted indexes themselves, as suggested in [NMN+00, SWYZ02], achieving very
good results. Efficient representations of inverted indexes typically rely on integer
compression techniques. An inverted list can be stored as an ascending sequence of
integers. Therefore, using the differences between consecutive integers can reduce
the space required to represent the list if they are represented with a variable-
length encoding [WMB99], for example
-codes, �-codes or Rice codes, explained
in Section 3.1. More recent proposals [CM07] use byte-aligned codes, which lose
little compression and are faster at decoding. There are also hybrid representations
[MC07] where the inverted lists of the most frequent words are represented with
bitmaps (the itℎ bit is set if that word occurs in block i), and the remaining lists
are represented with differential values. Intersection of compressed inverted lists
can be performed using a merge-type algorithm along with the decoding of such
lists. Set-versus-set can also be used avoiding the decompression of the whole lists
[CM07, ST07, MC07]. This approach requires the storage of sampled values to
permit the direct access to the compressed list.

Hence, applying compression to inverted indexes reduces the overall storage and
processing overhead associated with large text collections.

7.3.2 Suffix arrays

The suffix array was proposed by Manber and Myers [MM93]. It is a basic full-text
index, which supports searching for any substring of the text using binary searches.

Let T [1, n] be a text consisting in a sequence of symbols from an alphabet Σ of
size �. The suffix array SA[1, n] of T is a permutation of [1, n] of all the suffixes
T [i, n], with 1 ≤ i ≤ n. The permutation is defined by means of the lexicographic
ordering ≺ such that T [SA[i], n] ≺ T [SA[i + 1], n] for all 1 ≤ i < n, that is, the
suffix array contains the starting position of all the suffixes of the sequence T in
lexicographic order.

Figure 7.2 gives an example of the suffix array SA built from the text “cava o cabo
na cova”3. A special character $ which is lower than the rest of the characters from
Σ has been included as the last symbol of the sequence to signal the end of the text.
The white space is written as an underscore for clarity, and it is lexicographically
smaller than the characters “a”-“z”. Array SA is obtained by storing the original
positions in the text of the lexicographically sorted suffixes. Below each position of
the suffix array SA we have written the text suffix pointed by that position.

3The text of the example is written in Galician and means “The corporal digs inside the cave”

7.3. Indexing 103

Figure 7.2: Suffix array for the text “cava_o_cabo_na_cova$”.

The search for a pattern P [1,m] of length m can be performed using a binary
search on the suffix array SA. Since the suffixes are sorted following the lexico-
graphic order, all the suffixes that begin with a given substring (the pattern) are
grouped together in the suffix array. Then, a binary search is computed in order
to obtain the interval SA[sp, ep], being sp the pointer to the first occurrence of
the pattern in lexicographic order and ep the last pointer to that zone of occur-
rences of the pattern. This procedure can be performed in time O(m log n). Each
step of the binary search needs to access the text from the position indicated by
the suffix array in order to compare that text with the pattern. Hence, the string
T [SA[i], SA[i]+m−1] for some i is compared with P [1,m] to locate its occurrences.
Therefore, several accesses to the original text are required during the search.

The main problem of this indexing structure is that it requires a high amount
of space. It consists of an array of pointers to positions of the text, and the length
of this array is equal to the length of the text. Therefore, it occupies four times
the space of the text4 and it also requires the explicit storage of the text (which
is accessed during the searches). There exist several compressed representations of
the suffix array [NM07, FGNV09], which exploit in different ways the regularities
that appear on the suffix arrays of compressible texts.

We will describe in the next section Sadakane’s Compressed Suffix Array (CSA)

4Assuming that n ≤ 232 and that we implement the suffix array in practice using integers of
32 bits, a 32-bits pointer is needed per each 8-bits character of the text, thus the array of pointers
occupies four times the space of the text.

104 Chapter 7. Introduction

[Sad03], which is a self-indexed structure, that is, in addition to locating any sub-
string of the text, it replaces text, since it contains enough information to efficiently
reproduce any text substring.

7.3.3 Self-indexes

Inverted indexes and suffix arrays build the index using space additional to that
required by the text. A self-index [NM07] is an index that operates in space pro-
portional to the compressed text, replaces it, and provides fast search functionality.
It can locate occurrences of patterns in the text, and in addition it contains enough
information to extract any text substring in an efficient way.

Classical self-indexes are built over the string of characters that compose the
text and permit to search for any substring of the text. They are called full-text
self-indexes. Some examples of those self-indexed structures are the Compressed
Suffix Array [Sad03], the Succinct Suffix Array [MN05], the FM-index [FM05], the
Alphabet-Friendly FM-index (AFFM) [FMMN07], or the LZ-index [Nav04]. Most
of these full-text self-indexes are based on the Burrows-Wheeler transform (BWT)5

[BW94] or on the suffix array (see [NM07] for a complete survey).

Those indexes work for any type of text, achieve compression ratios of 40-60%,
and can extract any text substring and locate the occurrence positions of a pattern
string in a time that depends on the pattern length and the output size, but it is
not proportional to the text size (that is, the search process is not sequential). Most
can also count the number of occurrences of a pattern string much faster than by
locating them.

Compressed Suffix Array

We describe Sadakane’s Compressed Suffix Array (CSA) [Sad03] since it is one of
the best known self-indexes of the literature. The Compressed Suffix Array is a
self-index based on the suffix arrays (Section 7.3.2).

The CSA uses function Ψ [GV00] which indicates the position in the suffix array
that points to the following suffix of the text, that is, Ψ(i) tells where in SA is the
pointer to T [SA[i] + 1]. Given a suffix array SA[1, n], function Ψ : [1, n]→ [1, n] is
defined so that, for all 1 ≤ i ≤ n, SA[Ψ(i)] = SA[i] + 1. Since SA[1] = n, we fix
SA[Ψ(1)] = 1 so that Ψ is a permutation.

Figure 7.3 shows function Ψ for the example of the suffix array built over the
text “cava o cabo na cova”. For instance, we can know which position of SA points
to the suffix following the suffix “bo_na_cova$”, which is located at position 11 of
SA. Since SA[Ψ(11)] = SA[11] + 1, we obtain that SA[17] = SA[11] + 1, that is,

5Burrows and Wheeler [BW94] proposed a transformation (BWT) that consists in a reversible
permutation of the text characters, generating a more compressible string.

7.3. Indexing 105

Figure 7.3: Ψ function for the text “cava_o_cabo_na_cova$”.

the suffix following “bo_na_cova$” is pointed by the 17th element of SA (indeed,
it points to “o_na_cova$”).

Sadakane’s CSA represents the suffix array SA and the text T using function
Ψ and one extra structure. This additional structure is composed of a bit array D
and a sequence S. With this structure it will be possible to know the first character
of the suffix pointed by a given position of the suffix array. Sequence S contains
the different symbols that appear in the text in lexicographical order. D consists
in a bit vector that indicates those positions in the suffix array that point to a
suffix that starts with a different character than the suffix pointed by the previous
position of the suffix array, that is, D[i] = 1 iff i = 1 or T [SA[i]] ∕= T [SA[i − 1]].
Therefore, the first character c of the suffix pointed by entry i of the suffix array is
c = S[rank(D, i)], where, as discussed in Section 2.3.1, rank(D, i) is computed in
constant time using o(n) bits on top of D.

Figure 7.4 illustrates the structures used by Sadakane’s CSA for the example
“cava o cabo na cova”. As we have already said, arrays T and SA are replaced by
Ψ, D and S, therefore they are shown in the figure only for clarity. For instance,
position 7 in the suffix array points to suffix “a_cova$”, which starts with the same
character (a) as the precedent suffix “a$”. Therefore, D[7] = 0. However, position
15 points to suffix “na_cova$” which starts with a different character than the suffix
pointed by position 14 (“cova$”); thus D[15] = 1. S is the sorted sequence of the
symbols that appear in the text, that is, S = {$,_, a, b, c, n, o, v}.

Now we explain how to use the structures that compose Sadakane’s CSA, that
is, how the suffix pointed by a given position of the suffix array can be obtained
using Ψ, D and S, without having neither SA nor T .

Given a position i of the suffix array, we can know the first character of the
suffix using D and S as explained before, that is, c = S[rank(D, i)]. To extract

106 Chapter 7. Introduction

Figure 7.4: Sadakane’s CSA for the text “cava_o_cabo_na_cova$”. Ar-
rays T and SA are shown only for clarity, they are not actually stored.

7.3. Indexing 107

the next character of the suffix we simply have to extract the first character of the
suffix in position i′ ← Ψ(i) using the same process again to obtain T [SA[i′]], and
so on. In this way, we take advantage of the identity T [SA[i] + 1] = T [SA[Ψ(i)]].
Therefore, binary searches performed over the suffix array during searches can be
done without the use of the original arrays T and SA.

Notice that using Ψ, D and S we can extract the text given a position of the
suffix array, but we do not have any information about the positions of the suffixes
in the original text. Hence, if we want to locate the occurrences of a pattern in the
text, or we want to extract some portion of the text starting at a given position
we still need the suffix array SA. This can be solved by sampling the text at
regular intervals and storing the suffix array positions pointing to those sampled
text positions.

To obtain a compressed structure, Ψ must be represented in a compact way.
Sadakane shows that Ψ is formed by � increasing subsequences, which can be repre-
sented by gap encoding its differential values. Absolute Ψ values at regular intervals
are retained to permit fast random access to Ψ (yielding constant time in theory).

Word-based self-indexes

Full-text self-indexes applied over natural language text obtain compression ratios
around 60% of the original text size. It would be interesting if these structures
could achieve compression close to 30% to 40%, that is, similar to the compression
achieved by compressed inverted indexes over compressed text. This reduction can
be achieved at the expense of losing some of the searching flexibility of the full-text
self-indexes. Recent research has focused on applying a compressed self-index (as
developed for general strings) over the sequence of words of a natural language text,
that is, regarding the words as the basic symbols, such that the benefits of the word-
based model are translated to these self-indexes structures. However, the resulting
indexes can only search for words and word phrases, just like inverted indexes, but
not for any substring of the text, as full-text self-indexes can.

We cannot directly apply traditional full-text self-indexes to natural language
words, since it involves some interesting challenges. For instance, the alphabet is
now composed of all the words of the text, not just the characters, hence it becomes
very large. In addition, some flexible searching might be desired. For example,
inverted indexes often permit to find phrases regardless of whether the words are
separated by a space, two spaces, a tab, a newline, etc. Moreover, it is customary to
apply some filtering on the text words to be searched [BYRN99], such as stemming.
It is also usual to disregard stopwords (articles, prepositions, etc.) in the searches.
Hence, some preprocessing of the text is required to obtain a sequence of stemmed,
significant words, instead of the original sequence of words. However, the original
sequence of words must be also represented, so that the self-indexed structure can
reproduce the original text.

108 Chapter 7. Introduction

Some word-based self-indexes have been developed, such as the word-based Com-
pressed Suffix Array (WCSA) and the word-based Succinct Suffix Array (WSSA)
[BFN+08, BCF+11]. These self-indexes achieve compression ratios of 35-40% and
provide indexed word-based searches, close to many natural language text com-
pressors that do not provide any indexing. Some configurations can even achieve
compression ratios around 30% at the expense of worsening search times. They
are much faster at counting the number of occurrences of a pattern than a block-
addressing inverted index, and they also obtain better relative search performance
for locating patterns when the indexes achieve good compression ratios. Their be-
havior is particulary notorious when searching for phrase patterns, especially for
those occurring few times.

7.4 Our goal

As we have already mentioned, it has been demonstrated the benefits of compressing
natural language texts using word-based statistical semistatic compression. Not
only it achieves extremely competitive compression ratios, but also direct search on
the compressed text can be carried out faster than on the original text. Indexing
based on inverted lists benefits from compression as well.

Such compression methods assign a variable-length codeword to each different
text word. Some coding methods (Plain Huffman and Restricted Prefix Byte Codes)
do not clearly mark codeword boundaries, and hence cannot be accessed at random
positions nor searched with the fastest text search algorithms. Other coding meth-
ods (Tagged Huffman, End-Tagged Dense Code, or (s, c)-Dense Code) do mark
codeword boundaries, achieving a self-synchronization property that enables fast
searches and random access, in exchange for some loss in compression effectiveness.

In this part of the thesis we propose a new data structure that rearranges the
codeword bytes of the compressed text obtained by a byte-oriented word-based en-
coding scheme, following a wavelet-tree-like strategy. We show that this simple
variation obtains a compressed text that is always self-synchronized, despite build-
ing on encodings which are not. That is, if this new data structure is used, the
compressed text can be accessed at any point, even if Plain Huffman coding is used,
for example. This encourages using the most space-efficient bytewise encodings with
no penalty.

Our aim is not only to obtain direct access to the compressed text, but to also
improve search performance. The proposed reorganization provides some implicit
indexing properties, obtaining a word-based self-indexed structure. That is, with
very little extra space, we will be able to search in time that is not proportional to the
text length (as sequential search methods) but logarithmic on it (as typical indexed
techniques). Indeed, we compare our proposal with explicit inverted indexes, and
show that it can compete when using the same amount of space.

Chapter 8

Our proposal: Byte-Oriented

Codes Wavelet Tree

In this chapter we explain our proposal, Byte-Oriented Codes Wavelet Tree (BOC-
WT) in detail. This new data structure aims to represent any natural language text
in compact space and self-indexed form, such that not only random access to any
position of the text can be achieved, but also supports efficient counting, locating
and extracting snippets when searching for a pattern in the text.

The chapter starts by presenting a conceptual description of our proposal in
Section 8.1, including some examples to clarify the technique. Later, we detail
the different algorithms to compress, decompress and search over the structure in
Section 8.2.

8.1 Conceptual description

Our structure, Byte-Oriented Codes Wavelet Tree (BOC-WT), has been designed
to be applied to a word-based, byte-oriented semistatic prefix-free compression tech-
nique (as all those mentioned in Section 7.2), but it could also be applied to other
word-based, byte-oriented prefix-free encoding techniques. Basically, the idea is to
rearrange the different bytes of each codeword, placing them in different nodes of
a tree that we call wavelet tree for its similarity with the wavelet trees [GGV03]
explained in Section 2.3.2. That is, instead of representing the compressed text as
a concatenated sequence of codewords (composed of one or more bytes), each one
replacing the original word at that position in the text, BOC-WT represents the
compressed text as a tree where the different bytes of each codeword are placed
at different nodes. Hence, our structure is byte-oriented and the resulting tree is

109

110 Chapter 8. Our proposal: Byte-Oriented Codes Wavelet Tree

neither balanced nor binary.

The root of the BOC-WT consists of an array of bytes containing the first byte of
all the codewords, following the same order as the words in the original text. That
is, at position i in the root we place the first byte of the codeword that encodes the
itℎ word in the source text.

The root has as many children as different bytes can be the first byte of a
codeword with more than one byte. For instance, in ETDC the root has always 128
children and in RPBC it will typically have 256−v1. The node x in the second level
(taking the root as the first level) is also an array of bytes which stores the second
byte of those codewords whose first byte is x. Hence each node handles a subset of
the text words, in the same order they have in the original text. That is, the byte
at position i in node x is the second byte of the itℎ text codeword that starts with
byte x. The same arrangement is used to create the lower levels of the tree. That
is, node x has as many children as different second bytes exist in codewords with
more than 2 bytes having x as their first byte.

Formally, let us represent the text words1 as ⟨w1, w2 . . . wn⟩. Lets call cwi the
codeword assigned to word wi. Notice that two codewords cwi and cwj can be the
same if the itℎ and jtℎ words in the text coincide. The bytes of codeword cwi are
denoted as ⟨cw1

i ⋅ ⋅ ⋅ cwm
i ⟩ where m is the size of codeword cwi. The root node of

the tree is formed by the following sequence of bytes ⟨cw1
1 , cw

1
2 , cw

1
3 ⋅ ⋅ ⋅ cw1

n⟩, that
is, the first byte of each codeword cwi, 1 ≤ i ≤ n for each of the n words of the text.
Hence, the root has as many bytes as words has the text.

As explained, the root has a child for each byte value that can be the first in
a codeword. Assume there are r words in the source text encoded by codewords
(longer than 1 byte) starting with the byte x: cwi1 ⋅ ⋅ ⋅ cwir . Therefore, node x will
store the sequence ⟨cw2

i1
, cw2

i2
, cw2

i3
⋅ ⋅ ⋅ cw2

ir
⟩. Some of those will be the last byte

of their codeword, yet others would correspond to codewords with more than two
bytes. Therefore, node x would have in turn children as explained before. Assume
node xy is a child of node x. It stores the byte sequence ⟨cw3

j1
, cw3

j2
, cw3

j3
⋅ ⋅ ⋅ cw3

jk
⟩

of all the third bytes of codewords cwj1 ⋅ ⋅ ⋅ cwjk starting with xy, in their original
text order.

As we can observe from the conceptual description of our proposal, the BOC-
WT data structure is not a balanced wavelet tree. Its philosophy differs from the
original wavelet tree: the binary wavelet tree divides the vocabulary in two at each
level, inducing a binary representation of each element of the vocabulary due to
that subdivision, whereas the BOC-WT data structure obtains its shape from the
codeword assignment determined by the compression method used2. Depending on

1We speak of words to simplify the discussion. In practice both words and separators are
encoded as atomic entities in word-based compression.

2Notice that the Huffman-shaped wavelet tree described in Section 2.3.2 and used in the ex-
perimental evaluation of Part I is not a balanced wavelet tree either.

8.1. Conceptual description 111

the frequency distribution of the words in the text, some codewords can be longer
than others, such that BOC-WT data structure becomes a non-balanced tree. The
height of this tree will be equal to the number of bytes of the longest codeword, but
usually some of its branches are shorter than this value.

This new data structure follows, somehow, the strategy of the Directly Address-
able Codes proposed in the previous part of the thesis. That is, it rearranges the
bytes of the codewords in several levels in order to synchronize the codewords, such
that it permits direct access to any symbol of the compressed text. In addition
to this feature, fast searches over the compressed text are also desirable. Hence,
the data structure proposed, BOC-WT, not only rearranges the bytes in levels, but
it also separates the bytes of each level in several nodes, obtaining a tree. With
this modification, each word of the vocabulary of text is associated with one leaf of
the tree and efficient algorithms for searching can be designed such that they just
require a simple traversal over the tree.

Example Figure 8.1 shows an example of the proposed data structure, BOC-
WT, built from the text ‘LONG TIME AGO IN A GALAXY FAR FAR AWAY’, where the
alphabet is Σ = {A, AGO AWAY, FAR, GALAXY, IN, LONG, TIME}. After obtaining the
codewords for all the words in the text, using any prefix-free byte-oriented encoding,
we reorganize the bytes of the codewords in the wavelet tree following the explained
arrangement. The first byte of each codeword is in the root node. The next bytes
are contained in the corresponding child nodes. For example, the second byte of
the codeword assigned to word ‘AWAY’ is the third byte of node B2, because it is
the third word in the root node whose codeword has b2 as first byte (the previous
bytes of node B2 correspond to words ‘TIME’ and ‘IN’, since the first byte of their
codewords is also b2). In an analogous way, the third byte of its codeword is in node
B2B4 as its two first codeword bytes are b2 and b4. Note that only the shaded byte
sequences are stored in the nodes; the text is shown only for clarity.

Direct access to the sequence of words is supported in a similar way as for
Directly Addressable Codes due to the rearrangement in levels, that is, using a
top-down traversal from the root node until the leaf node and computing the corre-
sponding position at the next level of the tree with rank operations. However, due
to the byte-oriented tree shape of the data structure, the procedure becomes a little
more complex. Let us illustrate the algorithm to extract the original word located
at a certain position with an example.

Assume we want to know which is the 6tℎ word of the text. Starting at the root
node in Figure 8.1, we read the byte at position 6 of the root node: Root[6] = b4.
According to the encoding scheme we can know that, for this code, the codeword is

112 Chapter 8. Our proposal: Byte-Oriented Codes Wavelet Tree

TEXT: “LONG TIME AGO IN A GALAXY FAR FAR AWAY”

SYMBOL FREQ CODE

FAR 2 b1

IN 1 b2 b5

A 1 b3 b1

LONG 1 b3 b5

AGO 1 b4 b3

TIME 1 b2 b1

AWAY 1 b2 b4 b3

GALAXY 1 b4 b5 b2

Word:

Position:

b1b3 b4

b5 b1

b1b2

b5

b3b4 b2

b1

b2

b4

b2

b4

b3

B4 B5B2 B4

B2 B3 B4

LONG TIME AGO IN A GALAXY FAR FAR AWAY

1 2 3 4 5 6 7 8 9

TIME IN AWAY

1 2 3

LONG A

1 2

AGO GALAXY

1 2

b5

GALAXY

1

AWAY

1

Figure 8.1: Example of BOC-WT data structure for a short text.

8.1. Conceptual description 113

not complete yet, so we move to the second level of the tree in order to continue ob-
taining the rest of the bytes of the codeword. The second byte must be contained in
node B4, which is the child node of the root where the second bytes of all codewords
starting by byte b4 are stored. Using a byte rank operation rankb4(Root, 6) = 2,
we obtain that byte b4 at position 6 is the second b4 byte of the root node. This
means that the second byte of the codeword starting in the byte at position 6 in
the root node will be the 2nd byte of node B4. Then, we access to the 2nd position
of this node of the second level of the tree, obtaining that B4[2] = b5, therefore b5
is the second byte of the codeword we are looking for. Again the encoding scheme
indicates that the codeword is still not complete, and rankb5 (B4, 2) = 1 tells us
that the next byte of the codeword will be in the node B4B5 at position 1. One
level down, we obtain B4B5[1] = b2, and now the obtained sequence b4b5b2 is a
complete codeword according to the encoding scheme. It corresponds to ‘GALAXY’,
which therefore is the 6tℎ word in the source text.

This process can be used to recover any word at any position of the text. For
the complete extraction of a codeword, at most one access to each level of the tree
and a rank operation over one of its nodes are needed. Notice that this mechanism
gives direct access and random decompression capabilities to encoding methods that
do not mark boundaries in the codewords. Independently of the encoding scheme
used, with BOC-WT data structure those boundaries become automatically defined
since each byte in the root corresponds to a new codeword. Hence, each position
of the text can be directly accessed such that random decompression is supported.
As we have previously anticipated, this direct access property is obtained due to
the rearrangement of the bytes of the codewords in levels, such as the Directly
Addressable Codes of Part I of the thesis.

Searching The new data structure BOC-WT does not only provide synchronism
to any encoding scheme, supporting direct access and random decompression of
the text, but it also improves searches thanks to its tree shape. We illustrate the
searching procedure with an example.

If we want to search for the first occurrence of ‘AWAY’ in the example of Figure
8.1, we start by determining its codeword, which is b2b4b3 according to the assign-
ment of codewords of the example. Therefore the search will start at the node
B2B4, which holds all the codewords starting with b2b4. In this leaf node we want
to find out where the first byte b3 occurs, as b3 is the last byte of the codeword
sought. Operation selectb3(B2B4, 1) = 1 tells us that the first b3 is at position 1 of
node B2B4, hence the first occurrence of word ‘AWAY’ is the first of all words with
codewords starting with b2b4, thus in the parent node B2 the first occurrence of
byte b4 will be the one encoding the first occurrence of the word ‘AWAY’ in the text.
Again, to know where the first byte b4 is in node B2, we perform selectb4(B2, 1) = 3.
Therefore, word ‘AWAY’ is the third word of the text whose first byte is b2. Thus,
the 3rd byte b2 of the root node will be the one corresponding to the first byte of

114 Chapter 8. Our proposal: Byte-Oriented Codes Wavelet Tree

our codeword. To know where that 3rd byte b2 is in the root node, we compute
selectb2(Root, 3) = 9. Finally the result is that the word ‘AWAY’ appears for the
first time as the 9tℎ word of the text.

Notice that it would be easy to obtain a snippet of an arbitrary number of words
around this occurrence, just by using the explained decompression mechanism to
extract all the words surrounding that position. This entails a significant contribu-
tion, since it allows backwards and forward decompression from any position of the
text regardless of the compression technique used.

Space requirements The sum of the space needed for the byte sequences stored
at all nodes of the tree is exactly the same as the size of the compressed text obtained
by the compression technique used to build the BOC-WT data structure. Just a
rearrangement has taken place. Yet, a minimum of extra space is necessary in order
to maintain the tree shape information with a few pointers. Actually, the shape of
the tree is determined by the compression technique, so it is not necessary to store
those pointers, but only the length of the sequence at each node3. In addition, some
extra space can be used to support fast rank and select operations over the byte
sequences (see Section 2.3.2).

Due to all the properties previously mentioned, this new data structure can be
seen as a self-indexed structure: it occupies a space proportional to the compressed
text and it can efficiently solve operations such as counting and locating patterns
in the text, and also displaying any portion of the text.

8.2 Algorithms

In the previous section we have conceptually presented the new data structure BOC-
WT and shown how it is navigated using a small example. In this section, we detail
the general algorithms for constructing the tree, accessing to any position of the
text and extracting the word located in that position, and searching for patterns in
the text represented by the data structure.

8.2.1 Construction of BOC-WT

The construction algorithm makes two passes on the source text. In the first pass
we obtain the vocabulary and the model (frequencies), and then assign codewords

3Notice that we use a canonical PH, so it is not necessary to store pointers to maintain the
shape of the tree and determine the i-th child of a given node in constant time. In the same
way, the wavelet trees built using ETDC or RPBC can be navigated without the need of extra
pointers due to the dense assignment of codewords, which causes that all the nodes with children
are contiguously located in the wavelet tree. If an arbitrary code was used, the use of pointers or
bitmaps may be required to determine which node is the i-th child of a given node.

8.2. Algorithms 115

using any prefix-free encoding scheme. In the second pass the source text is pro-
cessed again and each word is translated into its codeword. Instead of storing those
codewords sequentially, as a classical compressor, the codeword bytes are spread
along the different nodes in the wavelet tree. The node where a byte of a codeword
is stored depends on the previous bytes of that codeword, as explained.

It is possible to precalculate how many nodes will form the tree and the sizes
of each node before the second pass starts, as it is determined by the encoding
scheme and the frequencies of the words of the vocabulary. Then, the nodes can be
allocated according to these sizes and filled with the codeword bytes as the second
pass takes place. We maintain an array of markers that point to the current writing
position at each node, so that they can be filled sequentially following the order of
the words in the text.

Finally, we obtain the BOC-WT representation as the concatenation of the se-
quences of all the nodes in the wavelet tree, and we add a header with the assignment
between the words of the text and their codewords, determined by the compression
technique employed. In addition, BOC-WT data structures includes the length of
the sequence for all the nodes of the tree and some extra information, if needed,
of the shape of the tree. This information depends on the compression method
used; if ETDC is the chosen technique, then there is no extra information to main-
tain, whereas if we reorganize the compressed text of PH, then some extra bytes
representing the canonical Huffman tree are needed.

Algorithm 8.1 shows the pseudocode of this procedure, where the input is the
source text that we want to represent and the output is the BOC-WT data structure
generated.

8.2.2 Random extraction

Operation display is vital for a self-indexed structure. Since a plain representation
of the original text is not stored, this procedure allows one to decompress portions
of the text, starting at any position of the compressed text, or even recover the
whole original text.

We first explain how a single word is extracted using the BOC-WT data struc-
ture, and in the next section we generalize the algorithm such that longer sequences
of the text can be displayed.

To extract a random text word j, we access the j-th byte of the root node
sequence to obtain the first byte of its codeword. If the codeword has just one byte,
we finish at this point. If the read byte bi is not the last one of a codeword, we have
to go down in the tree to obtain the rest of the bytes. As explained, the next byte
of the codeword is stored in the child node Bi, the one corresponding to words with
bi as first byte. All the codewords starting with that byte bi store their second byte
in Bi, so we count the number of occurrences of byte bi in the root node before

116 Chapter 8. Our proposal: Byte-Oriented Codes Wavelet Tree

Algorithm 8.1: Construction algorithm of BOC-WT
Input: T , source text
Output: BOC-WT representing T
voc← first-pass(t)
sort(voc)
totalNodes← calculateNumberNodes()
forall node ∈ totalNodes do

lengtℎ[node]← calculateSeqLengtℎ(node)
wt[node]← allocate(lengtℎ[node])
marker[node]← 1

end

forall word ∈ T do
cw ← code(word)
currentnode← rootnode
for i← 1 to ∣cw∣ do

j ← marker[currentnode]
wt[currentnode][j]← cwi

marker[currentnode]← j + 1
currentnode← cℎild(currentnode, cwi)

end

end

return concatenation of node sequences, vocabulary, and length of node
sequences plus some extra information for the compression technique if
needed

8.2. Algorithms 117

Algorithm 8.2: Display x

Input: x, position in the text
Output: w, word at position x in the text
currentnode← rootnode
c← wt[currentnode][x]
cw ← [c]
while cw is not completed do

x← rankc(currentnode, x)
currentnode← cℎild(currentnode, c)
c← wt[currentnode][x]
cw ← cw∣∣c

end

w ← decode(cw)
return w

position j by using a rank operation, rankbi (root, j) = k. Thus k is the position in
the child node Bi of the second byte of the codeword. We repeat this procedure as
many times as the length of the codeword, as we show in Algorithm 8.2

We can also decompress backwards or forwards a given position. For instance,
if we need to return a snippet, we must obtain the previous or next words around
the occurrence of a word, then we can follow the same algorithm starting with the
previous or next entries of the position of that occurrence at the root node.

The complexity of this algorithm is (ℓ − 1) times the complexity of the rank
operation, where ℓ is the length of the codeword. Therefore, its performance depends
on the implementation of the rank operation.

8.2.3 Full text retrieval

BOC-WT represents the text in a compact space, therefore, we must be able to
recover the original text from its data structures. After loading the vocabulary and
the whole structure of the BOC-WT, a full recovery of the text consists in decoding
sequentially each entry of the root.

Instead of extracting each word individually, which would require (ℓ − 1) rank
operations for each word (ℓ being the length of its codeword), we follow a faster
procedure that avoids all those rank operations. Since all the nodes of the tree
will be processed sequentially, we can gain efficiency if we maintain pointers to the
current first unprocessed entry of each node, similarly to the markers used at con-
struction time. Once we obtain the child node where the codeword of the current
word continues, we can avoid unnecessary rank operations because the next byte
of the codeword will be the next byte to be processed in the corresponding node.
Except for this improvement, the procedure is the same as the one explained in the
previous subsection and its pseudocode is described in Algorithm 8.3.

118 Chapter 8. Our proposal: Byte-Oriented Codes Wavelet Tree

Algorithm 8.3: Full text retrieval x

Output: T , original text represented by the BOC-WT data structure
forall node ∈ totalNodes do

marker[node]← 1
end

T ← "
for pos = 1 . . . lengtℎ[rootnode] do

currentnode← rootnode
c← wt[currentnode][pos]
cw ← [c]
while cw is not completed do

currentnode← cℎild(currentnode, c)
x← marker[currentnode]
c← wt[currentnode][x]
marker[currentnode]← marker[currentnode] + 1
cw ← cw∣∣c

end

T ← T ∣∣ decode(cw)
end

return T

For the example in Figure 8.1, we will proceed as follows. We first initialize
the marker array to 1 for all the nodes of the tree, since we have not started the
full decompression yet. Then, we extract the word at position 1. We read byte b3
at position 1 of the root node. Since the codeword is not complete according to
the encoding scheme, we must read a second byte in the second level of the tree.
Instead of performing a rank operation to compute the position of that second byte
at node B3, we check the value of marker[B3], which contains 1. Hence, the second
byte of the codeword is at position 1 of node B3, that is, b5. Since we obtain the
last byte of a complete codeword, we have finished the decompression of that word,
thus the first decompressed word is the one with codeword b3b5, which is word
‘LONG’. We update the value of marker[B3] to 2. Then, we continue with the word
at position 2 of the root node. We read byte b2 and therefore we go to node B2.
Since marker[B2] = 1, the second byte of the codeword is at position 1 of B2. We
obtain the last byte b1 of a complete codeword (b2b1), hence the word is ‘TIME’. We
update the value of marker[B2] to 2. The next word has its first byte at position 3
of the root node, that is, its first byte is b4. By proceeding in an analogous way as
described before, we obtain word ‘AGO’. The word at position 4 of the text contains
its first byte at position 4 of the root node, that is, b2. Now, instead of using a
rank operation, we can know that the second byte of this codeword is at position 2
of node B2 because marker[B2] = 2. Hence, we save unnecessary rank operations
using these markers and the whole text can be efficiently extracted.

8.2. Algorithms 119

Algorithm 8.4: Count operation
Input: w, a word
Output: n, number of occurrences of w
cw ← code(w)
Let cw = cw′∣∣c, being c the last byte
currentnode← node corresponding to code cw′

n← rankc(currentnode, lengtℎ[currentnode])
return n

Starting the decompression at a random position

It is also possible to display a portion of the text, starting from a random position
different from the first position of the text. The algorithm is the same as the one
described in this section, which retrieves the whole original text, except for the
initialization of the markers. If we do not start the decompression of the text from
the beginning, we cannot initialize the markers with the value 1 for each node,
they must be initialized with their corresponding values, that are at first unknown.
Hence, we start the algorithm with all the markers uninitialized. During the top-
down traversal of the tree performed to obtain the codeword of each word, the
marker of a node might not contain the value of the next byte to be read. Thus, if
the marker is uninitialized, a rank operation is performed to establish that value.
If the marker is already initialized, the rank operation is avoided and the value
contained in the marker is used. At most t rank operations are performed, being t
the total number of nodes of BOC-WT data structure.

8.2.4 Searching

As we have already mentioned, BOC-WT data structure provides some implicit
self-indexed properties to the compressed text. Hence, it will allow us to perform
some searching operations in a more efficient way than over the plain compressed
text.

Counting individual words

If we want to count the occurrences of a given word, we can just compute how
many times the last byte of the codeword assigned to that word appears in the
corresponding leaf node. That leaf node is the one identified by all the bytes of the
codeword except the last one.

For instance, if we want to count how many times the word ‘TIME’ appears
in the text of the example in Figure 8.1, we first notice that its codeword is b2b1.
Then, we just count the number of times its last byte b1 appears at node B2 (since
the first byte of its codeword is b2). In an analogous way, to count the occurrences
of word ‘GALAXY’, we obtain its codeword, that is, b4b5b2 and count the number

120 Chapter 8. Our proposal: Byte-Oriented Codes Wavelet Tree

Algorithm 8.5: Locate jtℎ occurrence of word w operation
Input: w, word
Input: j, integer
Output: position of the j-th occurrence of w
cw ← code(w)
Let cw = cw′∣∣c, being c the last byte
currentnode← node corresponding to code cw′

for i← ∣cw∣ to 1 do
j ← selectcwi(currentnode, j)
currentnode← parent(currentnode)

end

return j

of times that its last byte b2 appears at node B4B5 (since the first bytes of its
codeword are b4b5). The pseudocode is presented in Algorithm 8.4.

The main advantage of this procedure consists in the fact that we count the
number of times that a byte appears inside a node, instead of the whole text.
Generally, the size of these nodes are not large, and the time cost can also be
alleviated by the use of structures that support efficient rank operations. Hence,
the procedure becomes faster than searching the plain compressed text.

Locating individual words

As explained in the example of Section 8.1, to locate all the occurrences of a given
word, we start by looking for the last byte of the corresponding codeword cw in
the associated leaf node using operation select. If the last symbol of the codeword,
cw∣cw∣, occurs at position j in the leaf node, then the previous byte cw∣cw∣−1 of that
codeword will be the jtℎ one occurring in the parent node. We proceed in the same
way up in the tree until reaching the position x of the first byte cw1 in the root
node. Thus x is the position of the first occurrence of the word searched for.

To find all the occurrences of a word we proceed in the same way, yet we can
use pointers to the already found positions in the nodes to speed up the select
operations (this might be relevant depending on the select algorithm used). The
basic procedure is shown in Algorithm 8.5.

Counting and locating phrase patterns

It is also possible to search for a phrase pattern, that is, a pattern which is composed
of several words. We locate all the occurrences of the least frequent word in the root
node, and then check if all the first bytes of each codeword of the pattern match
with the previous and next entries of the root node. If all the first bytes of the
codewords of the pattern match, we verify their complete codewords around the

8.2. Algorithms 121

Algorithm 8.6: List intersection

Input: w1, word
Input: w2, word
Output: positions of the occurrence of the pattern w1w2

x1 ← fullselect(w1, 1)
x2 ← fullselect(w2, 1)
while max{x1, x2} ≤ n do

if x1 + 1 = x2 then report occurrence
if x1 + 1 <= x2 then

x1 ← fullselect(w1, fullrank(w1, x2 − 1) + 1)
if x1 + 1 > x2 then

x2 ← fullselect(w2, fullrank(w2, x1 + 1) + 1)
end

return j

candidate occurrence found by performing the corresponding top-down traversal
over the tree until either a byte fails to match the search pattern or we find the
complete phrase pattern.

This algorithm describes both the procedure for counting and locating the oc-
currence of phrase patterns, so both operations are equally time-costly.

In addition to this native method for searching phrase-patterns over the BOC-
WT, it is interesting to remark that BOC-WT also supports list intersection

algorithms to search phrases over the compressed text. As we have explained in
Section 7.3.1, inverted indexes search for phrase patterns by obtaining the lists
associated to the words that compose the pattern, and then intersect those lists.
The efficiency of the list intersection is crucial for search engines, and it continues to
be an open research problem where new list intersection algorithms are constantly
being proposed. These algorithms can be applied over BOC-WT by noticing that
we can generate the lists associated to each word on the fly.

As an example, the pseudocode of a merge-type algorithm implemented over
BOC-WT is shown in Algorithm 8.6. We denote by fullselect the bottom-up
traversal of the BOC-WT that locates the i-th occurrence of a word by performing
select operations4; and we denote by fullrank the top-down traversal that computes
the position at the leaf level of the node associated to a word that corresponds to
a given position at the root node, by performing consecutive rank operations.

Notice that the native method we first explained can be considered as a set-
versus-set-type algorithm since it searches for the elements of the smallest list over
the longest one. However, the algorithm presented has been especially adapted to
take advantage of BOC-WT data structures. For instance, it will not be necessary

4This fullselect operation is equivalent to the locate operation previously described

122 Chapter 8. Our proposal: Byte-Oriented Codes Wavelet Tree

to make complete top-down traversals over the tree to check an occurrence in the
longest list if we detect a false matching at upper levels of the tree. In the next
chapter we will experimentally show that our native method outperforms the merge-
type list intersection algorithm when searching for phrases over a real text.

Chapter 9

Experimental evaluation

This chapter presents the experimental performance of the new method proposed,
BOC-WT, described in the previous chapter.

As already explained, BOC-WT can be built over different word-based byte-
oriented compression methods. The new proposed structure rearranges the bytes of
the codewords that conform the compressed text in a tree-shaped data structure.
In this chapter, we experiment with three well-known word-based compression tech-
niques with different characteristics (Plain Huffman, End-Tagged Dense Code and
Restricted Prefix Byte Codes, all of them explained in Section 7.2), and show the
searching capabilities achieved by the new structure BOC-WT built over these com-
pression methods on several corpora. We show that BOC-WT versions are much
more efficient than their classical counterparts (the sequential version of the com-
pressed text) when searching functionality is required over the compressed text, due
to the self-indexing properties that BOC-WT provides.

We also compare our BOC-WT data structure with explicit inverted indexes,
when using the same amount of space. More concretely, we use block-addressing
compressed inverted indexes, since they are the best choice, as far as we know
[NMN+00, ZMR98], when little space is used. Our results demonstrate that using
BOC-WT is more convenient than trying to use very space-efficient inverted indexes.
In addition to this comparison, we compare the performance of BOC-WT with some
self-indexes of the literature.

The chapter is organized as follows: Section 9.1 describes the collections and
machines used in the experiments whereas Section 9.2 explains some important im-
plementation details, such as the structures used to compute rank operations over
byte arrays. Next sections present the comparison of the technique with the orig-
inal compression methods (Section 9.3 and Section 9.4) and also the experimental
comparison between our proposal and other indexing structures, that is, inverted
indexes (Section 9.5) and other self-indexes (Section 9.6).

123

124 Chapter 9. Experimental evaluation

Table 9.1: Description of the corpora used.

CORPUS size (bytes) num. words voc. size

CR 51,085,545 10,113,143 117,713

ZIFF 185,220,211 40,627,131 237,622

ALL 1,080,720,303 228,707,250 885,630

9.1 Experimental framework

We used a large corpus (ALL), with around 1GiB, created by aggregating the fol-
lowing text collections: AP Newswire 1988 and Ziff Data 1989-1990 (ZIFF) from
trec-2, Congressional Record 1993 (CR) and Financial Times 1991 to 1994 from
trec-4, in addition to the small Calgary corpus1. We also used CR and ZIFF
corpus individually to have smaller corpora to experiment with. Table 9.1 presents
the main characteristics of the corpora used. The first column indicates the name
of the corpus, the second its size (in bytes), the third the number of words that
compose the corpus, and the fourth the number of different words in the text.

We used the spaceless word model [MNZBY98] to create the vocabulary and
model the separators. A separator is the text between two contiguous words, and
it must be coded too. In the spaceless word model, if a word is followed by a space,
we just encode the word, otherwise both the word and the separator are encoded.
Hence, the vocabulary is formed by all the different words and all the different
separators, excluding the single white space.

Two different machines have been used for the experiments. In Sections 9.3 and
9.4 we used an isolated Intel R⃝Pentium

R⃝-IV 3.00 GHz system (16Kb L1 + 1024Kb
L2 cache), with 4 GB dual-channel DDR-400Mhz RAM. It ran Debian GNU/Linux
(kernel version 2.4.27). The compiler used was gcc version 3.3.5 and -O9 compiler
optimizations were set. In Sections 9.5 and 9.6 we used an isolated Intel R⃝Xeon

R⃝-

E5520@2.26GHz with 72GiB-DDR3@800MHz RAM. It ran Ubuntu 9.10 (kernel
2.6.31-19-server), using gcc version 4.4.1 with -O9 -m32 options. Time results refer
to cpu user time.

In Sections 9.5 and 9.6 we analyze the search performance of our technique
over ALL and CR corpora. When the experiments are run over ALL corpus, we
use 8 sets of 100 test patterns, all of them randomly chosen from the text (dis-
carding stopwords). Four sets were composed of single-word patterns with dif-
ferent frequency ranges: Wa, Wb, Wc and Wd with words occurring respectively

1http://www.data-compression.info/Corpora/CalgaryCorpus/

9.2. Implementation details 125

[1, 100],[101, 1000],[1001, 10000], and [10001,∞] times. The overall number of oc-
currences for such sets are 5, 679; 30, 664; 258, 098; and 2, 273, 565 respectively. We
also used four sets, P2, P4, P6, and P8, which consist of phrase-patterns composed
of 2, 4, 6, and 8 words respectively. The number of occurrences of such sets are
201, 956; 4, 415; 144; and 169 respectively. When running the experiments over
CR corpus, two set of patterns are used: one with 100 individual words randomly
chosen from the vocabulary, and another set with 1,000 different phrase patterns
composed of 4 words. The overall number of occurrences for such sets are 257, 745
and 330, 441 respectively.

9.2 Implementation details

We explored different alternatives to implement rank and select operations over
byte sequences, due to their importance on the efficiency of the final structure.

A baseline solution is to carry out those operations by brute force, that is, by
sequentially counting all the occurrences of the byte we are interested in, from the
beginning of the node sequence. This simple option does not require any extra
structure. Interestingly enough, it already allows operations count and locate to be
carried out more efficiently than in classically compressed files. In both cases we
do sequential searches, but with BOC-WT these searches are done over a reduced
portion of the file. Likewise, it is possible to access the text at random, even using
non-synchronized codes such as PH and RPBC, faster than scanning the file from
the beginning.

However, it is possible to drastically improve the performance of rank and select
operations at a very moderate extra space cost, by adapting well-known theoret-
ical techniques [FMMN07]. Given a sequence of bytes B[1, n], we use a two-level
directory structure, dividing the sequence into sb superblocks and each superblock
into b blocks of size n/(sb ∗ b). The first level stores the number of occurrences of
each byte from the beginning of the sequence to the start of each superblock. The
second level stores the number of occurrences of each byte up to the start of each
block from the beginning of the superblock it belongs to. The second-level values
cannot be larger than sb ∗ b, and hence can be represented with fewer bits.

With this approach, rankbi(B, j) is obtained by counting the number of occur-
rences of bi from the beginning of the last block before j up to the position j, and
adding to that the values stored in the corresponding block and superblock for byte
bi. Instead of O(n), this structure answers rank in time O(n/(sb ∗ b)).

To compute selectbi(B, j) we binary search for the first value x such that
rankbi (B, x) = j. We first binary search the values stored in the superblocks, then
those in the blocks inside the right superblock, and finally complete the search with
a sequential scanning in the right block. The time is O(log sb+ log b+ n/(sb ∗ b)).2

2We also tried exponential search instead of binary search to improve locate operation but

126 Chapter 9. Experimental evaluation

Table 9.2: Sizes of the byte sequences of the leftmost nodes at levels 0, 1
and 2 of the BOC-WT data structure built using PH and ETDC.

BOC-WT over PH BOC-WT over ETDC

Level 0 228,707,250 228,707,250

Level 1 834,670 22,245,391

Level 2 65,536 77,799

An interesting property is that this structure is parameterizable. That is, there
is a space/time trade-off associated to parameters sb and b. The shorter the blocks,
the faster the sequential counting of occurrences of byte bi. In addition, we can
speed up select operations by storing the result obtained for the last query. Since
it is very frequent to perform several select operations for the same byte value, for
instance when finding all the occurrences of a word, this stored value can be used
when the previous occurrence of the byte value is located in the same block than
the sought one. Hence, instead of searching from the first position of the block, we
can start the sequential search from the position of the previous occurrence.

With this solution we obtain better overall performance in practice than using
other alternatives to compute rank and select over arbitrary sequences, such as
those explained in Section 2.3.2. As a proof of concept, we ran some experiments
over 6 byte sequences extracted from two BOC-WT data structures built over a real
text. We took the ALL corpus, described in Section 9.1, and built the BOC-WT
data structure using Plain Huffman (PH) and End-Tagged Dense Code (ETDC)
encodings. In order to study the isolated behavior of the rank/select structure over
the byte sequences at the nodes of each BOC-WT, we extracted one byte sequence
from the first three levels of their trees (more concretely, we extracted the byte
sequence from the leftmost node at each level). Table 9.2 shows the sizes (in bytes)
of those byte sequences. Figure 9.1 shows the frequency distribution of all the byte
values on those byte sequences. The byte sequence at level 0 for the BOC-WT over
PH occupies the same as for the BOC-WT over ETDC, since it stores one byte per
word of the text. However, the size and frequency distribution of the byte sequences
at level 1 are significantly different since they depend on the encoding scheme used
by PH and ETDC respectively. These properties determine the space and time
performance of the rank/select structures used.

Figures 9.2 to 9.5 illustrate the behavior of our rank/select structure, denoted
by “Ours”, against the behavior of the binary wavelet trees used over arbitrary
sequences, as explained in Section 2.3.2. We compared two different approaches: a
balanced binary wavelet tree using Raman et al. solution (see Section 2.3.1) for the
rank/select operation over the binary sequences at each level, denoted by “binary

results were not significantly better in practice.

9.2. Implementation details 127

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 0 50 100 150 200 250

N
um

be
r

of
 o

cc
ur

re
nc

es

Byte value

Frequency distribution for a bytemap at level 0

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 0 50 100 150 200 250

N
um

be
r

of
 o

cc
ur

re
nc

es

Byte value

Frequency distribution for a bytemap at level 0

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250

N
um

be
r

of
 o

cc
ur

re
nc

es

Byte value

Frequency distribution for a bytemap at level 1

 0

 50000

 100000

 150000

 200000

 250000

 0 50 100 150 200 250

N
um

be
r

of
 o

cc
ur

re
nc

es

Byte value

Frequency distribution for a bytemap at level 1

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250

N
um

be
r

of
 o

cc
ur

re
nc

es

Byte value

Frequency distribution for a bytemap at level 2

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250

N
um

be
r

of
 o

cc
ur

re
nc

es

Byte value

Frequency distribution for a bytemap at level 2

Figure 9.1: Frequency distribution of the byte values in the bytemaps at
levels 0 (top), 1 (center) and 2 (bottom) from the BOC-WT built over the
ALL corpus using PH (left) and ETDC (right) encodings.

128 Chapter 9. Experimental evaluation

 1

 2

 3

 4

 5

 6

 7

 8

 9

 80 90 100 110 120 130 140 150 160 170 180

av
er

ag
e

tim
e

pe
r

ra
nk

 (
µs

)

space (% of the sequence)

Rank operation over a bytemap at level 0 (BOC-WT over PH)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 1

 2

 3

 4

 5

 6

 7

 8

 9

 80 90 100 110 120 130 140 150 160 170 180

av
er

ag
e

tim
e

pe
r

ra
nk

 (
µs

)

space (% of the sequence)

Rank operation over a bytemap at level 0 (BOC-WT over ETDC)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 50 60 70 80 90 100 110 120 130 140 150 160

av
er

ag
e

tim
e

pe
r

ra
nk

 (
µs

)

space (% of the sequence)

Rank operation over a bytemap at level 1 (BOC-WT over PH)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 110 120 130 140 150 160 170

av
er

ag
e

tim
e

pe
r

ra
nk

 (
µs

)

space (% of the sequence)

Rank operation over a bytemap at level 1 (BOC-WT over ETDC)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 80 100 120 140 160 180 200 220

av
er

ag
e

tim
e

pe
r

ra
nk

 (
µs

)

space (% of the sequence)

Rank operation over a bytemap at level 2 (BOC-WT over PH)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 5

 10

 15

 20

 25

 100 110 120 130 140 150 160 170 180 190

av
er

ag
e

tim
e

pe
r

ra
nk

 (
µs

)

space (% of the sequence)

Rank operation over a bytemap at level 2 (BOC-WT over ETDC)

Ours
huff-shaped WT

binary WT
binary WT + RRR

Figure 9.2: Space/time tradeoff for rank operation over a byte sequence at
level 0 (top), level 1 (center) and level 2 (bottom) of the BOC-WT built over
the ALL corpus using PH (left) and ETDC (right) encodings.

9.2. Implementation details 129

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 80 90 100 110 120 130 140 150 160 170 180

av
er

ag
e

tim
e

pe
r

se
le

ct
 (

µs
)

space (% of the sequence)

Select operation over a bytemap at level 0 (BOC-WT over PH)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 80 90 100 110 120 130 140 150 160 170 180

av
er

ag
e

tim
e

pe
r

se
le

ct
 (

µs
)

space (% of the sequence)

Select operation over a bytemap at level 0 (BOC-WT over ETDC)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 50 60 70 80 90 100 110 120 130 140 150 160

av
er

ag
e

tim
e

pe
r

se
le

ct
 (

µs
)

space (% of the sequence)

Select operation over a bytemap at level 1 (BOC-WT over PH)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 2

 4

 6

 8

 10

 12

 100 110 120 130 140 150 160 170

av
er

ag
e

tim
e

pe
r

se
le

ct
 (

µs
)

space (% of the sequence)

Select operation over a bytemap at level 1 (BOC-WT over ETDC)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 5

 10

 15

 20

 25

 30

 80 100 120 140 160 180 200 220

av
er

ag
e

tim
e

pe
r

se
le

ct
 (

µs
)

space (% of the sequence)

Select operation over a bytemap at level 2 (BOC-WT over PH)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 5

 10

 15

 20

 25

 30

 35

 100 110 120 130 140 150 160 170 180 190

av
er

ag
e

tim
e

pe
r

se
le

ct
 (

µs
)

space (% of the sequence)

Select operation over a bytemap at level 2 (BOC-WT over ETDC)

Ours
huff-shaped WT

binary WT
binary WT + RRR

Figure 9.3: Space/time tradeoff for consecutive select operations over a
byte sequence at level 0 (top), level 1 (center) and level 2 (bottom) of the
BOC-WT built over the ALL corpus using PH (left) and ETDC (right)
encodings.

130 Chapter 9. Experimental evaluation

 0

 5

 10

 15

 20

 25

 80 90 100 110 120 130 140 150 160 170 180

av
er

ag
e

tim
e

pe
r

se
le

ct
 (

µs
)

space (% of the sequence)

Random selects over a bytemap at level 0 (BOC-WT over PH)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 5

 10

 15

 20

 25

 80 90 100 110 120 130 140 150 160 170 180

av
er

ag
e

tim
e

pe
r

se
le

ct
 (

µs
)

space (% of the sequence)

Random selects over a bytemap at level 0 (BOC-WT over ETDC)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 50 60 70 80 90 100 110 120 130 140 150 160

av
er

ag
e

tim
e

pe
r

se
le

ct
 (

µs
)

space (% of the sequence)

Random selects over a bytemap at level 1 (BOC-WT over PH)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 5

 10

 15

 20

 25

 100 110 120 130 140 150 160 170

av
er

ag
e

tim
e

pe
r

se
le

ct
 (

µs
)

space (% of the sequence)

Random selects over a bytemap at level 1 (BOC-WT over ETDC)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 5

 10

 15

 20

 25

 30

 80 100 120 140 160 180 200 220

av
er

ag
e

tim
e

pe
r

se
le

ct
 (

µs
)

space (% of the sequence)

Random selects over a bytemap at level 2 (BOC-WT over PH)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 5

 10

 15

 20

 25

 30

 35

 100 110 120 130 140 150 160 170 180 190

av
er

ag
e

tim
e

pe
r

se
le

ct
 (

µs
)

space (% of the sequence)

Random selects over a bytemap at level 2 (BOC-WT over ETDC)

Ours
huff-shaped WT

binary WT
binary WT + RRR

Figure 9.4: Space/time tradeoff for random select operations over a byte
sequence at level 0 (top), level 1 (center) and level 2 (bottom) of the BOC-
WT built over the ALL corpus using PH (left) and ETDC (right) encodings.

9.2. Implementation details 131

 0

 2

 4

 6

 8

 10

 12

 80 90 100 110 120 130 140 150 160 170 180

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

space (% of the sequence)

Access operation over a bytemap at level 0 (BOC-WT over PH)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 2

 4

 6

 8

 10

 12

 80 90 100 110 120 130 140 150 160 170 180

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

space (% of the sequence)

Access operation over a bytemap at level 0 (BOC-WT over ETDC)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 1

 2

 3

 4

 5

 6

 7

 8

 50 60 70 80 90 100 110 120 130 140 150 160

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

space (% of the sequence)

Access operation over a bytemap at level 1 (BOC-WT over PH)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 110 120 130 140 150 160 170

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

space (% of the sequence)

Access operation over a bytemap at level 1 (BOC-WT over ETDC)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 80 100 120 140 160 180 200 220

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

space (% of the sequence)

Access operation over a bytemap at level 2 (BOC-WT over PH)

Ours
huff-shaped WT

binary WT
binary WT + RRR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 100 110 120 130 140 150 160 170 180 190

av
er

ag
e

tim
e

pe
r

ac
ce

ss
 (

µs
)

space (% of the sequence)

Access operation over a bytemap at level 2 (BOC-WT over ETDC)

Ours
huff-shaped WT

binary WT
binary WT + RRR

Figure 9.5: Space/time tradeoff for access operation over a byte sequence
at level 0 (top), level 1 (center) and level 2 (bottom) of the BOC-WT built
over the ALL corpus using PH (left) and ETDC (right) encodings.

132 Chapter 9. Experimental evaluation

WT + RRR”, a Huffman-shaped wavelet tree, denoted by “huff-shaped WT”, and a
balanced binary wavelet tree with no bitmap compression, denoted by “binary WT”.
We do not include Golynski’s structure in the comparative since it is not competitive
for alphabets of 256 elements [CN08]. We used several configuration of parameters
to obtain a space/time tradeoff. The space usage is shown as the space required by
the whole representation of the byte sequence and extra structures in main memory
as a percentage of the size of the original byte sequence. We computed the average
time to perform rank, select and access operations over the byte sequences. More
concretely, the rank time was measured by computing rank operations of random
byte values over all the positions of the sequence in random order; select time was
measured by computing all the occurrences for all the byte values in the sequence; we
also performed randomselect operations, that is, searching random occurrences of
random byte values, and computed the average time; and access time was computed
by obtaining the byte value at all the positions of the sequence in random order.
Times are shown in �s per operation.

We analyze the behavior of select operation for two scenarios (searching for
consecutive occurrences and searching for random occurrences), since both of them
are present when operating over BOC-WT. Note that when we want to locate a
word or a phrase, we search consecutively for all the occurrences of the last byte of
the codeword in a leaf of the wavelet tree, and for a subset of the occurrences of
the rest of the codeword bytes in upper levels of the tree. In these cases, the select
operation can take advantage of storing the result of the last select operation in the
same bytemap. However, if the algorithm for list intersection described in Section
8.2.4 is used, we will search for different byte values in the same bytemap and for
random occurrences of those byte values, hence we must also analyze the behavior
of random select operations.

We can observe that the Huffman-shaped wavelet tree obtains a higher com-
pression, occupying less than the original structure, when the frequency distribu-
tion of the byte sequence is skewed, as with the byte sequences at level 0 or the
byte sequence at level 1 when using PH. However, it obtains the worst space when
representing a uniformly distributed sequence, as for the byte sequence at level 2.
The balanced binary wavelet tree with RRR behaves oppositely, since it obtains its
best performance when the sequence is uniformly distributed. The balanced binary
wavelet tree without RRR does not achieve compression. Our structure cannot
achieve compression either, since it is built as an auxiliary directory on top of the
byte sequence, which is represented in plain form, but we can always adjust the
parameters to obtain the desired extra space. This becomes an attractive property,
since the space usage of the rank/select structure is not dependent of original byte
sequence and its frequency distribution, which may be unknown before building the
BOC-WT structure and different among the nodes of the same wavelet tree.

We can also observe from the figures that our representation obtains the best
time performance when computing select operations for consecutive occurrences and

9.3. Evaluating the compression properties 133

access operations. Our representation also obtains good results when computing
rank or random select operations when the space usage greater than 10% of the
size of the byte sequence, but the efficiency of these operations degrades when
the space is decreased. However, rank or random select operations are not as
frequent as consecutive selects and especially as access operations. Every bottom-
up or top-down traversal over the BOC-WT data structures requires an access
operation at each level of the tree, hence, the efficiency of this operation is vital
in the overall efficiency of the BOC-WT data structure. Finding the occurrence of
patterns requires several select operation, hence, it is also important its efficiency to
the searching performance of the BOC-WT. Rank operations are mostly used when
decompressing a snippet of the text. However, they are only required once per node
accessed in the tree during the top-down traversals for one snippet extraction, since
the use of pointers avoids rank operations. Moreover, rank operations are also used
to count the number of occurrences of a word in the text, which is computed over
the leaf nodes of the wavelet tree, generally short and uniformly distributed.

In addition, notice that the byte sequence at level 0 contains the 60% of the
total number of bytes of the whole BOC-WT data structure. More than 50% of
the bytes of this sequence constitute 1 byte-codewords. These 1 byte codewords
represent very frequent words, generally stopwords, that are rarely searched. Hence,
no select operations are performed for those byte values. Rank operations are not
computed either, since those 1 byte codewords are not continued in lower levels.
However, these bytes are commonly accessed when decompressing snippets around
the occurrences of nearby significant words. Hence, since the efficiency of the select
(for consecutive occurrences) and especially access operation prevails, we consider
that the data structure explained in this section becomes the preferred alternative
to represent the byte sequences of the BOC-WT data structure and compute rank,
select and access operations in an efficient way.

9.3 Evaluating the compression properties

We measure how the reorganization of codeword bytes induced by our proposal
affects the main compression parameters, such as compression ratio and compression
and decompression times.

We build the proposed BOC-WT data structure over the compressed texts ob-
tained using three well-known compression techniques explained in Section 7.2. We
call WPH, WTDC, and WRPBC the data structures constructed over Plain Huff-
man (PH), End-Tagged Dense Code (ETDC), and Restricted Prefix Byte Codes
(RPBC), respectively.

Table 9.3 shows that compression ratio is essentially not affected. There is a very
slight loss of compression (close to 0.01%), due to the storage of the tree shape.

Tables 9.4 and 9.5 show the compression and decompression time obtained using

134 Chapter 9. Experimental evaluation

Table 9.3: Compression ratio (in %) of BOC-WT built using PH, ETDC
and RPBC versus their classical counterparts for three different natural lan-
guage texts.

PH ETDC RPBC WPH WTDC WRPBC

CR 31.06 31.94 31.06 31.06 31.95 31.07

ZIFF 32.88 33.77 32.88 32.88 33.77 32.89

ALL 32.83 33.66 32.85 32.83 33.66 32.85

Table 9.4: Compression time (s).

PH ETDC RPBC WPH WTDC WRPBC

CR 2.886 2.870 2.905 3.025 2.954 2.985

ZIFF 11.033 10.968 11.020 11.469 11.197 11.387

ALL 71.317 71.452 71.614 74.631 73.392 74.811

BOC-WT data structure. The absolute differences in times are similar at decom-
pression and decompression: BOC-WT worsens the time by around 0.1 seconds for
CR corpus, 0.4 seconds for ZIFF corpus and 3.5 seconds for ALL corpus. This is
due to the fact that with BOC-WT strategy, compression and decompression op-
erate with data that is not sequentially stored in main memory. For each word of
the text, a top-down traversal is carried out on the tree, so the benefits of cache
and spatial locality are reduced. This is more noticeable at decompression than at
compression, since in the latter the overhead of parsing the source text blurs those
time differences. Hence, compression time is almost the same (2%-4% worse) as for
the sequential compression techniques, hence almost the same time is required to
build the BOC-WT data structure from the text than just to compress it. However,
there are larger relative differences in decompression time (20%-25% slower).

9.4 Searching and displaying

We show now the efficiency achieved by the BOC-WT technique for pattern search-
ing and random decompression and compare them with the times achieved on a
classical encoding of Plain Huffman, End-Tagged Dense Code and Restricted Prefix
Byte Code.

We evaluate the performance of the main search operations. We measure user
time required to:

∙ count all the occurrences of a pattern (in milliseconds)

9.4. Searching and displaying 135

Table 9.5: Decompression time (s).

PH ETDC RPBC WPH WTDC WRPBC

CR 0.574 0.582 0.583 0.692 0.697 0.702

ZIFF 2.309 2.254 2.289 2.661 2.692 2.840

ALL 14.191 13.943 14.131 16.978 17.484 17.576

Table 9.6: Load time (in seconds) and internal memory usage for queries (%
of corpus size) for the ALL corpus. Load time including on-the-fly creation
of rank/select structures for WPH+, WTDC+ and WRPBC+ is shown in
parenthesis.

Load time Memory usage

(s) (%)

PH 0.37 35.13

ETDC 0.39 35.95

RPBC 0.36 35.14

WPH 0.38 35.13

WTDC 0.35 35.96

WRPBC 0.37 35.14

WPH+ 0.38 (1.91) 36.11

WTDC+ 0.39 (1.93) 36.95

WRPBC+ 0.35 (1.91) 36.09

∙ locate the position of the first occurrence (in milliseconds)

∙ locate all the occurrences of a pattern (in seconds)

∙ retrieve all the snippets of 10 words centered around the occurrences of a
pattern (in seconds).

We run our experiments over the largest corpus, ALL, and show the average time
to search for 100 distinct words randomly chosen from the vocabulary (we remove
stopwords, since it makes no sense to search for them). We present the results
obtained by the compression methods PH, ETDC, and RPBC; by the BOC-WT
data structure implemented without blocks and superblocks (WPH, WTDC, and
WRPBC); and also by BOC-WT using blocks of 21,000 bytes and superblocks of
10 blocks with a waste of 1% of extra space to speed up rank and select operations
(we denote these alternatives WPH+, WTDC+, and WRPBC+).

136 Chapter 9. Experimental evaluation

Table 9.7: Search performance for the ALL corpus.

Count First Locate Snippets

(ms) (ms) (s) (s)

PH 2605.600 48.861 2.648 7.955

ETDC 1027.400 22.933 0.940 1.144

RPBC 1996.300 41.660 2.009 7.283

WPH 238.500 17.173 0.754 72.068

WTDC 221.900 17.882 0.762 77.845

WRPBC 238.700 17.143 0.773 75.435

WPH+ 0.015 0.017 0.123 5.339

WTDC+ 0.015 0.014 0.129 6.130

WRPBC+ 0.015 0.018 0.125 5.036

Table 9.6 shows the loading time, so that the compressed text becomes ready
for querying, and the internal memory usage needed for each method in order to
solve those queries. All the alternatives compared maintain the vocabulary of words
using a hash table with identical parameters and data structures. As we can see,
the loading step requires the same time for the compressors PH, ETDC and RPBC
and the BOC-WT data structures built over them without rank support, that is,
WPH, WTDC and WRPBC. This is due to the fact that BOC-WT without rank
structure needs to load the same number of bytes as the compressed text obtained
by the respective compressor. In the case of using rank structures, it takes more
than 1 second to create on the fly the two-level directory of blocks and superblocks
(these times are shown in parenthesis for WPH+, WTDC+ and WRPBC+ in Table
9.6). This time is not as important as search times, because this loading is paid
only once per session. However, it is prohibitive for one-shot queries. In that case,
it is convenient to create the rank structure in disk during construction step, and
store it in disk. Hence, as we can observe from the table, it takes practically the
same time to load the BOC-WT data structures with rank support than without
rank support if the directory of blocks and superblocks is already computed and
stored in disk.

Even without using the extra space for the blocks and superblock structures,
the use of BOC-WT data structure improves all searching capabilities except for
extracting all the snippets, as shown in Table 9.7. This is because snippets require
decompressing several codewords around each occurrence, and random decompres-
sion is very slow for BOC-WT if one has no extra support for the rank operations
used to track down random codewords.

9.4. Searching and displaying 137

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35

T
im

e
pe

r
pa

tte
rn

 (
se

co
nd

s)

Size of the rank structure (in % of the original file)

Display operation

ETDC
WTDC+

Figure 9.6: Influence of the size of the structure of blocks and superblocks
on the performance of the display operation, comparing WTDC+ using sev-
eral sizes of rank structure versus ETDC compressed text.

By just spending 1% extra space in block and superblock data structures to
obtain rank values faster, all the operations are drastically improved, including the
extraction of all the snippets. Only the self-synchronized ETDC is still faster than
its corresponding BOC-WT (WTDC+) for extracting snippets. This is because
extracting a snippet around a word in a non self-synchronized code implies extra
operations to permit the decompression of the previous words, while ETDC, being
a self-synchronized code, can easily move backwards in the compressed text.

By raising the extra space allocated to blocks and superblocks, WTDC+ finally
takes over ETDC in extracting snippets as well. Figure 9.6 illustrates this behavior.
We measure the time to perform the display operation, that is, to locate and extract
the snippets around the occurrences of the same 100 randomly chosen patterns used
in the experiments of Table 9.7. We create several WTDC+, varying the size of the
structure of blocks and superblocks. More concretely, we use always 10 blocks per
superblock and vary the number of bytes inside a block with the following values:
20,000; 10,000; 5,000; 2,000; 1,000; 800 and 500, obtaining rank structures occupy-
ing 1%, 5%, 10%, 20%, 35%, 40% and 50% respectively. When more extra space is
employed for the rank directory, the rank operation becomes more efficient. There-
fore, since the extraction operation involves several rank operations, the overall
performance of the extraction procedure improves. For this set of patterns, which

138 Chapter 9. Experimental evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35

T
im

e
pe

r
pa

tte
rn

 (
se

co
nd

s)

Size of the rank structure (in % of the original file)

Display operation

ETDC
WTDC+

Figure 9.7: Influence of the size of the structure of blocks and superblocks
on the performance of the display operation, comparing WTDC+ using sev-
eral sizes of rank structure versus ETDC compressed text, when the words
sought are not very frequent.

contains several very frequent words, WTDC+ requires almost 15% of extra space
to outperform ETDC times. This is due to the fact that decompression is slower for
WTDC+, hence, if the words appear many times in the text, we must decompress
many snippets around all those occurrences, worsening the total time.

If we search for less frequent patterns, locating the occurrences is performed
much more efficiently by WTDC+, compensating the additional time required to
decompress the snippet, and WTDC+ becomes the fastest alternative to display
snippets around the occurrences of less frequent words, even without using much
extra space for the rank and select structure. Figure 9.7 shows the results for 100
words with frequency up to 50,000. We can observe that WTDC+ obtains better
times than ETDC even when very little extra space is used.

It is important to remark that our proposal improves all searching capabilities
when a compression technique is not self-synchronized, that is, compared to PH and
RPBC. In addition, we observe that WPH and WPH+, which are the alternatives
that obtain the best compression ratio, are also the ones that present the best
average search efficiency.

9.4. Searching and displaying 139

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80 90

T
im

e
pe

r
w

or
d

ex
tr

ac
te

d
(µ

s/
w

or
d)

Length of the text snippet extracted

Extract

ETDC
WTDC+ (50%)
WTDC+ (40%)
WTDC+ (35%)
WTDC+ (20%)
WTDC+ (10%)
WTDC+ (5%)

Figure 9.8: Influence of the snippet length on the performance of the extract
operation for the BOC-WT strategy, comparing WTDC+ using several sizes
of rank structure versus ETDC compressed text.

9.4.1 Influence of the snippet length on extract operation

As seen in the previous section, decompression times for BOC-WT are slower than
for the original compression technique. Hence, BOC-WT is not as efficient for
displaying the snippets around the occurrences of the words searched as for counting
or locating those occurrences. As we can see in Table 9.7, WTDC+ is slower than
ETDC for the extraction of the snippets.

We will show now how the performance of the extract operation improves as the
length of the snippet increases. The longer the snippets are, the faster the extraction
operation (measured in time per extracted word) becomes. The explanation is
trivial if we take into account how the decompression starting at a random position
is carried out. Remember that we use one pointer per node to avoid rank operations
over the tree. These pointers are uninitialized at first, requiring one rank operation
to set their value for a node if needed. Once its value is established, no more rank
operations are performed to access a position of that same node. Hence, the first
words that are extracted generally require several rank operations to initialize those
pointers, since those first words usually have their bytes spread among different
nodes of the tree. However, as the following words are being decompressed, rank
operations are avoided when the bytes of their codewords share the same node than

140 Chapter 9. Experimental evaluation

bytes of codewords previously extracted, as the pointers of those nodes have been
already initialized.

Figure 9.8 shows experimentally the described behavior. We compare the ex-
traction time (in �s/word) for BOC-WT over ETDC (WTDC+) considering several
snippet lengths. We also illustrate the behavior of WTDC+ with several sizes for
the rank extra structure, and compare it with the extraction time over the com-
pressed text with ETDC. We have measured the average time to extract different
portions of the ALL corpus, starting at 1,000,000 randomly chosen positions of the
compressed text. The lengths of the portions extracted varied from 1 to 100 words.
We can observe in the figure that ETDC requires practically constant time to ex-
tract any word, independently of the size of the snippet. However, the average time
for WTDC is higher if the snippet size is small, since almost every word extracted
requires a rank operation at each level of the tree. As more words are extracted,
some of these rank operations are avoided and the average time decreases. In ad-
dition, we can see in the figure that this time depends on the size of the structure
that supports rank operations. We obtain better time results if we spend more
extra space to speed up this bytewise operation.

9.4.2 Locating phrase patterns versus list intersection

We now analyze the behavior of the native algorithm for locating the occurrences
of phrase patterns, and compare it with the implementation of the merge-type list
intersection method in the BOC-WT.

We run our experiments over the largest corpus, ALL, and show the average
time to search two different sets of phrase-patterns composed of 2 words. The
first set S1 contains 100 distinct 2-words phrases randomly chosen from the text,
where the most frequent word of each phrase appears less than 100,000 times in
the text. The second set S2 contains 100 distinct phrases composed of two words
that were randomly chosen from the vocabulary among all the words of frequency
f , with 1, 000 ≤ f ≤ 50, 000. These artificially generated phrases of the second set
of patterns S2 do not actually exist in the text. We present the results obtained for
both techniques by BOC-WT built over PH (WPH+) using blocks of 20,000 bytes
and superblocks of 10 blocks with a waste of 1% of extra space to speed up rank
and select operations.

We can observe in Table 9.8 that the best results are obtained by the native
algorithm for searching phrases in the BOC-WT. Remember that this algorithm
consists in searching for the occurrences of the least frequent word and then check
the surrounding positions to know whether there is an occurrence of the phrase or
not. This can be very efficiently checked by just comparing the first bytes of the
codeword in the first level of the BOC-WT, which permits the fast detection of false
matchings. If the first bytes match, then we check the bytes at the second level.
Only if all the bytes at each level of the tree coincide, we reach the leaf level of the

9.5. BOC-WT versus inverted indexes 141

Table 9.8: Time results (in ms/pattern) to locate a 2-words phrase for two
different algorithms using two sets of patterns S1 and S2.

S1 S2

Native phrase searching algorithm 86.07 28.89

Merge-like list intersection algorithm 411.30 100.15

BOC-WT and check if there is an occurrence of the phrase-pattern. On the other
hand, the list intersection algorithm performs complete top-down traversals of the
BOC-WT, which may be unnecessary.

Notice that the merge-type algorithm of list intersection may be faster than the
native method if we search for a phrase composed of two words, where each word
appears more frequently in one portion of the text. Thus, we will avoid checking
all the occurrences of the least frequent word, as the algorithm may skip several
occurrences of that word that appear in one portion of the document by jumping
to another portion of the document. However, this scenario is not as probable as
searching for phase-patterns composed of words where both appear in the same
portion of the document.

9.5 BOC-WT versus inverted indexes

As explained, the reorganization carried out by the BOC-WT data structure brings
some (implicit) indexed search capabilities into the compressed file. In this section
we compare the search performance of WPH+ with two block-addressing com-
pressed inverted indexes [NMN+00], working completely in main memory3.

The inverted indexes used are block-grained: they assume that the indexed text
is partitioned into blocks of size b, and for each term they keep a list of occurrences
that stores all the block-ids in which that term occurs. To reduce the size of the
index, the lists of occurrences were compacted using rice codes for the shortest lists
and bitmaps for the longest ones. We follow a compression lists strategy [MC07]
where the list L of a given word is stored as a bitmap if ∣L∣ > u/8, being u the
number of blocks. No sampling is used. As the posting lists are compressed with
variable-length codes, intersection of lists is performed using a merge-type algorithm
along with the decoding of such lists.

The first compressed inverted index, II-scdc, is built over text compressed with
(s, c)-Dense Code (SCDC), whereas the second index, II-huff, is built over text
compressed with Huffman. We use SCDC for one of the inverted indexes due to

3I would like to thank Antonio Fariña for the indications about the most adequate inverted
indexes to compare our proposal to, for the detailed explanations about their implementations and
performance, and for the source code provided.

142 Chapter 9. Experimental evaluation

its efficiency at decompression and searches, while achieving a good compression
ratio (33.02% for the ALL corpus). For the other inverted index we use Huffword,
which consists in the well-known bit-oriented Huffman coupled with a word-based
modeler [WMB99]. It obtains better compression ratios than SCDC (29.22% for
ALL corpus), but it is much slower at decompression and searching.

For each of the two alternatives, II-scdc and II-huff, we built several indexes
where we varied the block size, which brings us an interesting space/time tradeoff.
If the block is large we obtain a smaller index, since it generates smaller inverted
lists. However, searches often require the scanning of whole large blocks, and so the
index becomes slower. Using small blocks leads to large indexes, but they are faster
since the inverted index can discard many blocks during searches and the sequential
search inside those blocks is shorter.

To illustrate the behavior of BOC-WT, we compute searching times for the
alternative built over PH (WPH+), since it obtains better space and time results.
For the experiments of this section and the following ones, the vocabulary is not
stored using a hash table, as in the previous sections. We store the vocabulary
alphabetically sorted, so that we can obtain the codeword assigned to a word with
a binary search over this structure. This solution becomes lighter than using a
hash table, and the BOC-WT data structure built over the compressed text of
the ALL corpus using PH requires just 33.32% of the original text to solve any
query (without any rank and select extra structure). Notice that in Section 9.4,
WPH required 35.13% as a hash table was used to maintain the vocabulary. Our
method cannot use less than that memory (33.32%) to represent the ALL corpus
in a indexed way, whereas the inverted index using Huffman can.

We built several configurations for WPH+ using different sizes for the rank
and select structure, so that we can show the space/time tradeoff obtained by the
representation. We compare WPH+ with the two inverted indexes, II-scdc and
II-huff, over the corpus ALL, using the set of patterns Wa, Wb, Wc, Wd, P2, P4,
P6, and P8 described in Section 9.1. We measure the main memory size occupied
by the indexes, and the following search operations:

∙ locate: we measure the time to locate all the occurrences of a pattern inside
corpus ALL.

∙ display: we measure the time to display a snippet around all the occurrences
of a pattern, which includes the time to locate and extract snippets containing
20 words, starting at an offset 10 words before the occurrence.

Results for both locate and display operations refer to average time per occurrence
(in msec/occurrence). We do not measure counting time since it could be solved
trivially for word patterns by including the number of occurrences for each word
along with the vocabulary (worsening compression ratio by around 0.75 percentage

9.5. BOC-WT versus inverted indexes 143

points). BOC-WT counting times for phrase patters are similar to locating them;
hence, those counting times can be extracted from the figures for locate operation.

Locate time Figures 9.9 and 9.10 show the performance of locating individual
words. Figure 9.9 illustrates the behavior of WPH+ and both inverted indexes for
scenarios Wa (top) and Wb (bottom), whereas Figure 9.10 shows times results for
scenarios Wc (top) and Wd (bottom). We can observe that WPH+ obtains the best
results for all the scenarios when little space is used to index the compressed text.
This is due to the fact that WPH+ directly jumps to the next occurrence whereas
inverted indexes have to scan the text. When little memory is used, the inverted
indexes obtain poor results, since a sequential scanning must be performed over
large blocks.

WPH+ is slower when locating less frequent words, since it must perform a
bottom-up traversal of the tree from the lower level of the tree, and thus several
select operations must be computed. For this scenario Wa, inverted indexes over-
come WPH+ when the index occupies more than 39%. This scenario is particularly
advantageous for II-scdc inverted index: we are searching for less frequent words,
which have long codewords assigned, over short blocks of SCDC compressed text.
SCDC enables Boyer-Moore-type searching that skips bytes during the search, and
since the codewords sought are long, the Boyer-Moore algorithm can skip more
bytes. For scenarios Wb, Wc and Wd WPH+ obtains better times than inverted
indexes, even when the space used is high.

Figures 9.11 and 9.12 show the performance of locating phrase patterns. Figure
9.11 illustrates the behavior of WPH+ and both inverted indexes for scenarios P2

(top) and P4 (bottom), whereas Figure 9.12 shows times results for scenarios P6

(top) and P8 (bottom). From the experimental results we can observe that WPH+
can efficiently locate short phrase patterns, of length 2, but its efficiency decreases
as the length of the pattern increases. Notice that we are using the average time
of locating the patterns measured in millisecond per occurrence. Since long phrase
patterns are less frequent than short ones, this average time is greater for long phrase
patterns. In addition, when the phrases are long, it is necessary to perform l top-
down traversals over the tree, l being the length of the phrase. Even if some more
false matchings are detected in the root level, those extra rank operations worsen
the average locating time. Inverted indexes become a better choice to search for long
phrase patterns for compression ratios above 37%, as it occurred when searching
for less frequent patterns: when searching for long phrases, we can skip a bigger
number of bytes during the sequential scanning of the blocks. However, WPH+ is
always the preferred solution when little space is used.

Extract-snippet time The results here are similar to those for locate. As long
as we set the indexes to use less space, WPH+ becomes the preferred choice. Time
differences in locate times were larger, whereas those for snippet extraction tend

144 Chapter 9. Experimental evaluation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wa scenario: words freq = [1..100]

II-scdc
II-huff
WPH+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wb scenario: words freq = [101..1000]

II-scdc
II-huff
WPH+

Figure 9.9: Time/space trade-off for locating less frequent words with BOC-
WT strategy over PH against inverted indexes.

9.5. BOC-WT versus inverted indexes 145

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wc scenario: words freq = [1001..10000]

II-scdc
II-huff
WPH+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wd scenario: words freq > 10000

II-scdc
II-huff
WPH+

Figure 9.10: Time/space trade-off for locating more frequent words with
BOC-WT strategy over PH against inverted indexes.

146 Chapter 9. Experimental evaluation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P2 scenario: phrases with 2 words

II-scdc
II-huff
WPH+

 0

 0.5

 1

 1.5

 2

 2.5

 3

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P4 scenario: phrases with 4 words

II-scdc
II-huff
WPH+

Figure 9.11: Time/space trade-off for locating short phrase patterns with
BOC-WT strategy over PH against inverted indexes.

9.5. BOC-WT versus inverted indexes 147

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P6 scenario: phrases with 6 words

II-scdc
II-huff
WPH+

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P8 scenario: phrases with 8 words

II-scdc
II-huff
WPH+

Figure 9.12: Time/space trade-off for locating long phrase patterns with
BOC-WT strategy over PH against inverted indexes.

148 Chapter 9. Experimental evaluation

to reduce since decompression time is faster for inverted indexes than for WPH+,
especially for the inverted index built over SCDC. Remember that the display op-
eration consists in first locating the occurrences of the pattern, where BOC-WT
obtains better times than inverted indexes, and then extracting the snippet around
each occurrence, which is more efficiently performed by the inverted indexes, since
they just have to sequentially decompress the text.

Figures 9.13 to 9.16 show the performance of displaying snippets around the
occurrences of several patterns. Figure 9.13 illustrates the behavior of the WPH+
and both inverted indexes for scenarios Wa (top) and Wb (bottom), whereas Figure
9.14 shows times results for scenarios Wc (top) and Wd (bottom). Figure 9.15
illustrates the behavior of WPH+ and both inverted indexes for scenarios P2 (top)
and P4 (bottom), whereas Figure 9.16 shows times results for scenarios P6 (top)
and P8 (bottom). Again, WPH+ obtains the best time when the indexes do not
occupy much memory, whereas the inverted indexes obtain better results for ratios
above 37%.

We remark that our good results essentially owe to the fact that we are not
sequentially scanning any significant portion of the file, whereas a block addressing
inverted index must sequentially scan (sometimes a significant number of) blocks.
As more space is given to both structures, both improve in time but the inverted
indexes eventually take over WPH+ (this occurs when both use around 37% of the
text’s space). If sufficient space is given, the inverted indexes can directly point
to occurrences instead of blocks and need no scanning. Yet, as explained in the
motivation of this thesis, using little space is very relevant for the current trend of
maintaining the index distributed among the main memory of several processors.
What our experiments show is that BOC-WT makes better use of the available
space when there is not much to spend.

9.6 BOC-WT versus other self-indexes

In this section we compare the results of the BOC-WT strategy, using the most
competitive self-index WPH+, with other self-indexes of the literature. We will
focus only on those self-indexed structures that support fast searches of words or
phrases composed of words and occupy space comparable to our BOC-WT. There-
fore, we will not compare our proposal with classical full-text self-indexes that index
any pattern of the text (strings of characters instead of words) but require spaces
around 40-60% of the original text. Instead, we first compare WPH+ with two bi-
nary wavelet trees representing the sequence of words of the text. We then compare
it with two word-based versions of two classical self-indexes, the word-based CSA
and SSA, and then we compare the performance of WPH+ with the behavior of
some full-text self-indexes that index a preprocessed byte-oriented compressed text
and search words and phrase patterns.

9.6. BOC-WT versus other self-indexes 149

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wa scenario: words freq = [1..100]

II-scdc
II-huff
WPH+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wb scenario: words freq = [101..1000]

II-scdc
II-huff
WPH+

Figure 9.13: Time/space trade-off for displaying the occurrences of less
frequent words with BOC-WT strategy over PH against inverted indexes.

150 Chapter 9. Experimental evaluation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wc scenario: words freq = [1001..10000]

II-scdc
II-huff
WPH+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wd scenario: words freq > 10000

II-scdc
II-huff
WPH+

Figure 9.14: Time/space trade-off for displaying the occurrences of more
frequent words with BOC-WT strategy over PH against inverted indexes.

9.6. BOC-WT versus other self-indexes 151

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

P2 scenario: phrases with 2 words

II-scdc
II-huff
WPH+

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

P4 scenario: phrases with 4 words

II-scdc
II-huff
WPH+

Figure 9.15: Time/space trade-off for displaying the occurrences of short
phrase patterns with BOC-WT strategy over PH against inverted indexes.

152 Chapter 9. Experimental evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

P6 scenario: phrases with 6 words

II-scdc
II-huff
WPH+

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

P8 scenario: phrases with 8 words

II-scdc
II-huff
WPH+

Figure 9.16: Time/space trade-off for displaying the occurrences of long
phrase patterns with BOC-WT strategy over PH against inverted indexes.

9.6. BOC-WT versus other self-indexes 153

9.6.1 BOC-WT versus word-based Wavelet Trees

In Section 2.3.2 we described how a binary balanced wavelet tree can be used to
represent an arbitrary sequence S with an alphabet Σ of size �, supporting ac-
cess, rank and select operations. Huffman-shaped wavelet trees have been used to
approach zero-order compression of sequences [GGV03, FGNV09, CN08]. We can
also achieve compression over a balanced binary wavelet tree by compressing its
bitmaps with Raman, Raman and Rao (RRR) technique [RRR02] (explained in
Section 2.3.1). We compare our proposal with two binary wavelet trees, one using
RRR and other giving the wavelet tree the shape of the Huffman tree, built over
the sequence of words and separators that conform the vocabulary of the natural
language text. Therefore, we can count the number of occurrences of the words with
rank operations, we can locate the occurrences using select operations and extract
the original text using access operations.

For the comparison, we create several Huffman-shaped wavelet trees with dif-
ferent sizes, varying the size for the extra structure used to compute fast binary
rank and select operations. We also create several balanced binary wavelet trees
using RRR with different sizes, varying its sampling parameter. We use the imple-
mentations of Francisco Claude available at the Compact Data Structures Library
(libcds)4. We compare them with the performance of our BOC-WT data structure
over PH with different sizes for the rank and select directory, that is, WPH+.

We use the same large text (ALL corpus) and the same first set of patterns than
in the previous section, that is, four sets composed of single-word patterns with
different frequency ranges: Wa, Wb, Wc and Wd with words occurring respectively
[1, 100],[101, 1000],[1001, 10000], and [10001,∞] times. We measured locate time
and display time (in msec/occurrence).

Figures 9.17 and 9.18 show the performance of locating all the occurrences of sev-
eral patterns. Figure 9.17 illustrates the behavior of WPH+, the binary Huffman-
shaped wavelet tree, called WTbitHuff, and the balanced wavelet tree using RRR,
called WTbitRRR, for scenarios Wa (top) and Wb (bottom), whereas Figure 9.18
shows times results for scenarios Wc (top) and Wd (bottom). Figures 9.19 and 9.20
show the performance of displaying snippets around the occurrences of several pat-
terns. Figure 9.19 illustrates the behavior of WPH+, WTbitHuff and WTbitRRR
for scenarios Wa (top) and Wb (bottom), whereas Figure 9.20 shows times results
for scenarios Wc (top) and Wd (bottom).

WPH+ is more efficient in both locating and displaying the occurrences of pat-
terns for all the scenarios. The binary Huffman-shaped wavelet tree built over a
natural language text requires a high number of levels, hence accessing, counting or
locating the symbols of the sequence become very slow operations. Moreover, since
the alphabet is so large, around 885000 words, the Huffman-shaped wavelet tree has
a large number of nodes and requires a large number of pointers to maintain the

4http://libcds.recoded.cl/

154 Chapter 9. Experimental evaluation

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 35 40 45 50 55 60 65 70

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wa scenario: words freq = [1..100]

WTbitHuff
WTbitRRR

WPH+

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 35 40 45 50 55 60 65 70

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wb scenario: words freq = [101..1000]

WTbitHuff
WTbitRRR

WPH+

Figure 9.17: Time/space trade-off for locating less frequent words with
BOC-WT strategy over PH against a word-based Huffman-shaped wavelet
tree and a balanced binary wavelet tree using RRR.

9.6. BOC-WT versus other self-indexes 155

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 35 40 45 50 55 60 65 70

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wc scenario: words freq = [1001..10000]

WTbitHuff
WTbitRRR

WPH+

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 35 40 45 50 55 60 65 70

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wd scenario: words freq > 10000

WTbitHuff
WTbitRRR

WPH+

Figure 9.18: Time/space trade-off for locating more frequent words with
BOC-WT strategy over PH against a word-based Huffman-shaped wavelet
tree and a balanced binary wavelet tree using RRR.

156 Chapter 9. Experimental evaluation

tree shape. Therefore, WTbitHuff uses significantly more space than the zero-order
entropy of the text (notice that the compression ratio obtained by binary Huffman
code over ALL corpus is 28.55%). The balanced binary wavelet tree using RRR
obtains practically the same time for all the scenarios, regardless the frequency of
the word. Since it is a balanced tree, all the words are represented in the same level
and they require the same number of select operations when searching for a word.
Its space/time tradeoff is completely dominated by the WPH+. The differences
become greater when display snippets around the occurrences. This is due to the
fact that those occurrences are generally surrounded by very frequent words, such
as prepositions or articles, and those frequent words require a higher number of rank
operations to be decompressed than WTbitHuff or WPH+, where the leaves asso-
ciated with those words are located in upper levels of the tree and can be reached
computing a smaller number of rank operations.

9.6.2 Comparison with word-based self-indexes

Some word-based self-indexes have been developed, such as the WCSA and WSSA
[BFN+08, BCF+11]. These self-indexes achieve compression ratios of 35-40% and
provide indexed word-based searches. However, as they are built considering a
vocabulary of the words of the text, not just characters, they cannot search for
arbitrary text substrings, but only for words and phrases.

For the comparison, we create several indexes with different sizes, varying con-
struction parameters such as the sample periods tA, t−1

A and tΨ for A, A−1 and Ψ
in the case of WCSA and the sampling parameters tpos, tbit1 and tbit2 for WSSA.
This gives us an interesting space/time trade-off such that we can compare the per-
formance of our BOC-WT data structure over PH (WPH+) with different sizes for
the rank and select structures of blocks and superblocks. We use the same large
text (ALL corpus) and the same sets of patterns than in the previous sections,
measuring locate time and display time (in msec/occurrence).

Locate time Figures 9.21 to 9.24 show the performance of locating all the occur-
rences of several patterns. Figure 9.21 illustrates the behavior of WPH+, WCSA
and WSSA for scenarios Wa (top) and Wb (bottom), whereas Figure 9.22 shows
times results for scenarios Wc (top) and Wd (bottom). Figure 9.23 illustrates the
behavior of WPH+, WCSA and WSSA for scenarios P2 (top) and P4 (bottom),
whereas Figure 9.24 shows times results for scenarios P6 (top) and P8 (bottom).

We can observe from the results that WPH+ is extremely fast to locate the
occurrences of individual words. However, both word-based self-indexes outper-
form WPH+ when searching for phrase patterns. Only when searching for phrases
composed of two words WPH+ obtains efficient time results; for long phrase pat-
terns WPH+ becomes considerably more inefficient compared to both WCSA and
WSSA. This is an expected result since suffix arrays were designed to efficiently

9.6. BOC-WT versus other self-indexes 157

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 35 40 45 50 55 60 65 70

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wa scenario: words freq = [1..100]

WTbitHuff
WTbitRRR

WPH+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 35 40 45 50 55 60 65 70

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wb scenario: words freq = [101..1000]

WTbitHuff
WTbitRRR

WPH+

Figure 9.19: Time/space trade-off for displaying the occurrences of less fre-
quent words with BOC-WT strategy over PH against a word-based Huffman-
shaped wavelet tree and a balanced binary wavelet tree using RRR.

158 Chapter 9. Experimental evaluation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 35 40 45 50 55 60 65 70

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wc scenario: words freq = [1001..10000]

WTbitHuff
WTbitRRR

WPH+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 35 40 45 50 55 60 65 70

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wd scenario: words freq > 10000

WTbitHuff
WTbitRRR

WPH+

Figure 9.20: Time/space trade-off for displaying the occurrences of more
frequent words with BOC-WT strategy over PH against a word-based
Huffman-shaped wavelet tree and a balanced binary wavelet tree using RRR.

9.6. BOC-WT versus other self-indexes 159

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wa scenario: words freq = [1..100]

WCSA
WSSA
WPH+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wb scenario: words freq = [101..1000]

WCSA
WSSA
WPH+

Figure 9.21: Time/space trade-off for locating less frequent words with
BOC-WT strategy over PH against other word-based self-indexes.

160 Chapter 9. Experimental evaluation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wc scenario: words freq = [1001..10000]

WCSA
WSSA
WPH+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wd scenario: words freq > 10000

WCSA
WSSA
WPH+

Figure 9.22: Time/space trade-off for locating more frequent words with
BOC-WT strategy over PH against other word-based self-indexes.

9.6. BOC-WT versus other self-indexes 161

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P2 scenario: phrases with 2 words

WCSA
WSSA
WPH+

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 32 34 36 38 40 42 44 46 48 50

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P4 scenario: phrases with 4 words

WCSA
WSSA
WPH+

Figure 9.23: Time/space trade-off for locating short phrase patterns with
BOC-WT strategy over PH against other word-based self-indexes.

162 Chapter 9. Experimental evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 32 34 36 38 40 42 44 46 48 50

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P6 scenario: phrases with 6 words

WCSA
WSSA
WPH+

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 32 34 36 38 40 42 44 46 48 50

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P8 scenario: phrases with 8 words

WCSA
WSSA
WPH+

Figure 9.24: Time/space trade-off for locating long phrase patterns with
BOC-WT strategy over PH against other word-based self-indexes.

9.6. BOC-WT versus other self-indexes 163

count and locate all the occurrences of substrings of the text. WCSA and WSSA
are two word-based self-indexes based on suffix arrays, hence, they easily recover
all the occurrences of word phrases of the text.

WPH built over ALL corpus occupies 33.32% of the text, when no rank or
select structures are used. In the figures, we illustrate the behavior of several
configurations of WPH+ using a structure for rank and select operations varying
the sample period, all of them occupying more than 33.87% of the size of text. When
very little space is used for rank and select structures, the compression ratio obtained
gets close to this value, but it becomes very inefficient due to the sparseness in the
samples of the rank and select directory of blocks and superblocks. The efficiency
of WCSA and WSSA also decreases when we use less space, but they can index the
same text using less than 33%.

Extract-snippet time Figures 9.25 to 9.28 show the performance of displaying
snippets around the occurrences of several patterns. Figure 9.25 illustrates the
behavior of WPH+, WCSA and WSSA for scenarios Wa (top) and Wb (bottom),
whereas Figure 9.26 shows times results for scenarios Wc (top) and Wd (bottom).
Figure 9.27 illustrates the behavior of WPH+, WCSA and WSSA for scenarios P2

(top) and P4 (bottom), whereas Figure 9.28 shows times results for scenarios P6

(top) and P8 (bottom).

The results obtained for the display operation are analogous to the results ob-
tained for locating the occurrences. Remember that the display operation consists
in first locating the occurrences and then extracting some portion of text around
those occurrences. Therefore, since the extraction of the text is more efficient for
our proposed BOC-WT strategy, display time results are slightly better compared
to the locate operation. Let us compare, for instance, the top subfigure of Figure
9.23 and the top subfigure of Figure 9.27. We can observe how display operation is
always better using WPH+ than WCSA, while the performance of both structures
is very similar and there is practically no difference for the locate operation. WCSA
is again the best choice to display some portions of the text around the occurrences
of long phrase patterns.

9.6.3 Comparison with word-based preprocessed full-text self-

indexes

Full-text self-indexes take space proportional to the compressed text, replace it, and
permit fast indexed searching on it [NM07]. Those indexes work for any type of
text, they typically index all the characters of the text, achieve compression ratios
of 40-60%, and can extract any text substring and locate the occurrences of pattern
strings in a time that depends on the pattern length and the output size, not on
the text size (that is, searching is not a sequential process). Most can also count
the number of occurrences of a pattern string much faster than by locating them.

164 Chapter 9. Experimental evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wa scenario: words freq = [1..100]

WCSA
WSSA
WPH+

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wb scenario: words freq = [101..1000]

WCSA
WSSA
WPH+

Figure 9.25: Time/space trade-off for displaying the occurrences of less
frequent words with BOC-WT strategy over PH against other word-based
self-indexes.

9.6. BOC-WT versus other self-indexes 165

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wc scenario: words freq = [1001..10000]

WCSA
WSSA
WPH+

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wd scenario: words freq > 10000

WCSA
WSSA
WPH+

Figure 9.26: Time/space trade-off for displaying the occurrences of more
frequent words with BOC-WT strategy over PH against other word-based
self-indexes.

166 Chapter 9. Experimental evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

P2 scenario: phrases with 2 words

WCSA
WSSA
WPH+

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

P4 scenario: phrases with 4 words

WCSA
WSSA
WPH+

Figure 9.27: Time/space trade-off for displaying the occurrences of short
phrase patterns with BOC-WT strategy over PH against other word-based
self-indexes.

9.6. BOC-WT versus other self-indexes 167

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

P6 scenario: phrases with 6 words

WCSA
WSSA
WPH+

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

P8 scenario: phrases with 8 words

WCSA
WSSA
WPH+

Figure 9.28: Time/space trade-off for displaying the occurrences of long
phrase patterns with BOC-WT strategy over PH against other word-based
self-indexes.

168 Chapter 9. Experimental evaluation

Fariña et al. [FNP08] showed that typical full-text self-indexes achieve much
better space and time performance when indexing is preceded by a compression
step using a prefix- and suffix-free semistatic word-based encoding. In their work,
they use Tagged Huffman code and a new suffix-free Dense-Code-based compressor
to compress the original text. Since both of these compressors use bytes as target
alphabet, full-text self-indexes can directly index the compressed text, as they are
designed to index a sequence of characters. With this approach, they can index
the text using very little space, close to 35% of the original text instead of the
approximately 60% of space than full-text self-indexes usually require. In addition,
these preprocessed full-text self-indexes allow for efficient indexed searches of words
and phrases using a very compact space, just by searching for the sequence of bytes
which compose the pattern encoded by the word-based compressor. These benefits
are obtained at the expense of losing the capability of searching for any kind of
pattern of the original text, just words and phrases of words can be searched for if
this word-based preprocessing step is done.

We considered four self-indexes from the PizzaChili site5: the Compressed Suf-
fix Array (CSA) [Sad03], the Succinct Suffix Array (SSA) [MN05], the Alphabet-
Friendly FM-index (AFFM) [FMMN07] and the LZ-index (LZI) [AN10], each of
them built over text compressed with both TH and SCBDC. We also include in the
comparison the results for the original full-text self-indexes, built over plain text.

We use Congressional Record 1993 corpus (CR) to compare the performance
of WPH+ with a set of different configurations of the mentioned full-text self-
indexes where different values of the parameter sample-rate were used to obtain
different space/time tradeoffs for the indexes. We compare counting and locating
times for two set of patterns, one with 100 individual words randomly chosen from
the vocabulary, and other set with 1,000 different phrase patterns of composed of
4 words. The overall number of occurrences for such sets are 257, 745 and 330, 441
respectively. We also measure extracting time, such that we retrieve portions of text
(we decompress 2,000 contiguous words) starting at randomly chosen positions.6

We denote X+text the alternative using the full-text self-index X built over plain
text, X+TH the alternative built over compressed text using TH and X+SCBDC
the alternative built over compressed text using the suffix-free Dense-Code-based
compressor. WPH+ stands for our BOC-WT data structure built over PH.

Count operation Figure 9.29 shows the time required by the different self-indexes
to perform count operations, that is, the average time (in milliseconds per pattern)
that each self-index needs to count all the occurrences of a pattern. At the top
part of the figure, we illustrate the time to count patterns composed by just one

5Code available at http://pizzachili.dcc.uchile.cl.
6I would like to thank Jose R. Paramá for providing the graphical and numeric results of the

experiments for these full-text indexes and for the detailed explanations about the preprocessing
method.

9.6. BOC-WT versus other self-indexes 169

word, whereas the figure at the bottom displays the time to count the number of
occurrences of phrase patterns composed of 4 words.

As we can observe, WPH+ does not count occurrences of phrase patterns as
efficiently as it counts occurrences of individual words. This is due to the fact
that the algorithm to count the occurrences of patterns with several words requires
a bottom-up traversal of the tree in order to locate the occurrences of the least
frequent word of the phrase, and then it occasionally requires several top-down
traversals to discard false matches of the pattern. On the contrary, counting indi-
vidual words is a very efficient procedure, that involves just a simple bytewise rank
operation.

WPH+ obtains the best time results among all the alternatives for counting
occurrences of individual words when the size of the index is bigger than 40% of
the text. Other self-indexes, such as AFFM+SCBDC, CSA+PH and CSA+SCBDC
can achieve more compact spaces and better times. Notice that WPH built over CR
corpus cannot occupy less than 32.33% of the text, and all its configurations close
to that space use very slow rank and select structures, and thus count operation
becomes inefficient.

Locate operation Figure 9.30 shows the time required by locate operation, that
is, the average time (in milliseconds per occurrence) that each self-index needs to
locate all the occurrences of a pattern. At the top part of the figure, we illustrate
the time to locate the occurrences of individual words, whereas the figure at the
bottom displays the time to locate the occurrences of phrase patterns of 4 words.

We can observe in the top part of Figure 9.30 that locating all the occurrences
of individual words is a very efficient operation for WPH+ compared to the other
self-indexes. However, locating occurrences of phrase patterns (bottom part of the
figure) requires a more complex procedure and times are slower than for locating
patterns of just 1 word. Comparing the results for WPH+ and the other self-indexes
in the figure, we can see that WPH+ becomes the best option when we use little
space, but other alternatives, such as CSA over both TH and SCBDC, obtain better
times for compression ratios around 45%. LZ-index becomes the preferred choice
for larger spaces, that is, when the indexes occupy more than 75% of the text.

Extract operation Figure 9.31 shows the time required by extract operation. We
measure the average time (in milliseconds per character extracted) that each self-
index needs to decompress 2,000 words starting at 1,000 randomly chosen position
of the text.

As we can observe from the figure, extract operation is much faster for WPH+
than for the other self-indexes. This operation requires a sequential processing
of the nodes of the tree-shaped structure in addition to several rank operations
to initialize the pointers at those nodes. Since the portion of text extracted is

170 Chapter 9. Experimental evaluation

0

0.005

0.009

 30 40 50 60 70 80 90 100 110 120

AFFM+text
AFFM+TH

AFFM+SCBDC
CSA+text
CSA+TH

CSA+SCBDC
SSA+text
SSA+TH

SSA+SCBDC
WPH+

10

30

50

70

Count (patterns of 1 word)

Compression ratio (%)

A
vg

 c
ou

nt
 ti

m
e/

pa
tte

rn
. (

m
se

c.
)

LZI+text
LZI+TH

LZI+SCBDC

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 30 40 50 60 70 80 90 100 110 120

AFFM+text
AFFM+TH

AFFM+SCBDC
CSA+text
CSA+TH

CSA+SCBDC
SSA+text
SSA+TH

SSA+SCBDC

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

Count (phrase patterns of 4 words)

Compression ratio (%)

A
vg

 c
ou

nt
 ti

m
e/

pa
tte

rn
. (

m
se

c.
)

WPH+
LZI+text

LZI+TH
LZI+SCBDC

Figure 9.29: Time results for count operation compared to other self-
indexes.

9.6. BOC-WT versus other self-indexes 171

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 30 40 50 60 70 80 90 100 110 120

A
vg

 lo
ca

te
 ti

m
e/

oc
cs

. (
m

se
c.

)

Compression ratio (%)

Locate (patterns of 1 word)

LZI+Plain
LZI+TH

LZI+SCBDC
AFFM+Plain

AFFM+TH
 AFFM+SCBDC

CSA+Plain
CSA+TH

CSA+SCBDC
SSA+Plain

SSA+TH
SSA+SCBDC

WPH+

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 30 40 50 60 70 80 90 100 110 120

A
vg

 lo
ca

te
 ti

m
e/

oc
cs

. (
m

se
c.

)

Compression ratio (%)

Locate (phrase patterns of 4 words)

LZI+text
LZI+TH

LZI+SCBDC
AFFM+text
AFFM+TH

AFFM+SCBDC
CSA+text
CSA+TH

CSA+SCBDC
SSA+text
SSA+TH

SSA+SCBDC
WPH+

Figure 9.30: Time results for locate operation compared to other self-
indexes.

172 Chapter 9. Experimental evaluation

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 30 40 50 60 70 80 90 100 110 120

A
vg

 lo
ca

te
 ti

m
e/

ch
ar

. (
m

se
c.

)

Compression ratio (%)

Extract

LZI+text
LZI+TH

LZI+SCBDC.v2
AFFM+text
AFFM+TH

AFFM+SCBDC
CSA+text
CSA+TH

CSA+SCBDC
SSA+text
SSA+TH

SSA+SCBDC
WPH+

Figure 9.31: Time results for extract operation compared to other self-
indexes.

significant (we extracted 2,000 contiguous words), these rank operations do not
worsen significantly the overall performance of the decompression process. The
other self-indexes require a more complex procedure to extract portions of text, so
WPH+ becomes the preferred choice when retrieving snippets of the text.

As we can observe in the experimental comparison of this section, BOC-WT
strategy obtains the best time results for counting and locating individual words, as
well as for extracting portions of text, compared to some word-based preprocessed
full-text self-indexes. However, locating, and especially, counting phrase patterns
are not as efficient as for the other self-indexes. Locating phrase patterns using
WPH+ is still the preferred alternative when using very little space. However, we
must remember that WPH+ and the word-based preprocessed full-text self-indexes
can only search for whole words or phrases of words in the compressed text, unlike
the full-text self-indexes built over plain text. These full-text self-indexes built over
plain text occupy much more memory than WPH+, but are more flexible as they
can search for any kind of string.

Chapter 10

Discussion

10.1 Main contributions

It has been long established that semistatic word-based byte-oriented compressors,
such as Plain Huffman, End-Tagged Dense Code and Restricted Prefix Byte Codes,
are useful not only to save space and time, but also to speed up sequential search
for words and phrases. However, the more efficient compressors such as PH and
RPBC are not that fast at searching or random decompression, because they are
not self-synchronizing. In this part of the thesis we have proposed a new data
structure called BOC-WT that performs a simple reorganization of the bytes of the
codewords obtained when a text is being compressed, such that it can produce clear
codewords boundaries for those compressors. This gives better search capabilities
and random access than those of the byte-oriented compressors, even those that
pay some compression degradation to mark codeword boundaries (TH, ETDC).

As the reorganization permits carrying out all those operations efficiently over
PH, the most space-efficient byte-oriented compressor, the usefulness of looking for
coding variants that sacrifice compression ratio for synchronization strategies to
improve the searching or decoding performance is questioned: the proposed data
structure over Plain Huffman (WPH) will do better in almost all aspects.

The reorganization has also surprising consequences related to implicit indexing
of the compressed text. Block-addressing indexes over compressed text have been
long considered the best low-space structure to index a text for efficient word and
phrase searches. They can trade space for speed by varying the block size. We have
shown that BOC-WT provides a powerful alternative to these inverted indexes. By
adding a small extra structure to the BOC-WT, search operations are speeded up
so sharply that the structure competes successfully with block-addressing inverted
indexes that take the same space on top of the compressed text. Especially, our

173

174 Chapter 10. Discussion

structure is superior when little extra space on top of the compressed text is per-
mitted. We have also compared these implicit indexing properties of the BOC-WT
data structure with other word-based self-indexes, obtaining efficient time results
for locating individual words and extracting portions of text. Searching for phrase
patterns can also be solved by our new data structure, but other self-indexes out-
perform BOC-WT in this aspect. However, BOC-WT is still the preferred choice
for locating and displaying the occurrences of short phrases composed of two words.

10.2 Other Applications

BOC-WT is a new data structure that can represent any natural language text in
a compressed and self-indexed way. However, it can be particularized or extended
such that it becomes an attractive solution in other scenarios. More specifically, we
now mention two works where BOC-WT has been applied to different domains. The
first one consists on a modification of the data structure to efficiently represent XML
documents. The second one adapts BOC-WT data structure to the most studied
Information Retrieval problem: ranking and searching over document collections.
A new search engine was developed, where BOC-WT was used to obtain relevant
documents for user queries. For this goal, the parallelization of the BOC-WT data
structure was also studied.

10.2.1 A compressed self-indexed representation of XML doc-

uments

Brisaboa et al. [BCN09] presented a direct application of the BOC-WT data struc-
ture presented in this thesis to represent any XML document in a compressed and
self-indexed form, called XML Wavelet Tree (XWT). It permits to compute any
query or procedure that could be performed over the original XML document in a
more efficient way using the XWT representation, since it is shorter and has some
indexing properties.

The XWT data structure just consists in applying the BOC-WT data structure
using (s, c)-Dense Code over the XML document. Two different vocabularies are
considered. These two vocabularies are created during the parsing step of the XML
document. One stores the different start- and end-tags and therefore the structure
of the document. The other stores the rest of the words. With this distinction, it
is possible to keep all the tags in the same branch of the XWT. As they follow the
document order, the relationships among them are maintained as in the original
XML document. Hence, structural queries can be efficiently solved using this data
structure: only those nodes storing the structure of the document are accessed, and
the rest of the compressed text can be omitted.

10.2. Other Applications 175

The compressed representation of the XML document is then obtained in a simi-
lar way than it was explained for BOC-WT, only taking into account the particular-
ity of using different vocabularies to isolate the tags of the document. Accessing to
random positions of the document, retrieving the original XML document or doing
searches on it, such as counting, locating words or phrases, can be performed using
the same algorithms explained in Section 8.2. Other XPath queries can also be
easily answered by traversing the tree, such as obtaining the pairs of start-end tags
containing a word or searching attributes values (which is translated in the XWT
as a phrase search and the same algorithm as explained for searching for phrases in
BOC-WT can be used).

10.2.2 Searching document collections

BOC-WT data structure can also be used to represent a document collection. Let
D = D1, . . . , DN be a collection of N documents, where each document Di is mod-
eled as a sequence of terms (or words) from a vocabulary Σ of size ∣Σ∣. Conjunctive
queries of the form t1 ∧ t2 ⋅ ⋅ ⋅ ∧ tk, asking to report the documents that contain all
the terms t1, . . . , tk, are one of the most common kinds of queries issued to text
retrieval systems.

González [Gon09] analyzes the behavior of BOC-WT against an inverted index
structure inside a complete search engine implemented in a cluster of nodes. The
indexes were built over a real collection of documents, consisting in a subset of
the UK Web and real logs from Yahoo! UK are used to test the performance of
BOC-WT and the inverted index. The experimental evaluation indicates that the
inverted index is more efficient in searching times due to several information that is
needed for the ranking step and is already precalculated and stored in the inverted
index. BOC-WT requires some extra computations that worsen searching times.
However, it offers flexibility and independence of the ranking method used, which
might be of great interest. Several ranking strategies can be implemented without
rebuilding the index or using any extra space. In addition, the original text can be
retrieved from the data structures that compose the BOC-WT, such that snippet
extraction can be performed without using any other machine nor accessing to
secondary memory, in time comparable to that of locating the occurrences. This
becomes an attractive advantage, since it avoids the need of having extra servers
storing the collection of documents and reduces communication costs between the
nodes of the cluster.

Since the experimental evaluation showed that each alternative has advantages
and disadvantages, the author proposes a hybrid approach that combines both
strategies to exploit their advantages and reduce their disadvantages. This hybrid
approach consists in using the BOC-WT data structure during the query process-
ing step in order to generate an inverted index for the terms most referenced by
the queries over a period of time. This strategy takes into account the fact that

176 Chapter 10. Discussion

repetitions of the same terms are common in real queries, some terms appear in
many queries for short periods of time whereas some others keep recurring for long
periods of time. In both cases, the inverted lists of those terms are usually con-
sulted several times, hence, it is an attractive choice to keep those inverted lists in
a specific-purpose cache. Inside this cache, the inverted index dynamically gener-
ated using BOC-WT is stored and replaced when needed. Thus, there is no space
consumption for infrequently searched terms.

Using this schema, the search engine can process a real dataset of queries in
similar times and spaces than an inverted index. In addition, the whole document
collection is maintained in main memory, such that snippet generation is also possi-
ble, while an inverted index would need extra space to store the text in compressed
form, and snippet generation might require some accesses to secondary memory.

Arroyuelo et al. [AGO10] recently presented a study on the support of conjunc-
tive queries in self-indexed text retrieval systems. They referenced our proposed
BOC-WT data structure as an example of a new trend in compressed indices, since
it does not store the occurrence lists, but permits generating them on the fly. With
this strategy, considerable space savings are obtained but query times are increased.
In order to solve some operations that are fundamental in IR, such as conjunctive
queries over document collections, BOC-WT data structure can be adapted by con-
catenating all the documents and indexing the whole collection as a unique text
T , or more generally, any rank/select data structure can be adapted similarly. A
special separator symbol $, different to any symbol of the vocabulary, is used to
create T , so that the sentence is build as T [1..n] = $D1$D2$. . . DN, where each
document Di has assigned a unique identifier i. Given any position 1 ≤ j ≤ n, the
document identifier corresponding to position j can be computed as rank$(T, j).
Given a document identifier 1 ≤ i ≤ N , the starting position within T for document
Di can be computed as select$(T, i) + 1.

As we have seen, BOC-WT competes successfully with an inverted index when
reporting all the occurrences of a query term t. This operation is relevant for text
searching, where all the occurrences need to be found. However, for conjunctive
queries this approach is not efficient, since we should search for every occurrence of
t, and then determine the document that contains each one, so that the documents
are reported without repetitions. This approach is inefficient when there are many
occurrences of t, but just a few documents actually contain it. The authors proposed
an algorithm to solve this query in time proportional to the number of documents,
rather to the number of occurrences of the query. Basically, to find all the docu-
ments containing a term t they proceed as follows. They locate the first occurrence
of t within T using a select operation and compute the document identifier corre-
sponding to that occurrence, which is reported. Then they jump up to the end of
the current document using another select operation and perform a rank operation
to count the number of occurrences of t up to that position. Then, they jump to

10.2. Other Applications 177

the next document containing the following occurrence of t using a select operation,
and repeat the procedure until they reach the end of the collection. In addition,
they presented several algorithms to perform conjunctive queries t1 ∧ t2 ⋅ ⋅ ⋅ ∧ tk
that are more efficient than obtaining the occurrences lists and intersecting them.
The behavior of these algorithms depends on the practical implementation of rank
and select operations. When comparing their proposal with inverted indexes, they
showed that their algorithms are about 5-7 times slower but inverted indexes require
about 1.5 times their space when snippet extraction is required (that is, the space
for storing the text must be also account). Hence, further work needs to be done in
order to obtain a query performance similar to that of inverted indexes.

178 Chapter 10. Discussion

Part III

Compact Representation of

Web Graphs

179

Chapter 11

Introduction

The directed graph representation of the World Wide Web has been extensively
used to analyze the Web structure, behavior and evolution. However, those graphs
are huge and do not fit into main memory, whereas the required graph algorithms
are inefficient in secondary memory. Compressed graph representations reduce their
space while allowing efficient navigation in compressed form. As such, they allow
running main-memory graph algorithms on much larger Web subgraphs. In the
following chapters of this thesis we present a Web graph representation based on
a very compact tree structure that takes advantage of large empty areas of the
adjacency matrix of the graph.

We start this chapter by introducing the usage of Web graphs in Information
Retrieval and the need of a navigable compact representation in Section 11.1. Then,
we revise in Section 11.2 some basic concepts and properties of Web graphs and we
finish the chapter by studying the current state-of-the-art in Web graph compression
in Section 11.3.

11.1 Motivation

The World Wide Web structure can be regarded as a directed graph at several levels,
the finest grained one being pages that point to pages. Many algorithms of interest
to obtain information from the Web structure are essentially basic algorithms ap-
plied over the Web graph. One of the classical references on this topic [KKR+99]
shows how the HITS algorithm to find hubs and authorities on the Web starts by
selecting random pages and finding the induced subgraphs, which are the pages
that point to or are pointed from the selected pages. Donato et al. [DMLT05] show
how several common Web mining techniques, used to discover the structure and
evolution of the Web graph, build on classical graph algorithms such as depth-first

181

182 Chapter 11. Introduction

search, breath-first-search, reachability, and weakly and strongly connected compo-
nents. A more recent work [STKA07] presents a technique for Web spam detection
that boils down to algorithms for finding strongly connected components, for clique
enumeration, and for minimum cuts.

The problem of how to run typical graph algorithms over those huge Web graphs
is always present in those approaches. Even the simplest external memory graph
algorithms, such as graph traversals, are usually non disk-friendly [Vit01]. This has
pushed several authors to consider compressed graph representations, which aim
to offer memory-efficient graph representations that still allow for fast navigation
without decompressing the graph. The aim of this research is to propose a new com-
pression method such that classical graph algorithms can be run in main memory
over much larger graphs than those affordable with a plain representation.

11.2 Basic concepts on Web graphs

Let us consider a graph G = (V,E), where V is the set of vertices (or nodes) and
E is the set of edges, which is a subset of V ×V . We denote n = ∣V ∣ the number of
nodes of the graph and m = ∣E∣ the number of edges. We call the direct neighbors
of a node v ∈ V those u ∈ V such that (v, u) ∈ E, and reverse neighbors of a
node v ∈ V those u ∈ V such that (u, v) ∈ E. A graph in which the edges are not
ordered pairs of nodes, so the edge (u, v) is identical to the edge (v, u) is called an
undirected graph. On the contrary, edges of directed graphs are ordered pairs, and
there can be nodes (u, v) ∈ E but (v, u) ∕∈ E.

There are two standard strategies for graph representations. One uses the adja-
cency lists of each node and the other uses the the adjacency matrix.

∙ Adjacency lists representation: It consists of a set of n lists Lu, one per each
node u ∈ E. Each list Lu contains all the neighbors of node u, that is,
Lu = {v∣(u, v) ∈ E}. Since the sum of the lengths of all the lists is m, this
representation requires m logn bits for directed graphs. To represent undi-
rected graphs, each undirected edge must be duplicated such that it appears
in the adjacency list of the two nodes associated to that edge. Hence, the
undirected graph representation using adjacency lists requires 2m logn bits..

∙ Adjacency matrix representation: It consists in a boolean matrix A = {ai,j}
of size n×n, one row and one column for each node u ∈ V where the cell au,v
is 1 if (u, v) ∈ E and 0 otherwise. It requires n2 bits for directed graphs, one
bit for each matrix cell, and n(n+ 1)/2 bits for undirected graphs, since the
matrix is symmetric.

The adjacency lists representation is a better option when the graph is sparse,
because it requires space proportional to the edges that are present in the graph. If

11.2. Basic concepts on Web graphs 183

the graph is dense, the adjacency matrix is a good choice, due to the compact repre-
sentation of each edge, with just 1 bit. Besides the space tradeoff, these alternative
representations of graphs also behave differently with the navigational operations.
Finding all the neighbors of a node in an adjacency list consists in a simple read-
ing of the list, in optimal time. With an adjacency matrix, an entire row must be
scanned, which takes O(n) time, or at best O(n/ logn) in the RAM model. Whether
there is an edge between two given nodes of the graph can be answered in constant
time with an adjacency matrix, by just checking the associated cell of the matrix;
however, with the adjacency lists representation, it requires time proportional to
the degree of the source node.

In particular, a Web graph is a directed graph that contains a node for each Web
page and there exists a directed edge (p, q) if and only if page p contains a hyperlink
to page q. Then, a Web page q is a direct neighbor of a Web page p if p contains
a link pointing to q and the reverse neighbors of a Web page p are all those Web
pages that have a link pointing to p. Therefore, we can also define the adjacency
matrix of a Web graph of n pages as a square matrix {aij} of size n×n, where each
row and each column represents a Web page. Cell ap,q is 1 if there is a hyperlink
in page p towards page q, and 0 otherwise. As on average there are about 15 links
per Web page, this matrix is extremely sparse.

It is customary in compressed Web graph representations to assume that page
identifiers are integers, which correspond to their position in an array of URLs.
The space for that array is not accounted for, as it is independent of the Web graph
compression method. Moreover, it is assumed that URLs are alphabetically sorted,
which naturally puts together the pages of the same domains, and thus locality of
reference translates into closeness of page identifiers. We follow this assumption in
the application of our method, explained in the next chapter.

Most of the state-of-the-art techniques achieve compact representations of Web
graphs by explicitly exploiting their statistical properties [BV04], such as:

∙ Skewed distribution: In- and out-degrees of the nodes of a Web graph are
distributed according to power laws [BKM+00]. The probability that a Web
page has i links is 1/i� for some parameter � > 0. Several experiments give
rather consistent values of � = 2.1 for the in-degree distribution, and � = 2.72
in the case of the out-degree.

∙ Locality of reference: Most of the links of a Web graph are navigational links to
Web pages of the same site ("home", "next", "previous", etc.). If Web pages
are sorted alphabetically by URL, most pages will have links to pages with
close identifier numbers. This permits the usage of gap encoding techniques.

∙ Similarity of the adjacency lists: The set of neighbors of a page is usually very
similar to the set of neighbors of some other page. For instance, Web pages of

184 Chapter 11. Introduction

a certain site often share many navigational links (for example, if they have a
common menu). This peculiarity can be exploited to achieve compression by
using a reference to a similar list and enumerating the differences as a list of
edits. This characteristic is also known as copy property.

The properties of Web graphs can also be visualized and exploited in their
adjacency matrix:

∙ Due to the locality of reference and the alphabetically ordering of the URLs,
many 1s are placed around the main diagonal (that is, page i has many point-
ers to pages nearby i).

∙ Due to the copy property (similarity of the adjacency lists), similar rows are
common in the matrix.

∙ Due to skewness of distribution, some rows and columns have many 1s, but
most have very few.

11.3 State of the art

We now describe the most important works in Web graph compression. They are
focused on obtaining a compact representation of the Web that permits the efficient
extraction of the direct neighbors of any Web page. The space requirements for
these methods is commonly measured in bits per edge (bpe), that is, is computed
using the number of bits that are necessary to operate with them in main memory
divided by the number of edges of the Web graph.

11.3.1 Boldi and Vigna: WebGraph Framework

The most famous representative of the Web graph compressing trend is surely the
WebGraph Framework, by Boldi and Vigna [BV04]. It is associated to the site
http://webgraph.dsi.unimi.it, which by itself witnesses the level of maturity
and sophistication that this research area has reached.

The WebGraph compression method is indeed the most successful member of
the family of approaches to compress Web graphs based on their statistical prop-
erties [BBH+98, BKM+00, AM01, SY01, RSWW01, RGM03]. Boldi and Vigna’s
representation allows fast extraction of the neighbors of a page while spending just
a few bits per link (about 2 to 6, depending on the desired navigation performance).

The WebGraph Framework includes, in addition to the algorithms for compress-
ing and accessing Web graphs, a set of new instantaneous codes which are suitable
for storing this type of graphs, since they are especially designed for distributions
commonly found when compressing Web graphs. It also includes data sets for very

11.3. State of the art 185

large graphs and a complete documented implementation in Java, with a clearly
defined API to facilitate the use and set-up for the experimental evaluation of their
technique.

The WebGraph method represents the adjacency lists of a Web graph by ex-
ploiting their similarity by referentiation: since URLs that are close in lexicographic
order are likely to have similar successor lists (as they belong to the same site, and
probably to the same level of the site hierarchy), they represent an adjacency list as
an edit list. They use an integer as a reference to a node having a similar list, and
a bit string that indicates the successors that are common to both lists. They also
include a list of extra nodes for the remaining nodes that are not included in the
reference list. Their representation of adjacency lists uses differential compression
and some other techniques in order to obtain better space compression.

An example of the referentiation used in Boldi and Vigna’s method is shown
in Tables 11.1 and 11.2. The first table illustrates the plain representation of the
adjacency lists of some nodes of the Web graph, where the first column details the
node identifier, the second column indicates the outdegree of that node, that is, the
number of direct neighbors of the node, and the third column displays the complete
list of direct neighbors. As we can see, the adjacency lists of nodes 15, 16 and 18 are
very similar, so the adjacency lists of nodes 16 and 18 will be represented by means of
the adjacency list of node 15. Hence, Table 11.2 shows how the plain representation
of the whole adjacency list for each node is replaced by the information of the
reference node, the copy list and the extra nodes list. Since the adjacency lists
of nodes 16 and 18 are represented via copy lists of the adjacency list of node 15,
the third column stores the reference node (15) as a differential value. The fourth
column of Table 11.2 shows the copy lists, that is, the bit string indicating which
elements of the referred adjacency list are present in the adjacency list of the current
node. The neighbors of the current node that are not included in the adjacency
list of the referred node are included in the list of extra nodes in the last column
of the table. For instance, the reference node used for the representation of the
adjacency list of node 18 is node 15, since the difference valued stored to indicate
it is 3, as we can see in the third column of Table 11.2. In addition, the edit list
at column 4 indicates which links are shared among the adjacency list of node 15
and the adjacency list of node 18. Since only the first four bits are set, only the
first four links of the adjacency list of node 15 are common to the adjacency list of
node 18, that is, node 18 has links to nodes 13, 14, 16 and 171. In addition, the
last column of the table indicates that node 50 is also a neighbor of node 18.

The method uses two parameters: a window size W and the maximum refer-

1We need to previously obtain the adjacency list of node 15 in an analogous way. However,
the adjacency list of node 15 is easier to retrieve since it does not use any reference node. This
fact can be extracted from the table, as it indicates that the reference node is itself. Therefore, no
copy list is stored and the complete adjacency list is explicitly enumerated in the “Extra nodes”
column.

186 Chapter 11. Introduction

Node Outdegree Successors

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
15 11 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034

16 10 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041

17 0

18 5 13, 15, 16, 17, 50

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Table 11.1: Adjacency lists for some nodes of a graph.

Node Outd. Ref. Copy list Extra nodes

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034

16 10 1 01110011010 22, 316, 317, 3041

17 0

18 5 3 11110000000 50

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Table 11.2: Representation of the adjacency lists using copy lists.

11.3. State of the art 187

ence count R. That is, the successor lists of the last W nodes are considered as
possible references, except those which would cause a recursive reference of more
than R chains. The parameter R is essential for deciding the tradeoff between com-
pression time and compression ratio, whereas W only affects the tradeoff between
compression time and compression ratio.

11.3.2 Claude and Navarro: Re-Pair Based Compression

More recently, Claude and Navarro [CN10c] showed that most of the properties of
Web graphs are elegantly captured by applying Re-Pair compression [LM00] on the
adjacency lists. Their technique offers better space/time tradeoffs than WebGraph,
that is, they offer faster navigation than WebGraph when both structures use the
same space. Yet, WebGraph is able of using less space if slower navigation can be
tolerated. In addition, the Re-Pair based compression can be adapted to work well
in secondary memory.

Claude and Navarro use an approximate version of the original linear-time Re-
Pair technique [LM00], which works on any sequence and uses very little memory
on top of the sequence they want to compress. Therefore, they concatenate the
adjacency lists of the Web graph and since Re-Pair is a phrase-based compressor,
the regularities presented in the adjacency lists of the Web graph are exploited in
order to compress the graph.

Re-Pair is a grammar-based compression algorithm consisting of repeatedly find-
ing the most frequent pair of symbols in a sequence of integers and replacing it with
a new symbol, until no more replacements are convenient. It identifies the most
frequent pair in the sequence and then adds a new rule in the grammar dictionary
to replace that pair by the new symbol created.

In their proposal [CN10c] they use this technique to represent a Web graph G.
They create a sequence of integers T (G), where T (G) is the concatenation of the
representations of all the adjacency lists. The adjacency list of node vi is defined
as T (vi) = vivi1vi2vi3 . . . viri , where vi is a unique special identifier that marks the
beginning of the adjacency list and is not present in any other list and vij , 1 ≤ j ≤ ri,
are the nodes pointed from vi. Then, Re-Pair technique is used over the sequence
T (G) to obtain compression. The special marks vi are not substituted by any
other symbol, since they appear just once, so they still mark the beginning of each
adjacency list in the Re-Pair compressed sequence. This allows direct navigation in
optimal time, since it involves a simple successive extraction of the symbols from
the beginning of the compressed adjacency lists, but not reverse navigation (that
is, finding the pages that point to a given page), which must be carried out with
not so efficient searches over the sequence.

In a more recent proposal [CN10b], Claude and Navarro modified their represen-
tation to also allow for reverse navigation. They combine grammar-based compres-
sion with concepts of binary relations. A graph G = (V,E) can be regarded as a

188 Chapter 11. Introduction

binary relation on V ×V such that techniques as Barbay et al. [BGMR06, BHMR07]
for binary relations can be used to support forward and reverse traversal operations.
Using these techniques directly over the graph does not obtain good results. How-
ever, Re-Pair compression on graphs can also be regarded as the decomposition of
the graph binary relation into two: i) nodes are related to the Re-Pair symbols that
conform their compressed adjacency list, and ii) Re-Pair symbols are related to the
graph nodes they expand to. Hence, they represent the graph as the composition
of these two binary relations, using the technique of Barbay et al. [CN10b] over
the compressed T (G) sequence and the compressed sequence of Re-Pair symbols
of the dictionary of rules (which is represented using some compression techniques
[GN07]). Direct neighbors of a node can be retrieved by finding all the Re-Pair
symbols that conform its adjacency list (first relation) and then the graph nodes
each such symbol expands to (second relation). On the other hand, reverse neigh-
bors can be obtained by first finding all the Re-Pair symbols (nonterminals) that
expand to the node (second relation), and then, for each such symbol, all the nodes
having an adjacency list where the symbol participates (first relation).

Depending on the compact data structure used to represent the sequence and
carry out the rank and select operations over it, they obtain an interesting space/time
tradeoff. They present two alternatives: Re-Pair WT, which uses a wavelet tree,
obtains very compact spaces and reasonable navigation times, and Re-Pair GMR,
which uses a GMR representation [GMR06], obtains an efficient navigation and
occupies more space. The wavelet tree and GMR data structures to represent se-
quences were explained in Section 2.3.2.

11.3.3 Asano, Miyawaki and Nishizeki

Asano et al. [AMN08] achieve even less than 2 bits per link by explicitly exploiting
regularity properties of the adjacency matrix of the Web graphs, such as horizontal,
vertical, and diagonal runs. In exchange for achieving much better compression,
their navigation time is substantially higher, as they need to uncompress full do-
mains in order to find the neighbors of a single page.

They obtain very compact space by representing differently the intra-host links
and the inter-host links. The first links, intra-host, are links between two pages in
the same host, whereas an inter-host link is a link between two pages in distinct
hosts. Their method exploits the fact that there are many more intra-host links
than inter-host links.

To represent all the intra-host links inside one host, they represent only the
1’s of the adjacency matrix of that host using six types of blocks. Each type of
block, consisting of several consecutive 1’s in the matrix, corresponds to some kind
of locality:

∙ Blocks with just one isolated 1, called singleton blocks. They do not represent

11.3. State of the art 189

any kind of locality.

∙ A horizontal block consists of two or more horizontally consecutive 1-elements.
Horizontal blocks are generated due to the fact that pages often link to con-
secutive pages of the same host, that is, Web pages with similar URLs.

∙ A vertical block consists of two or more vertically consecutive 1-elements.
Pages of the same host often share a link to a common page, for instance,
to the home page of the domain.

∙ An L-shaped block is the union of a horizontal block and a vertical block
sharing the upper leftmost 1-element. We can find this type of block, for
instance, when there is an index page that contains links to some consecutive
pages, and those consecutive pages have a link to return to the index page.

∙ A rectangular block is a submatrix where all the elements are 1’s and the sub-
matrix has more than one consecutive row and more than one consecutive
column. It consists in a combination of the localities represented with hor-
izontal and vertical blocks, where several consecutive pages have intra-host
links to common consecutive pages.

∙ A diagonal block consists of two or more 1-elements downward diagonally
consecutive from upper left to lower right. This pattern can be found when
a navigational link "next" (or "previous") is present in several consecutive
pages.

Figure 11.1 illustrates the different types of blocks that appear in the adjacency
matrix of a host: singleton blocks, such as B1, horizontal blocks such as B2, vertical
blocks such as B3, L-shaped blocks such as B4, rectangular blocks such as B5 or
diagonal blocks such as B6.

Hence, this technique represents the adjacency matrix of each host as a list of
signatures of these blocks, indicating for each block its type, its beginning element
and its dimension (which is represented differently depending on the type of the
block). More specifically, they represent a block B in the adjacency matrix A of a
host by a quadruplet sig(B) = (br(B), bc(B), type(B), d(B)), where:

∙ br(B) and bc(B) define the position of the beginning element of B in the
matrix, that is, the upper leftmost element of a block B, which is denoted by
b(B). br(B) is the row number of b(B), and bc(B) is the column number, then
b(B) = Abr(B),bc(B). For the example of Figure 11.1, the beginning element
of block B2 is b(B2) = A8,6, since the upper leftmost element is placed at row
8 and column 6.

∙ type(B) denotes the type of a block B. For instance, type(B3) = V ertical.

190 Chapter 11. Introduction

Figure 11.1: Several blocks presented in the adjacency matrix.

∙ d(B) corresponds to the dimension of block B. The dimension d(B) of an L-
shaped or rectangular block B is defined to be an ordered pair (er(B)−br(B)+
1, ec(B) − bc(B) + 1), where er(B) is the row number of the lowest element
in B and ec(B) is the column number of the rightmost one. The dimension
d(B) of block B of the other types is defined to be the number of elements
in B. A singleton block can be represented without the dimension, because
the dimension of every singleton block is 1. For instance, the dimension of
the vertical block B2 is d(B2) = 3, since it has 3 ones, whereas the dimension
of the rectangular block B5 consists of the pair (2, 4). This dimension is
computed by noticing that the beginning element is at row br(B5) = 5 and
column bc(B5) = 4, the lowest element of the block is at row er(B5) = 6 and
the rightmost element at column ec(B5) = 7; hence, the formula above gives
us the pair (6− 5 + 1, 7− 4 + 1) = (2, 4).

For the example of Figure 11.1, the host would be represented as a list of all the
blocks, where each block is represented as follows:

∙ sig(B1) = (8, 2, Singleton)

∙ sig(B2) = (8, 6, Horizontal, 3)

∙ sig(B3) = (4, 2, V ertical, 3)

11.3. State of the art 191

∙ sig(B4) = (1, 6, Lsℎaped, (3, 3))

∙ sig(B5) = (5, 4, Rectangular, (2, 4))

∙ sig(B6) = (1, 2, Diagonal, 3)

Inter-host links are also compressed with this technique by regarding them as
intra-host links. For this sake, new local indices are assigned to the destinations of
inter-host links. If there are n pages in a host and that host has m inter-host links,
the new local indexes n+ i− 1 for i = 1 . . .m will consecutively assigned to replace
the m original indices of the destinations of the inter-host links. Hence, the method
constructs a new intra-destination list for each page in the host, which is the union
of two lists: one is the intra-destination list of pages, and the other is the list of
new local indices for the inter-host links. For each host, it is necessary to store, in
a table, a pair of the new local index and original index of the destination of each
inter-host link.

Therefore, the final representation of the Web graph is obtained by the com-
pression of intra-host links and inter-host links all together for each host, where the
input is the new intra-destination lists for each host. Their technique obtains better
compression ratio than Boldi and Vigna, but access times to the neighbors list of a
node are considerably higher. However, their experimental evaluation only includes
the results for very small graphs.

11.3.4 Buehrer and Chellapilla: Virtual Node Miner

Buehrer and Chellapilla [BC08] propose a Web graph compression technique that
not only obtains good compression ratios but also permits some community discov-
ery, since it can find global patterns in the Web graph. In addition, their method,
called Virtual Node Miner, has some other interesting properties, such as not requir-
ing a particular ordering of the nodes of the graph, and supporting several available
coding schemes. Moreover, it is highly scalable and support incremental updates.

In the context of the Web, a community can be seen as a group of pages related
to a common interest. Regarding the Web graph, communities have been associ-
ated with the existence of a locally dense subgraph, and more specifically, they are
commonly abstracted as a set of pages that form a complete bipartite graph or
biclique2. Therefore, it is very frequent to find patterns inside Web graphs such
that a group of nodes points to another set of nodes. This particularity is exploited
by the authors of this work to obtain a compressed representation of a Web graph.

2A bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such
that every edge connects a vertex in U to one in V ; that is, U and V are independent sets. A
biclique is a complete bipartite graph, where every vertex of the first set is connected to every
vertex of the second set.

192 Chapter 11. Introduction

S1 S2 S3 S4 S5 S6

D1 D2 D3 D4 D5

S1 S2 S3 S4 S5 S6

D1 D2 D3 D4 D5

a) b)

Figure 11.2: Several links in a) are compressed into one virtual node in b).

The idea of the Virtual Node Miner method consists in searching for communities
in the Web by finding bicliques inside the Web graph, and representing them in a
compact way. Figure 11.2 (left) illustrates an excerpt of a Web graph containing
a complete bipartite subgraph, where six nodes (S1, . . . , S6) share links to five
common destination nodes (D1, . . . , D5). Instead of representing all the intra-links
of the community, their algorithm reduces the number of edges by generating a new
node, called virtual node. Figure 11.2 (right) shows how this artificial node assembles
the ingoing and outgoing links of the community such that an important space
reduction is obtained. For the example of the figure, just 11 links are represented
instead of the 30 original ones. In many cases for real Web graphs, they can represent
thousands of edges with a single link to a virtual node.

They address the problem of finding those virtual nodes by using a common data
mining algorithm, the frequent itemset mining approach [AIS93], which we will not
explain here since it escapes the objectives of this thesis. A previous step must be
performed such that mining Web graph, consisting of hundreds of millions of nodes,
becomes possible. Hence, Virtual Node Miner first clusters similar vertices in the
graph and then it finds patterns in those clusters. When those patterns are found,
it removes the links involved and replaces them with virtual nodes. The algorithm
repeats this procedure until there are no more patterns to discover. Finally, a coding
scheme is used to encode the remaining edges.

Their experimental evaluation indicates that their technique achieves a 10- to
15-fold compression on most real word Web graph data sets, using 1.5 to 3 bpe.
Moreover, it shows that the algorithm is scalable. For instance, their method can
compress a 3 billion edge graph in 2.5 hours on a single machine.

11.3.5 Apostolico and Drovandi: Compression by Breadth

First Search

Apostolico and Drovandi presented in 2009 a method for graph compression that
permits a fast retrieval of the information of the nodes [AD09]. The idea of their
paper is to order the nodes of the Web graph following a Breadth First Search

11.4. Our goal 193

(BFS) strategy instead of using the lexicographic order, while still retaining the
main features of the Web graphs (locality and similarity). Hence, they do not
assume any previous knowledge of the Web graph (many other works from the
literature are based on the lexicographic ordering of URLs) and their algorithm
depends only on their topological structure.

They compress the Web graph using a two-phases algorithm. During the first
phase, they perform a breadth-first traversal of Web graph and index each node
according to the order in which it is expanded. Hence, two connected nodes are
likely to be assigned close index values. In addition, since two adjacent nodes of the
Web graph often share many neighbors, the similarity property of the adjacency lists
is also captured with this method. They separately compress consecutive chunks of
l nodes, where l is a parameter called compression level. During the second phase,
the adjacency list of each node is encoded exploiting all the redundancies presented
(references to identical rows, gap encoding for close indexes, etc).

They obtain a very compact space (about 1 to 4 bpe), smaller than Asano et al.,
maintaining an average retrieval time comparable to Boldi and Vigna. In addition,
they introduce a very efficient query to determine whether two nodes are connected,
that is, if one page p has a link to a page q without the need to always extract the
adjacency list for p. The average time for this operation is less than 60% of the
retrieval time of the whole adjacency list.

11.4 Our goal

As we have seen, there are several proposals to compress the graph of the Web that
obtain compact spaces by different approaches such as extracting patterns from the
graph or exploiting the similarities of the adjacency lists.

Some of these techniques are focused only on achieving the most compact space
possible, whereas most of them allow the efficient extraction of the direct neighbors
of any Web page. However, more sophisticated navigation is desirable for several
Web analyses. For instance, these methods do not extract so efficiently the reverse
neighbors of a Web page, which is an interesting operation for several applications.
The standard approach to achieve this direct and reverse navigation is to represent
the graph and its transpose, such that the reverse navigation is answered using the
direct neighbors retrieval over the transposed graph. Yet, this approach basically
doubles the space needed for the Web graph representation and the redundancy
between both graphs is not exploited. Hence, our goal is to intrinsically capture the
properties of the Web graph to solve direct and reverse navigation efficiently over
the compressed representation of the graph without also representing its transpose.

In the following chapters we present our proposal of a new compression method
for Web graphs that achieves a very compact space and enables the extraction of
both direct and reverse neighbors of a Web page in a uniform way, in addition to

194 Chapter 11. Introduction

supporting other navigation operations over the Web graph.

Chapter 12

Our proposal: k2-tree

representation

In this chapter we present a new compact representation for a Web graph that takes
its adjacency matrix and builds a tree that can be stored in a compact space. It
supports the classical operations, such as retrieving all the pages that are pointed
by a given Web page, without the need of decompressing all the Web graph. In
addition, it allows for reverse neighbor retrieval and extra functionality such as
range searches or retrieval of single links.

The chapter is organized as follows. Section 12.1 describes the tree representa-
tion conceptually, including the basic operations supported by our representation
and how they are carried out over the tree. Section 12.2 describes the data struc-
tures and algorithms used to efficiently store and manage the tree representation.
Section 12.3 proposes a variation of the method that improves both time and space
requirements. Section 12.4 describes some extra functionalities supported by our
proposal and analyzes their time complexity. Finally, in Section 12.5 we propose
some alternatives to the k2-tree technique whose aim is to improve the efficiency of
the method.

12.1 Conceptual description

In this section, we present a tree-shaped representation of the adjacency matrix of a
Web graph that supports the basic navigation over the graph, such as retrieving the
list of direct or reverse neighbors. We first describe conceptually our proposal, called
k2-tree, detailing how it is built, and finally, we show how that basic navigation is
supported in the tree.

195

196 Chapter 12. Our proposal: k2-tree representation

00000000

0000

0000

0000

0000

0000

000

0000

0000

0000

0000

0000

0000

00000010 000

00011100 0000

00000000 000

00000000 000

00000000 000

00000000 000

00000000 000

01000000 000

01000000 010

01000000 101

01000000 010

0000

0010

1100

0000

0000

0000

0000

0000

0000

0000

0000

0000

000

0000

0000

0000

00000010 0000

00011100 000

00000000 000

00000000 000

0010

1100

0000

0000

n/k web pages

0 1 2 k-1

k k+1 k+2 2k-1

2k 2k+1 2k+2 3k-1

(k-1)k (k-1)k+1 (k-1)k+2 k2-1

n web pages

Figure 12.1: Subdivision of the adjacency matrix into k2 submatrices,
indicating their ordering.

We propose a compact representation of the adjacency matrix that exploits its
sparseness and clustering properties. The representation is designed to compress
large matrix areas with all 0s into very few bits. We represent the adjacency matrix
by a k2-ary tree, which we call k2-tree.

Assume for simplicity that the adjacency matrix of the Web graph is a square
matrix of size n× n, where n is a power of k, we will soon remove this assumption.
Conceptually, we start dividing the adjacency matrix following a MX-Quadtree
strategy [Sam06, Section 1.4.2.1] into k2 submatrices of the same size, that is, k rows
and k columns of submatrices of size n2/k2. Each of the resulting k2 submatrices
will be a child of the root node and its value will be 1 iff there is at least one 1 in the
cells of the submatrix. A 0 child means that the submatrix has all 0s and therefore
the tree decomposition ends there; thus 0s are leaves in our tree. The children of
a node are ordered in the tree starting with the submatrices in the first (top) row,
from left to right, then the submatrices in the second row from left to right, and so
on, as shown in Figure 12.1.

Once the level 1 of the tree, which contains the children of the root node, has been
built, the method proceeds recursively for each child with value 1. The procedure
stops when we reach submatrices full of 0s, or when we reach a k × k submatrix
of the original adjacency matrix, that is, we reach the last level of the tree. In
this last level, the bits of the nodes correspond to the adjacency matrix cell values,

12.1. Conceptual description 197

Figure 12.2: Representation of a Web graph (top) by its adjacency matrix
(bottom left) and the k2-tree obtained (bottom right).

following the node ordering we have previously defined. Hence, it is easy to see
that the height of the k2-tree is ℎ = ⌈logk n⌉, since we stop the tree construction of
the n × n adjacency matrix when we reach a level with submatrices of size k × k,
subdividing the side of each square submatrix by k in each step.

Figure 12.2 illustrates a small Web graph consisting of 4 Web pages, p1, p2, p3
and p4. Its 4×4 adjacency matrix is shown in the bottom left part of the figure. At
the bottom right part of the figure we illustrate the 22-tree built for this example.
Its height is ℎ = ⌈log2 4⌉ = 2, where the level 1 corresponds to the children of the
root node and level 2 contains the original cell values of the 2 × 2 submatrices of
the adjacency matrix that are not full of zeroes. Following the ordering previously
defined, those submatrices containing at least one 1 are the first one (top-left) and
the fourth one (bottom-right).

We have previously assumed that n was a power of k. If n is not a power of k,
we conceptually extend our matrix to the right and to the bottom with 0s, making
it of width n′ = k⌈logk n⌉, that is, rounding up n to the next power of k, n′. This
does not cause a significant overhead as our technique is efficient to handle large
areas of 0s.

198 Chapter 12. Our proposal: k2-tree representation

Note that, since the height of the tree is ℎ = ⌈logk n⌉, a larger k induces a
shorter tree, with fewer levels, but with more children per internal node. Figures
12.3 and 12.4 show an example of the same adjacency matrix of a Web graph (we
use the first 11 × 11 submatrix of graph CNR [BV04]), and how it is expanded to
an n′ × n′ matrix for n′ a power of k = 2 (Figure 12.3) and of k = 4 (Figure 12.4).
The figures also show the k2-trees corresponding to those k values.

As we can see, each node contains a single bit of data: 1 for the internal nodes
and 0 for the leaves, except for the last level of the tree, where all the nodes are leaves
and they represent some bit values of the adjacency matrix. Level 0 corresponds
to the root and its k2 children are represented at level 1. Each child is a node and
therefore it has a value 0 or 1. All internal nodes in the tree (i.e., with value 1) have
exactly k2 children, whereas leaves (those nodes with value 0 or at the last level of
the tree) have no children. Notice that the last level of the tree represents cells in
the original adjacency matrix, but most empty cells in the original adjacency matrix
are not represented in this level because, where a large area with 0s is found, it is
represented by a single 0 in a higher level of the tree.

12.1.1 Navigating with a k
2-tree

In this section we explain how the basic navigation is carried out using the k2-tree
representation of the Web graph, that is, how the direct and reverse neighbors of a
certain page are obtained.

Direct neighbors To obtain the pages pointed by a specific page p, that is, to
find direct neighbors of page p, we need to find the 1s in row p of the matrix.

We will proceed with a top-down traversal over the tree representation, starting
at the root and travelling down the tree until we reach the leaves, choosing exactly
k children of each node at each level. We will illustrate this procedure with an
example and then we will generalize the algorithm in the next section.

Example We want to find the pages pointed by the first page in the example of
Figure 12.2, that is, find the 1s of the first matrix row. We start at the root of the
22-tree and compute which children of the root node overlap with the first row of
the matrix. These are the first two children, that is, the two submatrices of the top,
so we traverse down the tree to these two children:

∙ The first child is a 1, thus it has children. To figure out which of its children
are useful we repeat the same procedure. We compute in the corresponding
submatrix (the one at the top left corner) which of its children represent cells
overlapping with the first row of the original matrix. These are the first and
the second children. They are placed at the last level of the tree and their

12.1. Conceptual description 199

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000010 000

00011100 000

00000000 000

00000000 000

00000000 000

00000000 000

00000000 000

01000000 000

01000000 010

01000000 101

01000000 010

00000000

00000000

00000000

00000000

01 1 1

1 1 10 0 0 0 0 0 01 1

1 1 1111 1 1 10 0 0 00 0 0 0 0 0 0

0100 01000011 0010 0010 10101000 0110 0010

Figure 12.3: Expansion and subdivision of the adjacency matrix (top) and
resulting tree (bottom) for k = 2. The bits marked with circles are used in
Section 12.2 to illustrate an example of navigation using the k2-tree.

200 Chapter 12. Our proposal: k2-tree representation

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000010 000

00011100 000

00000000 000

00000000 000

00000000 000

00000000 000

00000000 000

01000000 000

01000000 010

01000000 101

01000000 010

00000000

00000000

00000000

00000000

1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0

0100001100000000 0000100000000000 0000000000000010 0010001000100000 0100101001000000

Figure 12.4: Expansion and subdivision of the adjacency matrix (top) and
resulting tree (bottom) for k = 4.

12.1. Conceptual description 201

values are both 1. These two 1s represent two direct neighbors of the Web
page of the query, and as they are at the first and second columns of the
original matrix (according to the path traversed from the root node to the
leaves as we will explain in the next section), they represent the Web pages 1
and 2.

∙ The second child of the root represents the second submatrix, but its value is
0. This means that all the cells of the adjacency matrix in this area are 0, so
we stop the top-down traversal through this branch at this point.

Now we know that the Web page represented by this first row has a link to itself
and another to page 2.

Reverse neighbors An analogous procedure retrieves the list of reverse neigh-
bors. To obtain which pages point to page q, we need to locate which cells have
a 1 in column q of the matrix. Thus, we carry out a symmetric algorithm, using
columns instead of rows.

Let us illustrate the procedure again over the example in Figure 12.2. For
instance, if we want to know the pages that point to the last page (placed at
the rightmost column) we compute the children of the root node that represent
submatrices overlapping with that column. These are the second and the fourth
children, that is, the k rightmost submatrices of the adjacency matrix. The second
child has value 0, therefore no pages in those rows point to the last page. The fourth
child has a 1, therefore we compute which of its children represent submatrices
overlapping cells in the last column; these are the second and the fourth. The
second child, which is placed at the last level of the tree, has a 1 value, so it
represents a reverse neighbor of the page q of the query, whereas the fourth child
has a 0, so it does not represent any reverse neighbor of Web page q. Following
the path from the root node to this 1 value we can know that it is the third row in
the original adjacency matrix (this will be explained in the next section), so we can
conclude that only page 3 points to the last page.

Summarizing, searching for direct or for reverse neighbors in the k2-tree is com-
pletely symmetric. In either case we perform a top-down traversal of the tree, where
the only difference is the formula to compute the children of each node used in the
next step. If we want to search for direct(reverse) neighbors in a k2-tree, we go
down through k children forming a row(column) inside the matrix, more specifi-
cally, those submatrices that overlap with the row(column) of the Web page of the
query.

202 Chapter 12. Our proposal: k2-tree representation

12.2 Data structures and algorithms

Our data structure is essentially a compact tree of N nodes. There exist several
such representations for general trees [Jac89a, MR01, BDM+05, GRRR06], which
asymptotically approach the information-theoretic minimum of 2N + o(N) bits. In
our case, where there are only arities k2 and 0, the information-theoretic minimum
of N + o(N) bits is achieved by a so-called “ultra-succinct” representation [JSS07]
for general trees.

Our representation is much simpler, and similar to the so-called Level-Ordered
Unary Degree Sequence (LOUDS) [Jac89a, DRR06], which consists in an unlabeled
general tree representation that achieves the asymptotic optimum of two bits per
node. Using LOUDS, the tree is represented reporting the degree of each node in
(left-to-right) level-order. The degree sequence is encoded using unary codes, where
a degree d is represented by the string 1d0 (already explained in Section 3.1). Then,
the encoded sequence of degrees has length 2n − 1 bits for a tree with n nodes:
n − 1 1s (each node is associated with one 1 in the encoded representation of the
degree of its parent, except for the root node) and n 0s (the 0 bit that ends all the
degree representation with unary codes for all the nodes). The encoded sequence
is accompanied by a rank and select directories, as explained in Section 2.3.1. This
representation allows the basic navigation over the tree, such as the computation of
parent, first child or next sibling, and also permits the access to children by number,
previous siblings and counting of children. LOUDS tree representation would not
achieve N + o(N) bits if directly applied to our trees.

Our data structure can be regarded as a simplified variant of LOUDS for the
case where arities are just k2 and 0, following the strategy of C-tries [Mal76]. It
achieves the information-theoretic minimum of N+o(N) bits, provides the traversal
operations we require (basically move to the i-th child, although also parent is easily
supported) in constant time, and is simple and practical.

12.2.1 Data structures

We represent the whole adjacency matrix via the k2-tree in a very compact way
using two bit arrays:

T (tree): stores all the bits of the k2-tree except those in the last level. The bits are
placed following a levelwise traversal: first the k2 binary values of the children
of the root node, then the values of the second level, and so on.

L (last level leaves): stores the last level of the tree. Thus it represents the value
of (some) original cells of the adjacency matrix.

We create over T an auxiliary structure that enables us to compute rank queries
efficiently. In practice we use an implementation that uses 5% of extra space on top

12.2. Data structures and algorithms 203

of the bit sequence and provides fast queries. Instead of that implementation, we
can also use another alternative that requires 37.5% extra space and is much faster
[GGMN05].

We do not need to perform rank operations over the bits in the last level of
the tree, since rank operations are needed only to navigate through the compact
representation of the tree, that is, to travel down from a node to its children; this
is the practical reason to store them in a different bitmap (L). Thus the space
overhead for rank is paid only over T .

Hence, the final representation of the Web graph using the k2-tree technique over
its adjacency matrix consists of the concatenation of those two bit arrays, T : L,
and the extra structure to support rank operations over T efficiently.

12.2.1.1 Space analysis

Assume the graph has n pages and m links. Each link is a 1 in the matrix, and
in the worst case it induces the storage of one distinct node per level, for a to-
tal of ⌈logk2(n2)⌉ nodes. Each such (internal) node costs k2 bits, for a total of
k2m⌈logk2 (n2)⌉ bits. However, especially in the upper levels, not all the nodes in
the path to each leaf can be different. In the worst case, all the nodes exist up to
level ⌊logk2 m⌋ (only since that level there can be m different internal nodes at the
same level). From that level, the worst case is that each of the m paths to the leaves
is unique. Thus, in the worst case, the total space in bits is

⌊log
k2 m⌋
∑

ℓ=1

k2ℓ + k2m
(

⌈logk2 n2⌉ − ⌊logk2 m⌋
)

= k2m

(

logk2

n2

m
+O(1)

)

.

This shows that, at least in a worst-case analysis, a smaller k yields less space oc-
cupancy. For k = 2 the space is 4m(log4

n2

m +O(1)) = 2m log2
n2

m +O(m) bits, which
is asymptotically twice the information-theoretic minimum necessary to represent
all the matrices of n×n with m 1s. In Chapter 13, which includes the experimental
evaluation of the proposal, we will see that on Web graphs the space is much better
than the worst case, as Web graphs are far from uniformly distributed.

Finally, the expansion of n to the next power of k can, in the horizontal direction,
force the creation of at most kℓ new children of internal nodes at level ℓ ≥ 1 (level
ℓ = 1 is always fully expanded unless the matrix is all zeros). Each such child will
cost k2 extra bits. The total excess is O(k2 ⋅ k⌈logk n⌉−1) = O(k2n) bits, which is
usually negligible. The vertical expansion is similar.

12.2.2 Finding a child of a node

Our levelwise traversal satisfies the following property, which permits fast navigation
to the i-th child of node x, cℎildi(x) (for 0 ≤ i < k2):

204 Chapter 12. Our proposal: k2-tree representation

Lemma 12.1 Let x be a position in T (the first position being 0) such that
T [x] = 1. Then cℎildi(x) is at position1 rank(T, x) ⋅ k2 + i of T : L

Proof T : L is formed by traversing the tree levelwise and appending the bits of
the tree. We can likewise regard this as traversing the tree levelwise and appending
the k2 bits of the children of the 1s found at internal tree nodes. By the time node
x is found in this traversal, we have already appended k2 bits per 1 in T [0, x− 1],
plus the k2 children of the root. As T [x] = 1, the children of x are appended at
positions rank(T, x) ⋅ k2 to rank(T, x) ⋅ k2 + (k2 − 1).

Example To represent the 22-tree of Figure 12.3, arrays T and L have the fol-
lowing values:

T = 1011 1101 0100 1000 1100 1000 0001 0101 1110,

L = 0100 0011 0010 0010 1010 1000 0110 0010 0100.

In T each bit represents a node. The first four bits represent the nodes 0, 1, 2 and
3, which are the children of the root. The following four bits represent the children
of node 0. There are no children for node 1 because it is a 0, then the children of
node 2 start at position 8 and the children of node 3 start at position 12. The bit
in position 4, which is the fifth bit of T , represents the first child of node 0, and so
on.

For the following, we mark with a circle the involved nodes in Figure 12.3. We
compute where the second child of the third node is, that is, child 1 of node 2. If
we compute rank until the position of the bit representing node 2, rank(T, 2) = 2,
we obtain that there are 2 nodes with children until that position because each
bit 1 represents a node with children. As each node has 4 children, we multiply
by 4 the number of nodes to know where it starts. As we need the second child,
this is cℎild1(2) = rank(T, 2) ∗ 22 + 1 = 2 ∗ 4 + 1 = 9. In position 9 there is
a 1, thus it represents a node with children and its fourth child can be found at
cℎild3(9) = rank(T, 9)∗22+3 = 7∗4+3 = 31. Again it is a 1, therefore we can repeat
the process to find its children, cℎild0(31) = rank(T, 31) ∗ 22 + 0 = 14 ∗ 4+ 0 = 56.
As 56 ≥ ∣T ∣, we know that the position belongs to the last level, corresponding to
offset 56− ∣T ∣ = 56− 36 = 20 (to 23) in L.

12.2.3 Navigation

To find the direct(reverse) neighbors of a page p(q) we need to locate which cells in
row ap∗ (column a∗q) of the adjacency matrix have a 1. We have already explained
that these are obtained by a top-down tree traversal that chooses k out of the k2

1rank(T, x) stands for rank1(T, x) for now on, that is, it returns the number of times bit 1
appears in the prefix T1,x

12.2. Data structures and algorithms 205

children of a node, and also described how to obtain the i-th child of a node in our
representation. The only missing piece is the formula that maps global row numbers
to the children number at each level.

Recall ℎ = ⌈logk n⌉ is the height of the tree. Then the nodes at level ℓ rep-
resent square submatrices of size kℎ−ℓ, and these are divided into k2 submatrices
of size kℎ−ℓ−1. Cell (pℓ, qℓ) at a matrix of level ℓ belongs to the submatrix at
row ⌊pℓ/kℎ−ℓ−1⌋ and column ⌊qℓ/kℎ−ℓ−1⌋. For instance, the root at level ℓ = 0
represents the whole square matrix of width kℎ = n.

Let us call pℓ the relative row position of interest at level ℓ. Clearly p0 = p
(since we have the original matrix at level 0), and row pℓ of the submatrix of level
ℓ corresponds to children number k ⋅ ⌊pℓ/kℎ−ℓ−1⌋ + j, for 0 ≤ j < k. The relative
position in those children is pℓ+1 = pℓ mod kℎ−ℓ−1. Similarly, column q corresponds
to q0 = q and, in level ℓ, to children number j ⋅ k+ ⌊qℓ/kℎ−ℓ−1⌋, for 0 ≤ j < k. The
relative position at those children is qℓ+1 = qℓ mod kℎ−ℓ−1.

For instance, assume that we want to obtain the direct neighbors of Web page
10 of the Web graph represented in Figure 12.3. This Web page is represented at
row p0 = 10 at level ℓ = 0, since the whole adjacency matrix is considered at this
level. When ℓ = 1 the relative position of Web page 10 inside the two submatrices
of size 8 × 8 of the bottom of the matrix is p1 = 10 mod 8 = 2. The relative
row inside the submatrices of size 4 × 4 that overlap with row 10 at level ℓ = 2 is
p2 = 2 mod 4 = 2, and finally, the relative position of row 10 inside the submatrices
of size 2× 2 that overlap with the row at level ℓ = 3 is p3 = 2 mod 2 = 0.

The algorithms for extracting direct and reverse neighbors are described in Al-
gorithms 12.1 and 12.2. The one for direct neighbors is called Direct(kℎ, p, 0,−1),
where the parameters are: current submatrix size, row of interest in current subma-
trix, column offset of the current submatrix in the global matrix, and the position
in T : L of the node to process (the initial −1 is an artifact because our trees do
not represent the root node). Values T , L, and k are global. The one for reverse
neighbors is called Reverse(kℎ, q, 0,−1), where the parameters are the same ex-
cept that the second is the column of interest and the third is the row offset of the
current submatrix. It is assumed that n is a power of k and that rank(T,−1) = 0.

We note that the algorithms output the neighbors in order. Although we present
them in recursive fashion for clarity, an iterative variant using a queue of nodes to
process turned out to be slightly more efficient in practice.

12.2.3.1 Time analysis

The navigation time to retrieve a list of direct or reverse neighbors has no worst-
case guarantees better than O(n), as a row p − 1 full of 1s followed by p full of 0s
could force a Direct query on p to go until the leaves across all the row, to return
nothing.

206 Chapter 12. Our proposal: k2-tree representation

Algorithm 12.1: Direct(n, p, q, z) returns direct neighbors of element xp

if z ≥ ∣T ∣ then /* last level */
if L[z − ∣T ∣] = 1 then output q

else/* internal node */

if z = −1 or T [z] = 1 then
y = rank(T, z) ⋅ k2 + k ⋅ ⌊p/(n/k)⌋
for j = 0 . . . k − 1 do

Direct(n/k, p mod (n/k), q + (n/k) ⋅ j, y + j)
end

end

end

Algorithm 12.2: Reverse(n, q, p, z) returns reverse neighbors of element xq

if z ≥ ∣T ∣ then /* last level */
if L[z − ∣T ∣] = 1 then output p

else/* internal node */

if z = −1 or T [z] = 1 then
y = rank(T, z) ⋅ k2 + ⌊q/(n/k)⌋
for j = 0 . . . k − 1 do

Reverse(n/k, qmod (n/k), p+(n/k)⋅j, y + j ⋅k)
end

end

end

However, this is unlikely. Assume the m 1s are uniformly distributed in the
matrix. Then the probability that a given 1 is inside a submatrix of size (n/kℓ) ×
(n/kℓ) is 1/k2ℓ. Thus, the probability of entering the children of such submatrix
is (brutally) upper bounded by m/k2ℓ. We are interested in kℓ submatrices at
each level of the tree, and therefore the total work is on average upper bounded by
m ⋅∑ℎ−1

ℓ=0 kℓ/k2ℓ = O(m). This can be refined because there are not m different
submatrices in the first levels of the tree. Assume we enter all the O(kt) matrices
of interest up to level t = ⌊logk2 m⌋, and from then on the sum above applies. This
is

O

(

kt +m ⋅
ℎ−1
∑

ℓ=t+1

kℓ

k2ℓ

)

= O
(

kt +
m

kt

)

= O
(√

m
)

time. This is not the ideal O(m/n) (average output size), but much better than
O(n) or O(m).

Again, if the matrix is clustered, the average performance is indeed better than
under uniform distribution: whenever a cell close to row p forces us to traverse the
tree down to it, it is likely that there is a useful cell at row p as well. This can be
observed in the experimental evaluation described in Chapter 13.

12.2. Data structures and algorithms 207

12.2.4 Construction

Assume our input is the n× n adjacency matrix. Construction of our tree is easily
carried out bottom-up in linear time and optimal space (that is, using the same
space as the final tree).

Our procedure builds the tree recursively. It consists in a depth-first traversal
of the tree that outputs the a bit array Tℓ for each level of the tree. If we are at the
last level, we read the k2 corresponding matrix cells. If all are zero, we return zero
and we do not output any bit string, since that zone of zeroes is not represented
with any bit at the final representation of the graph; otherwise we output their k2

values and return 1. If we are not at the last level, we make the k2 recursive calls for
the children. If all return zero, we return zero, otherwise we output the k2 answers
of the children and return 1.

The output for each call is stored separately for each level, so that the k2 bits
that are output at each level are appended to the corresponding bit array Tℓ. As
we fill the values of each level left-to-right, the final T is obtained by concatenating
all levels but the last one, which is indeed L.

Algorithm 12.3 shows the construction process. It is invoked as Build(n, 1, 0, 0),
where the first parameter is the submatrix size, the second is the current level, the
third is the row offset of the current submatrix, and the fourth is the column offset.
After running it we must carry out T = T1 : T2 : . . . : Tℎ−1 and L = Tℎ.

Algorithm 12.3: Build(n, ℓ, p, q), builds the tree representation

C = empty sequence
for i = 0 . . . k − 1 do

for j = 0 . . . k − 1 do

if ℓ = ⌈logk n⌉ then /* last level */
C = C : ap+i,q+j

else/* internal node */
C = C : Build(n/k, ℓ+ 1, p+ i ⋅ (n/k), q + j ⋅ (n/k))

end

end

end

if C = 0k
2

then return 0
Tℓ = Tℓ : C
return 1

The total time is clearly linear in the number of elements of the matrix, that
is, O(n2). However, starting from the complex matrix is not feasible in practice for
real Web graphs. Hence, we use instead the adjacency lists representation of the
matrix, that is, for each Web page p we have the list of Web pages q such that p
has a link pointing to q. By using the adjacency lists we can still achieve the same
time by setting up n cursors, one per row, so that each time we have to access apq

208 Chapter 12. Our proposal: k2-tree representation

we compare the current cursor of row p with value q. If they are equal, we know
apq = 1 and move the cursor to the next node of the list for row p. Otherwise
we know apq = 0. This works because all of our queries to each matrix row p are
increasing in column value.

In this case, when the input consists of the adjacency list representation of the
graph, we could try to achieve time proportional to m, the number of 1s in the
matrix. For this sake we could insert the 1s one by one into an initially empty tree,
building the necessary part of the path from the root to the corresponding leaf.
After the tree is built we can traverse it levelwise to build the final representation,
or recursively to output the bits to different sequences, one per level, as before. The
space could still be O(k2m(1+ logk2

n2

m)), that is, proportional to the final tree size,
if we used some dynamic compressed parentheses representation of trees [CHLS07].
The total time would be O(logm) per bit of the tree.

Note that, as we produce each tree level sequentially, and also traverse each
matrix row (or adjacency list) sequentially, we can construct the tree on disk in
optimal I/O time provided we have main memory to maintain logk n disk blocks
to output the tree, plus B disk blocks (where B is the disk page size in bits) for
reading the matrix. The reason we do not need the n row buffers for reading is that
we can cache the rows by chunks of B only. If later we have to read again from
those rows, it will be after having processed a submatrix of B × B (given the way
the algorithm traverses the matrix), and thus the new reads will be amortized by
the parts already processed. This argument does not work on the adjacency list
representation, where we need the n disk page buffers.

12.3 A hybrid approach

As we can observe in the examples of the previous section, if the adjacency matrix
is very sparse, the greater k is, the more space L needs, because even though there
are fewer submatrices in the last level, they are larger. Hence we may spend k2 bits
to represent very few 1s. Notice for example that when k = 4 in Figure 12.4, we
store some last-level submatrices containing a unique 1, spending 15 more bits that
are 0. On the contrary, when k = 2 (Figure 12.3) we use fewer bits for that last
level of the tree.

We can improve our structure if we use a larger k for the first levels of the tree
and a small k for the last levels. This strategy takes advantage of the strong points
of both approaches:

∙ We use large values of k for the first levels of subdivision: the tree is shorter,
so we will be able to obtain the list of neighbors faster, as we have fewer levels
to traverse.

12.4. Extended functionality 209

∙ We use small values of k for the last levels: we do not store too many bits for
each 1 of the adjacency matrix, as the submatrices are smaller.

Figure 12.5 illustrates this hybrid solution, where we perform a first subdivision
with k = 4 and a second subdivision with k = 2. We store the first level of the
tree in T1, where the subdivision uses k = 4 and the second level of the tree in T2,
where the subdivision uses k = 2. In addition, we store the 2× 2 submatrices in L,
as before.

T1 = 1100010001100000,

T2 = 1100 1000 0001 0101 1110,

L = 0100 0011 0010 0010 1010 1000 0110 0010 0100.

The algorithms for direct and reverse neighbors are similar to those explained
for fixed k. Now we have a different sequence Tℓ for each level, and L for the last
level. There is a different kℓ per level, so Lemma 12.1 and algorithms Direct and
Reverse for navigation in Section 12.2.3 must be modified accordingly. We must
also extend n to n′ = Πℎ−1

ℓ=0 kℓ, which plays the role of kℎ in the uniform case.

12.4 Extended functionality

While alternative compressed graph representations [BV04, CN10c, AMN08] are
limited to retrieving the direct, and sometimes the reverse, neighbors of a given
page, we show now that our representation allows for more sophisticated forms of
retrieval than extracting direct and reverse neighbors.

12.4.1 Single link retrieval

First, in order to determine whether a given page p points to a given page q, most
compressed (and even some classical) graph representations have no choice but to
extract all the neighbors of p (or a significant part of them) and see if q is in the
set. We can answer such query in O(logk n) time, by descending to exactly one
child at each level of the tree, such that we can determine if the cell apq of the
adjacency matrix is 1 (page p points to page q) or 0 (page p does not point to page
q). We start at the root node and we descend recursively to the child node that
represents the submatrix containing the cell apq of the adjacency matrix. Then, the
algorithm is similar to the algorithm for retrieving direct neighbors, but choosing
only the appropriate child to go down through the tree. More precisely, at level ℓ
we descend to child k ⋅ ⌊p/kℎ−ℓ−1⌋ + ⌊q/kℎ−ℓ−1⌋, if it is not a zero, and compute
the relative position of cell (p, q) in the submatrix just as in Section 12.2.3. If we
reach the last level and find a 1 at cell (p, q), then there is a link, otherwise there is
not.

210 Chapter 12. Our proposal: k2-tree representation

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000010 000

00011100 000

00000000 000

00000000 000

00000000 000

00000000 000

00000000 000

01000000 000

01000000 010

01000000 101

01000000 010

00000000

00000000

00000000

00000000

1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0

1 1 1111 1 1 10 0 0 00 0 0 0 00 0

0100 01000011 0010 0010 10101000 0110 0010

Figure 12.5: Expansion, subdivision, and final example tree using different
values of k.

12.4. Extended functionality 211

Example We want to know if page 2 points to page 3, that is, we want to know
if there is a 1 at cell a2,3 of the adjacency matrix of Figure 12.2. We start at the
root of the 22-tree and descend to the second child of the root node, since the cell
a2,3 belongs to the second submatrix of the adjacency matrix. Since we find a 0,
then page 2 does not point to page 3. If we want to know if page 3 has a link to
itself, then we start from the root node and go down through the fourth child of
the node that represents the submatrix where the cell a3,3 is located. There is a 1
there, indicating that this submatrix has at least one 1. Since the cell a3,3 of the
original adjacency matrix is the first cell of this submatrix, then we check the bit
value contained in the first child of the node. It contains a 1, hence page 3 has a
link pointing to itself.

The algorithm for checking whether one Web page p points to another Web
page q is described in Algorithm 12.4. It is called CheckLink with (kℎ, p, q,−1)
as parameters for: current submatrix size, row of interest in current submatrix,
column of interest in current submatrix, and the position in T : L of the node to
process (again, we use the initial −1 to represent the root node). In addition, it is
assumed that n is a power of k and that rank(T,−1) = 0.

Algorithm 12.4: CheckLink(n, p, q, z) returns 1 iff Web page p points to
Web page q and 0 otherwise

if z ≥ ∣T ∣ then /* leaf */
return L[z − ∣T ∣]

else/* internal node */

if z = −1 or T [z] = 1 then
y = rank(T, z) ⋅ k2
y = y + ⌊p/(n/k)⌋ ⋅ k + ⌊q/(n/k)⌋
CheckLink(n/k, pmod (n/k), qmod (n/k), y)

else
return 0

end

end

Hence, the worst-case navigation time to check if a Web page p points to another
Web page q is O(logk n), since a full traversal from the root node to a leaf node is
required for every pair of connected Web pages.

12.4.2 Range queries

A second interesting operation is to find the direct neighbors of page p that are
within a range of pages [q1, q2] (similarly, the reverse neighbors of q that are within
a range [p1, p2]). This is interesting, for example, to find out whether p points to
a domain, or is pointed from a domain, in case we sort URLs in lexicographical

212 Chapter 12. Our proposal: k2-tree representation

Algorithm 12.5: Range(n, p1, p2, q1, q2, dp, dq, z)

if z ≥ ∣T ∣ then /* leaf */
if L[z − ∣T ∣] = 1 then output (dp, dq)

else/* internal node */

if z = −1 or T [z] = 1 then
y = rank(T, z) ⋅ k2
for i = ⌊p1/(n/k)⌋ . . . ⌊p2/(n/k)⌋ do

if i = ⌊p1/(n/k)⌋ then p′1 = p1 mod (n/k)
else p′1 = 0
if i = ⌊p2/(n/k)⌋ then p′2 = p2 mod (n/k)
else p′2 = (n/k)− 1
for j = ⌊q1/(n/k)⌋ . . . ⌊q2/(n/k)⌋ do

if j = ⌊q1/(n/k)⌋ then q′1 = q1 mod (n/k)
else q′1 = 0
if j = ⌊q2/(n/k)⌋ then q′2 = q2 mod (n/k)
else q′2 = (n/k)− 1
Range(n/k, p′1, p

′
2, q

′
1, q

′
2, dp+(n/k) ⋅ i, dq +(n/k) ⋅ j, y+k ⋅ i+ j)

end

end

end

end

order. The algorithm is similar to Direct and Reverse in Section 12.2.3, except
that we do not enter all the children 0 ≤ j < k of a row (or column), but only from
⌊q1/kℎ−ℓ−1⌋ ≤ j ≤ ⌊q2/kℎ−ℓ−1⌋ (similarly for p1 to p2).

Another operation of interest is to find all the links from a range of pages [p1, p2]
to another [q1, q2]. This is useful, for example, to extract all the links between two
domains. The algorithm to solve this query indeed generalizes all of the others
we have seen: extract direct neighbors of p (p1 = p2 = p, q1 = 0, q2 = n − 1),
extract reverse neighbors of q (q1 = q2 = q, p1 = 0, p2 = n − 1), find whether a
link from p to q exists (p1 = p2 = p, q1 = q2 = q), find the direct neighbors of p
within range [q1, q2] (p1 = p2 = p), and find the reverse neighbors of q within range
[p1, p2] (q1 = q2 = q). Figure 12.5 gives the algorithm. It is invoked as Range

(n, p1, p2, q1, q2, 0, 0,−1).
The total number of nodes of level ℓ that can overlap area [p1, p2] × [q1, q2] is

(⌊p2/kℎ−ℓ−1⌋ − ⌊p1/kℎ−ℓ−1⌋ + 1) ⋅ (⌊q2/kℎ−ℓ−1⌋ − ⌊q1/kℎ−ℓ−1⌋ + 1) ≤ ((p2 − p1 +
1)/kℎ−ℓ−1 + 1) ⋅ ((q2 − q1 + 1)/kℎ−ℓ−1 + 1) = A/(k2)ℎ−ℓ−1 + P/kℎ−ℓ−1 + 1, where
A = (p2−p1+1)⋅(q2−q1+1) is the area to retrieve and P = (p2−p1+1)+(q2−q1+1)
is half the perimeter. Added over all the levels 0 ≤ ℓ < ⌈logk n⌉, the time complexity
adds up to O(A+P +logk n) = O(A+logk n). This gives O(n) for retrieving direct
and reverse neighbors (we made a finer average-case analysis in Section 12.2.3.1),
O(p2 − p1 + logk n) or O(q2 − q1 + logk n) for ranges of direct or reverse neighbors,

12.5. An enhanced variation of the k2-tree technique 213

and O(logk n) for queries on single links.

Moreover, we can check if there exists a link from a range of pages [p1, p2] to
another [q1, q2] in a more efficient way than finding all the links in that range. If
we just want to know if there is a link in the range, complete top-down traversals
of the tree can be avoided if we reach an internal node that represents a submatrix
of the original adjacency matrix that is entirely contained in the sought range and
it is represented with a 1 bit in the k2-tree. This means that there is at least one
1 inside that submatrix, and thus there is a link in the range of the query. This
operation is performed analogously to the range query described in Algorithm 12.5,
except that it checks if the current submatrix is completely contained in the sought
range; in this case it finishes by returning a true value, avoiding the traversal to the
leaf level and any other extra top-down traversal of the k2-tree.

12.5 An enhanced variation of the k
2-tree technique

In this section we propose two modifications of the k2-tree technique whose aim is
to improve the efficiency of the method. The first one, explained in Section 12.5.1,
consists in compacting the leaves representation of the k2-tree, using an encoding
scheme for sequences of integers. The other improvement, explained in Section
12.5.2, partitions the adjacency matrix of the Web graph into several submatrices
and creates one k2-tree for each one, such that the construction for the whole
adjacency matrix becomes more efficient.

12.5.1 Using DACs to improve compression

The last level of the k2-tree is stored as a bitmap L, as explained in detail in
Section 12.2, which represents all the k × k submatrices of the original adjacency
matrix containing at least one 1. These submatrices are represented consecutively
following a depth-first traversal, composing a sequence of k2-bit strings, each string
representing a submatrix of the last level.

Instead of using a plain representation for all these submatrices, which uses a
fixed number of bits for their representation (k2 bits), we can create a vocabulary
with all possible k× k submatrices and compact the sequence of submatrices using
a variable-length encoding scheme that assigns a shorter code for those submatrices
that appear more frequently. In order to preserve the efficient navigation over the
compressed representation of the Web graph, we must guarantee fast access to any
cell inside those encoded submatrices. Hence, we need a variable-length encoding
scheme that supports direct access to any position of the encoded sequence, and at
the same time, represents the sequence in a compact way. Thus, we use the Directly
Addressable Codes (DACs), which is the method presented in the first part of this
thesis, in Chapter 4.

214 Chapter 12. Our proposal: k2-tree representation

The first step to replace the plain representation of the last level of the tree by
a compact one consists in creating a vocabulary of all the k × k submatrices that
appear in the adjacency matrix. This vocabulary is sorted by frequency such that
the most frequent submatrices are located in the first positions. Once the vocab-
ulary has been created, each matrix of the last level of the tree is replaced by its
position in the sorted vocabulary. Therefore, the most frequent submatrices are
associated with smaller integer values, and those which are not so frequent obtain
larger integers. This frequency distribution can be exploited by a variable-length
encoding scheme for integers to achieve a compact space. Consequently, the last
level of tree is not longer represented by a sequence of k2-bit strings corresponding
to the submatrices, but by a sequence of integers, consecutively disposed according
to the tree subdivision, where each integer represents one of the possible k× k sub-
matrices of the vocabulary. As we have said, a variable-length encoding scheme can
take advantage of the distribution, but direct access to any integer of the sequence
must be supported to maintain the efficiency of the navigation algorithms. Hence,
the sequence of integers is compacted using the variable-length encoding scheme we
called Directly Addressable Codes.

As we have already mentioned, a larger k improves navigation, since it induces a
shorter tree; however, space requirements become unaffordable, since the last level of
the tree must store k2 bits for every non-zero submatrix, even for those submatrices
containing just one 1. In order to deal with the disadvantages of using a large k in
the subdivision of the tree, the hybrid approach was previously proposed in Section
12.3. The modification of the data structure of the k2-tree presented in this section
can also minimize the effects caused by a large k value at the last level of the tree
thanks to the fact that we will not store all the k2 bits of the submatrices. Hence,
we can use a greater value of k for the last level without dramatically worsening the
space of the Web graph representation and obtaining better navigation performance.
The number of possible matrices of size k × k will increase, but only a few of them
will appear in practice, due to sparseness, clustering and statistical properties of the
matrix. Moreover, by using a greater k we can obtain better time and space results
due to the fact that this shortens the tree that represents the adjacency matrix.
Hence, fewer bits are used for bitmap T and fewer levels must be traversed until
the last level is reached. To obtain a higher k value for the last level we can just
use a large fixed k value for all the levels of the tree, or use the hybrid approach
using the desired large k for the leaves.

By following this approach, we can exploit the different patterns described by
Asano et al. [AMN08], such as horizontal, vertical, and diagonal runs. Submatrices
containing those patterns will appear more frequently, and consequently, fewer bits
will be used for their representation and better compression will be obtained.

12.5. An enhanced variation of the k2-tree technique 215

12.5.2 Partition of the adjacency matrix

Another minor improvement consists in the partition of the original adjacency ma-
trix into a grid of several large square submatrices of size S × S bits, obtaining
P 2 submatrices where P = n/S. Then, P 2 k2-tree are constructed, one for each
submatrix of the partition.

With this modification, the practical time for the construction decreases, and
more importantly, navigation time improves due to the fact that the P 2 k2-tree
become shorter than the original k2-tree. This can be seen as using the hybrid
approach with k1 = P for the first level of the tree, however, it becomes useful to
make this distinction in practice for the first level, since it facilitates the construction
and increases the locality of reference.

216 Chapter 12. Our proposal: k2-tree representation

Chapter 13

Experimental evaluation

We devote this chapter to presenting the performance of the new technique called k2-
tree, proposed in Chapter 12, exhibiting the empirical results obtained by different
variants of the technique. The behavior of our method is also compared to other
proposals of the state of the art that support direct and reverse neighbors. We
show experimentally that our technique offers a relevant space/time tradeoff to
represent Web graphs, that is, it is much faster than those that take less space, and
much smaller than those that offer faster navigation. Thus our representation can
become the preferred choice for many Web graph traversal applications: Whenever
the compression it offers is sufficient to fit the Web graph in main memory, it
achieves the best traversal time within that space. Furthermore, we show that our
representation allows other queries on the graph that are not usually considered in
compressed graph representations in an efficient way, such as single link retrieval or
range searches.

We start by describing the experimental setup in Section 13.1, then in Section
13.2 we compare all the variants of the k2-tree technique that have been proposed in
the previous chapter. Section 13.3 includes a comparison between the best results
of our proposal and different strategies already known in the field. Section 13.4
analyzes the results of the extended navigation supported by our technique, and
Section 13.5 studies the time and space analyses presented in the previous chapters
and the behavior of the proposal for random graphs. Finally, 13.6 summarizes the
main conclusions extracted from the experimental evaluation.

13.1 Experimental framework

We ran several experiments over some Web graphs from the WebGraph project, some
of them gathered by UbiCrawler [BCSV04]. These data sets are made available to

217

218 Chapter 13. Experimental evaluation

Table 13.1: Description of the graphs used.

File Pages Links Size (MB)

CNR (2000) 325,577 3,216,152 14

EU (2005) 862,664 19,235,140 77

Indochina (2002) 7,414,866 194,109,311 769

UK (2002) 18,520,486 298,113,762 1,208

Arabic (2005) 22,744,080 639,999,458 2,528

the public by the members of the Laboratory for Web Algorithmics1 at the Università
Degli Studi Di Milano.

Table 13.1 gives the main characteristics of the graphs used. The first column
indicates the name of the graph (and the WebGraph version used). Second and
third columns show the number of pages and links, respectively. The last column
gives the size of a plain adjacency list representation of the graphs (using 4-byte
integers).

The machine used in our tests is a 2GHz Intel R⃝Xeon
R⃝ (8 cores) with 16 GB

RAM. It ran Ubuntu GNU/Linux with kernel version 2.4.22-15-generic SMP (64
bits). The compiler was gcc version 4.1.3 and -O9 compiler optimizations were set.
Space is measured in bits per edge (bpe), by dividing the total space of the structure
by the number of edges (i.e., links) in the graph. Time results measure average cpu
user time per neighbor retrieved: We compute the time to search for the neighbors
of all the pages (in random order) and divide by the total number of edges in the
graph.

13.2 Comparison between different alternatives

We first study our approach with different values of k. Table 13.2 shows 12 different
alternatives of our method over the EU graph using different values of k. All build on
the rank structure that uses 5% of extra space [GGMN05]. The first column names
the approaches as follows: ′2×2′, ′3×3′ and ′4×4′ stand for the alternatives where
we subdivide the matrix into 2 × 2, 3 × 3 and 4 × 4 submatrices, respectively, in
every level of the tree. On the other hand, we denote ′H − i′ the hybrid approach
where we use k = 4 up to level i of the tree, and then we use k = 2 for the rest
of the levels. The second and third columns indicate the size, in bytes, used to
store the tree T and the leaves L, respectively. The fourth column shows the space
needed in main memory by the representation (e.g., including the extra space for
rank), in bits per edge. Finally, the last two columns show the times to retrieve the

1http://law.dsi.unimi.it/

13.2. Comparison between different alternatives 219

Variant Tree Leaves Space Direct Reverse

(bytes) (bytes) (bpe) (�s/e) (�s/e)

2× 2 6,860,436 5,583,057 5.21076 2.56 2.47

3× 3 5,368,744 9,032,928 6.02309 1.78 1.71

4× 4 4,813,692 12,546,092 7.22260 1.47 1.42

H − 1 6,860,432 5,583,057 5.21077 2.78 2.62

H − 2 6,860,436 5,583,057 5.21077 2.76 2.59

H − 3 6,860,412 5,583,057 5.21076 2.67 2.49

H − 4 6,861,004 5,583,057 5.21100 2.53 2.39

H − 5 6,864,404 5,583,057 5.21242 2.39 2.25

H − 6 6,876,860 5,583,057 5.21760 2.25 2.11

H − 7 6,927,924 5,583,057 5.23884 2.10 1.96

H − 8 7,159,112 5,583,057 5.33499 1.97 1.81

H − 9 8,107,036 5,583,057 5.72924 1.79 1.67

Table 13.2: Comparison of our different approaches over graph EU.

direct (fifth column) and reverse (sixth) neighbors, measured in microseconds per
link retrieved (�s/e).

We observe that, when we use a fixed k, we obtain better times when k is greater,
because we are shortening the height of the tree, but the compression ratio worsens,
as the space for L becomes dominant and many 0s are stored in there.

If we use a hybrid approach, we can maintain a compression ratio close to that
obtained by the ′2× 2′ alternative (notice that the same space is used to represent
the leaves) while improving the time, until we get close to the ′4 × 4′ alternative.
The best compression is obtained for ′H − 3′, even better than ′2× 2′. Figure 13.1
shows similar results graphically, for the four middle-large graphs (EU, Indochina,
UK and Arabic), illustrating space on top and time to retrieve direct neighbors on
the bottom. It can be seen that the space does not worsen much if we keep k = 4
up to a moderate level, whereas times improve consistently. A medium value, say
switching to k = 2 at level 7, looks as a good compromise.

We can also observe in Table 13.2 that retrieval times for reverse neighbors are
always slightly better than for direct neighbors. This is due to the fact that there is
more locality in the transposed graph of the Web graph, which also makes it more
compressible. We will see in Section 13.5 that retrieval times are dependent of the
distribution of the links along the adjacency matrix, such that better results are
obtained when the Web graph exhibits more locality.

220 Chapter 13. Experimental evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12

sp
ac

e
(b

its
/e

dg
e)

level of change

Space (Hybrid approach)

EU
Indochina

UK
Arabic

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12

tim
e

(m
ic

ro
se

c/
ed

ge
)

level of change

Speed (Hybrid approach)

EU
Indochina

UK
Arabic

Figure 13.1: Space/time behavior of the hybrid approach when we vary
the level where we change the value of k.

13.2. Comparison between different alternatives 221

Configuration Tree Leaves Voc. Leaves Space Time

(bytes) (bytes) (bytes) (bpe) (�s/e)

2× 2 6,860,436 5,583,057 0 5.21 2.56

4× 4 4,813,692 12,546,092 0 7.22 1.47

b = 8 k = 4 4,813,692 7,401,867 25,850 5.13 1.49

b = 4 k = 4 4,813,692 6,023,699 25,850 4.55 1.60

b = 2 k = 4 4,813,692 5,721,535 25,850 4.43 1.72

opt k = 4 4,813,692 5,568,435 25,850 4.36 1.64

b = 8 k = 8 4,162,936 5,403,021 1,679,232 4.71 1.29

b = 4 k = 8 4,162,936 4,958,858 1,679,232 4.53 1.46

b = 2 k = 8 4,162,936 5,154,420 1,679,232 4.61 1.68

opt k = 8 4,162,936 4,812,243 1,679,232 4.47 1.44

Table 13.3: Space and time results when compressing graph EU using
DACs for the leaves representation.

According to the results, the faster alternative consists in using a large k; how-
ever, this worsens the compression ratio, since the leaves representation occupies a
considerable amount of space. Hence, we now study the approach where we apply
DACs to the sequence of k × k submatrices of the leaf level. Table 13.3 analyzes
the space consumption and navigational times for different configurations of this
approach for graph EU compared to the original k2-tree representations ′2× 2′ and
′4× 4′. The first column indicates the configuration used for the k2-tree. We built
three representations using k = 4 for all the levels of the tree, and representing the
leaf level with DACs using different fixed values for the parameter b of the encoding
scheme: b = 8, b = 4 and b = 2. We also configured DACs (“opt”) with the values
obtained by the optimization algorithm presented in Chapter 4.2, which minimizes
the space usage. Analogously, we built four representations of the k2-tree using
k = 8 for all the levels of the tree and fixed b = 8, b = 4, b = 2 for DACs, and
also the optimal configuration “opt”, over the sequence that represents the leaves
of the tree. The second, third and fourth columns indicate the size, in bytes, used
to store the tree T , the compact representation of the leaves using DACs and the
vocabulary of the k × k leaf submatrices, respectively. The fifth column shows the
total space needed by the representation in bits per edge and the last column shows
the times to retrieve direct neighbors, measured in microseconds per link retrieved
(�s/e).

If we compare the results obtained by the approach using DACs when k = 4
to those obtained by the ′4 × 4′ alternative, we can observe that while the space

222 Chapter 13. Experimental evaluation

consumption for the tree representation is maintained, the space usage for the leaves
is reduced, achieving a decrease in the total space of around 2.5 bpe, which also
beats the space usage of the smallest representation obtained for this graph using
the hybrid approach (5.21 bpe, which was obtained by ′H − 3′ in Table 13.2). This
compact representation outperforms alternative ′2× 2′ both in space and time, but
is not as efficient as alternative ′4 × 4′ for the direct neighbors extraction. This
is due to the fact that leaf submatrices are no longer represented in plain form,
so the compact representation degrades to a certain extent the navigational times
(several access operations are needed over the sequence of integers that represents
the last level of the tree). Using b = 8 for the block size parameter of the DACs
encoding scheme still improves the space usage of alternative ′4×4′, while obtaining
a very close retrieval time, since the sequence is represented using DACs with very
few levels and operations are done in bytes with no need of bitwise operations.
By using a lower value of b, such as b = 4 or b = 2, space requirements decrease
while navigational time increases (DACs encoded sequence needs a higher number
of levels to represent the submatrices of the leaf level). The smallest space usage
is obtained when we use the optimal values for DACs. With this configuration the
navigational time is faster than with b = 2 but slower than with b = 4.

As we have already said, better time performance can be achieved if we use larger
k values, without causing an increase of the space usage. Actually, with the compact
representation of the leaves better compression ratios can be obtained. When k = 8,
the size of the representation of the leaves is smaller (there is a lower number of non-
zero submatrices of size 8×8), but the size of the vocabulary of non-zero submatrices
becomes considerable greater. Overall, the total size of the representation can be
smaller than using k = 4. For instance, an 82-tree using DACs with b = 4 achieves
a more compact and faster representation than alternative ′4 × 4′. In this case,
when k = 8 there is a large number of different non-zero submatrices in the leaf
level. Hence, a lower value of b for DACs, such as b = 2, does not only worsen the
navigational time but it also degrades the space requirements of the representation.
If we use DACs with the optimal configuration, we obtain the smallest space among
all the representations when k = 8, and even better navigation time than using
b = 4. Hence, using the optimal values obtained for DACs obtains attractive results
both in time and space.

We now study the space/time tradeoff for all the alternatives previously men-
tioned over different graphs. Figures 13.2 and 13.3 represent the time needed to
retrieve direct neighbors (�s/e) over graphs EU, Indochina, UK and Arabic. We
include our alternatives ′2× 2′, ′3× 3′, ′4× 4′, and Hybrid5. Hybrid5 represents in
a curve all the time and space results obtained by the ′H− i′ hybrid k2-trees where
we use k = 4 up to level i of the tree, and then we use k = 2 for the rest of the levels.
All of these alternatives are built using the slower solution for rank that needs just
5% of extra space [GGMN05]. In addition, we draw another curve for the hybrid

13.2. Comparison between different alternatives 223

Table 13.4: Results of k2-tree technique (with DACs) over large graphs.

File Pages Links Space Time WebGraph

(bpe) (�s/e) (bpe)

it-2004 41,291,594 1,150,725,436 1.76 9.26 2.55

sk-2005 50,636,154 1,949,412,601 1.97 4.39 2.87

webbase-2001 118,142,155 1,019,903,190 2.88 66.49 5.34

uk-2007-05 105,896,555 3,738,733,648 1.75 7.63 2.17

approach, Hybrid37, which uses the faster rank method that needs 37.5% extra
space on top of T . We also include a line of points for different configurations of the
Directly Addressable Codes approach, denoted by DACs. Some tuning parameters
are modified in order to obtain those points, such as the value of k for the different
levels of the tree or the value of b for the DACs encoding scheme. We can observe
that the best space results are obtained by the DACs alternative, where the last level
of the tree is represented in a compact way such that large k values can be used
without worsening the compression ratio. The best navigation times are obtained
by the Hybrid37, since it uses a faster but heavier rank structure. Alternatively,
DACs could improve its navigational times if it used that structure, but it also would
worsen its space usage.

As a proof of concept of the scalability of our technique, we show now the
space and time results for some large Web graphs. We took four graphs from
http://law.dsi.unimi.it website, which were compressed using LLP [BRSV11] and
WebGraph [BV04]. We built a compact representation of k2-tree using the same
configuration for the four graphs, which consisted in partitioning the original adja-
cency matrix into several submatrices of size 222 × 222. Then, we create for each
submatrix a hybrid k2-tree using k = 4 for the first 6 levels and k = 2 for the
rest. The subdivision is not continued until the last level, leaving the last 3 levels
of the tree without subdividing. Hence, k = 8 at the last level of the tree. Finally,
we use DACs with the the optimal values to minimize the space required by the
representation of the leaves.

Table 13.4 shows some space and time results for these large Web graphs. The
first column indicates the name of the graph. Second and third columns show the
number of pages and links, respectively. The fourth column shows the total space
needed by the representation in bits per edge and the fifth column shows the time
to retrieve direct neighbors, measured in microseconds per link retrieved (�s/e).
Finally, the last column shows the sum of the space used by the highly compressed
versions of each graph and its transpose obtained by WebGraph technique [BV04].
Note that their representation does not support fast random access. We can ob-

224 Chapter 13. Experimental evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

EU

2x2
3x3
4x4

Hybrid5
Hybrid37

DAC

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

Indochina

2x2
3x3
4x4

Hybrid5
Hybrid37

DAC

Figure 13.2: Space/time tradeoff to retrieve direct neighbors for EU (top)
and Indochina (bottom) graphs.

13.2. Comparison between different alternatives 225

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

UK

2x2
3x3
4x4

Hybrid5
Hybrid37

DAC

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

Arabic

2x2
3x3
4x4

Hybrid5
DAC

Figure 13.3: Space/time tradeoff to retrieve direct neighbors for UK (top)
and Arabic (bottom) graphs.

226 Chapter 13. Experimental evaluation

Crawl k2-tree Re-Pair Re-Pair Re-Pair WebGraph Asano et al.

WT GMR (div+rev) (dir+rev) ×2
EU 3.47 3.93 5.86 7.65 7.20 5.56

Indochina 1.73 2.30 3.65 4.54 2.94

UK 2.78 3.98 6.22 7.50 4.34

Arabic 2.47 2.72 4.15 5.53 3.25

Table 13.5: Space consumption (in bpe) of the most compact k2-tree rep-
resentation for different Web graphs, and previous work.

serve that our technique achieves significantly better spaces while supporting fast
navigation over the compressed graph.

13.3 Comparison with other methods

13.3.1 Space usage

We first analyze our proposal in terms of space. We extract from the most recent
paper of Claude and Navarro [CN10b] an up-to-date comparison table with the
minimum space consumption (in bits per edge) of the alternatives in the literature
that support both direct and reverse navigation within reasonable time, that is,
much faster than decompressing the whole graph. The space results reported in
that paper for our technique k2-tree did not include the latest modifications of the
structure detailed in Section 12.5, where DACs are used to represent the leaf level.
Hence, we update those values according to the most recent results obtained, and
illustrate that comparison in Table 13.5.

This comparison includes the space required (in bpe) for the four bigger crawls.
The first column is devoted to our proposal. The space reported corresponds to the
following configurations:

∙ For graph EU, we use a partition of the original adjacency matrix into several
submatrices of size 218×218. Then, we create for each submatrix a hybrid k2-
tree using k = 4 for the first 5 levels and k = 2 for the rest. The subdivision is
not continued until the last level, leaving the last 3 levels of the tree without
subdividing. Hence, k = 8 at the last level of the tree. Finally, we use
DACs with the the optimal values to minimize the space required by the
representation of the leaves.

∙ For graph Indochina, the submatrices generated after the first partition of the
adjacency matrix are of size 220×220, and then we use the same configuration

13.3. Comparison with other methods 227

than for graph EU, that is, a hybrid approach with k = 4 for the first 5 levels,
k = 2 for the rest except for the last level, using k = 8 for the leaves, which are
represented with DACs using the configuration obtained by the optimization
algorithm.

∙ For graph UK, the submatrices after the partition are of size 222× 222 and k is
changed from k = 4 to k = 2 at level 6 of the tree. We also use k = 8 for the
last level of the tree and DACs with the optimal b values for the representation
of leaves.

∙ We use this last configuration also for graph Arabic.

Second and third columns of Table 13.5 correspond to alternatives Re-Pair WT

and Re-Pair GMR presented by Claude and Navarro [CN10b] (already explained
more in detail in Section 11.3.2). The comparison also includes the space obtained
by the original proposal of Claude and Navarro [CN10c] that retrieves just direct
neighbors. In this case, both the graph and its transpose are represented in order
to achieve reverse navigation as well (Re-Pair (dir+rev)). The same is done
with Boldi and Vigna’s technique [BV04] (WebGraph), as it also allows for direct
neighbors retrieval only. WebGraph (dir+rev) denotes the alternative using version
2.4.2, variant strictHostByHostGray, adding up the space for the direct and the
transposed graph. Only the required space on disk of the structure is reported, even
if the process requires much more memory to run. For this comparison, parameters
are set in order to favor compression over speed (window size 10, maximum reference
unlimited). With this compression they retrieve direct neighbors in about 100
microseconds [CN10b].

Finally, last column shows the space achieved by Asano et al. [AMN08] for graph
EU (which is the largest graph they report). As, again, their representation cannot
retrieve reverse neighbors, Asano×2 is an estimation, obtained by multiplying their
space by 2, of the space they would need to represent both the normal and trans-
posed graphs. This is probably slightly overestimated, as transposed Web graphs
compress slightly better than the original ones. Indeed it could be that their method
can be extended to retrieve reverse neighbors using much less than twice the space.
The reason is that, as it is explained in Section 11.3.3, they store the intra-domain
links (which are the major part) in a way that they have to uncompress a full
domain to answer direct neighbor queries, and answering reverse neighbors is prob-
ably possible with the same amount of work. They would have to duplicate only
the inter-domain links, which account for a minor part of the total space. Yet,
this is speculative. Besides, as we see later, the times using this representation are
non-competitive by orders of magnitude anyway.

As we can see in the comparison, our proposal obtains the best space from all
the alternatives of the literature. Re-Pair WT was proven to achieve the smallest
space reported in the literature while supporting direct and reverse neighbors in

228 Chapter 13. Experimental evaluation

reasonable time: around 35 microseconds/edge for direct and 55 for reverse neigh-
bors [CN10b]. With the spaces obtained by the k2-tree using DACs this statement
does not longer hold. Our k2-tree representation of Web graphs becomes the most
attractive alternative when minimum space usage is sought.

13.3.2 Retrieval times

In this section we focus on studying the efficiency of the navigation of the k2-tree
technique. We first compare graph representations that allow one retrieving both
direct and reverse neighbors, i.e., those included in the previous table, and then we
will compare the k2-tree technique with some of the techniques that only support
direct navigation.

The technique Re-Pair WT ([CN10b]) obtained the smallest space previously
reported in the literature. In addition, they can navigate the graph in reasonable
time: around 35 microseconds/edge for direct and 55 for reverse neighbors. As we
have seen in Table 13.5, there exist some configurations of the k2-tree representa-
tion that obtain better compression ratio and navigate the Web graph faster than
Re-Pair WT: about 2-15 microseconds/edge depending on the graph (as we have
seen in Figures 13.2 and 13.3 in Section 13.2). Hence, these k2-tree representa-
tions outperform the Re-Pair WT technique both in space and time efficiency. Yet,
Re-Pair WT is no longer the most attractive alternative to represent a Web graph
when very little space and forward and reverse navigation are required.

We also compare our technique with the other methods of the literature, which
are not as succinct as Re-Pair WT, but they achieve more efficient time results.
Figures 13.4, 13.5, 13.6 and 13.7 show the space/time tradeoff for retrieving direct
(left) and reverse (right) neighbors over different graphs. We measure the average
time efficiency in �s/e as before. Representations providing space/time tuning
parameters appear as a line, whereas the others appear as a point.

We compare our compact representations with the fastest proposal in [CN10b]
that computes both direct and reverse neighbors (Re-Pair GMR), as well as the orig-
inal representation in [CN10c] (Re-Pair (dir+rev)). A variant of Re-Pair GMR
labeled Re-Pair GMR (2) is also included, where access operation is solved in con-
stant time and select in time O(log logn). Thus, Re-Pair GMR is faster for reverse
neighbors (using constant-time select), and Re-Pair GMR (2) is faster on direct
neighbors (using constant-time access). We also include the WebGraph (dir+rev)

alternative from Boldi and Vigna.2

We also include the proposal of Apostolico and Drovandi [AD09], presented
in Section 11.3.5. AD(dir+rev) denotes the alternative using the version 0.2.1 of

2I would like to thank Francisco Claude for providing the numeric results obtained by the
techniques Re-Pair, Re-Pair GMR, Re-Pair GMR (2), and WebGraph(dir+rev).

13.3. Comparison with other methods 229

their software3, where both the graph and its transpose are represented in order to
achieve reverse navigation as well. We vary the compression level ℓ of AD technique
to obtain a space-time tradeoff, using ℓ = 4, 8, 16, 100, 200, 500, 1000, 1500. We add
the space for the offsets and indexes of the first node of each chunk (64 bits and 32
bits per chunk respectively) to support random access to the graph. Notice that AD
technique performs a reordering of the node identifiers based on the Breadth First
Search (BFS) of the graph instead of the lexicographic order. This permutation of
identifiers is not accounted for in the space results reported next. However, this
mapping should be stored if we want to recover the graph with the original node
identifiers.

We study their navigation efficiency compared to our alternatives ′2×2′, ′3×3′,
′4× 4′, Hybrid5, Hybrid37 and DAC, described in Section 13.2.

As we can see, our representations (particularly DAC, and also Hybrid5 and
′2 × 2′ over EU) achieve the best compression (1.8 to 5.3 bpe, depending on the
graph) among all the techniques that provide direct and reverse neighbor queries.
The alternative that gets closer is AD(dir+rev), which achieves very fast navigation
when occupying more space, but it gets considerable slower when the compression
ratio gets closer to the smallest configuration of DAC. Re-Pair GMR also obtains at-
tractive space results, but it is much slower to retrieve direct neighbors, or Re-Pair
GMR (2), which is much slower to retrieve reverse neighbors. Finally, WebGraph

(dir+rev) and Re-Pair (dir+rev) offer very attractive time performance, similar
to AD(dir+rev), but they need significantly more space. As explained, using less
space may make the difference between being able of fitting a large Web graph in
main memory or not.

If, instead, we wished only to carry out forward navigation, alternatives RePair,
WebGraph and particularly AD become preferable (smaller and faster than ours) in
most cases. Figure 13.8, shows graph EU, where we still achieve significantly less
space than WebGraph, but not than AD.

We now present a comparison of the performance of our proposal with Buehrer
and Chellapilla’s technique [BC08], described in Section 11.3.4, which will be de-
noted by VNM. As we do not have their code and we do not have a comparable
experimental evaluation on time performance neither, we will estimate the space
and time results obtained by their compression method.

Table 13.6 shows in the first column VNM(∞) the space consumption they report
for the EU, Indochina, UK and Arabic graphs. This space does not include the
space required for the storage of the offset per node to provide random navigation
over the graph, hence this variant does not provide direct access. In the second
column VNM×2 we estimate the space required to represent both the normal and

3The implementation (in Java) for Apostolico and Drovandi’s technique is publicly available
in http://www.dia.uniroma3.it/ drovandi/software.php. I would like to thank Guido Drovandi for
solving some doubts I had about their implementation.

230 Chapter 13. Experimental evaluation

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

EU - direct neighbors

2x2
3x3
4x4

Hybrid5
Hybrid37

DAC
Re-Pair(dir+rev)

Re-Pair GMR
Re-Pair GMR(2)

WebGraph(dir+rev)
AD(dir+rev)

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

EU - reverse neighbors

2x2
3x3
4x4

Hybrid5
Hybrid37

DAC
Re-Pair(dir+rev)

Re-Pair GMR
Re-Pair GMR(2)

WebGraph(dir+rev)
AD(dir+rev)

Figure 13.4: Space/time tradeoff to retrieve direct neighbors (top) and
reverse neighbors (bottom) for EU graph.

13.3. Comparison with other methods 231

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

Indochina - direct neighbors

2x2
3x3
4x4

Hybrid5
Hybrid37

DAC
Re-Pair(dir+rev)

Re-Pair GMR
Re-Pair GMR(2)

WebGraph(dir+rev)
AD(dir+rev)

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

Indochina - reverse neighbors

2x2
3x3
4x4

Hybrid5
Hybrid37

DAC
Re-Pair(dir+rev)

Re-Pair GMR
Re-Pair GMR(2)

WebGraph(dir+rev)
AD(dir+rev)

Figure 13.5: Space/time tradeoff to retrieve direct neighbors (top) and
reverse neighbors (bottom) for Indochina graph.

232 Chapter 13. Experimental evaluation

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

UK - direct neighbors

2x2
3x3
4x4

Hybrid5
Hybrid37

DAC
Re-Pair(dir+rev)

Re-Pair GMR
Re-Pair GMR(2)

WebGraph(dir+rev)
AD(dir+rev)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

UK - reverse neighbors

2x2
3x3
4x4

Hybrid5
Hybrid37

DAC
Re-Pair(dir+rev)

Re-Pair GMR
Re-Pair GMR(2)

WebGraph(dir+rev)
AD(dir+rev)

Figure 13.6: Space/time tradeoff to retrieve direct neighbors (top) and
reverse neighbors (bottom) for UK graph.

13.3. Comparison with other methods 233

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

Arabic - direct neighbors

2x2
3x3
4x4

Hybrid5
DAC

Re-Pair(dir+rev)
Re-Pair GMR

Re-Pair GMR(2)
WebGraph(dir+rev)

AD(dir+rev)

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

Arabic - reverse neighbors

2x2
3x3
4x4

Hybrid5
DAC

Re-Pair(dir+rev)
Re-Pair GMR

Re-Pair GMR(2)
WebGraph(dir+rev)

AD(dir+rev)

Figure 13.7: Space/time tradeoff to retrieve direct neighbors (top) and
reverse neighbors (bottom) for Arabic graph.

234 Chapter 13. Experimental evaluation

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12

tim
e

(m
ic

ro
se

c/
ed

ge
)

space (bits/edge)

EU

2x2
3x3
4x4

Hybrid5
Hybrid37

DAC
Re-Pair

WebGraph
AD

Figure 13.8: Space/time tradeoff for graph representations that retrieve
only direct neighbors (and ours) over graph EU.

transposed graphs in order to support direct and reverse navigation by multiplying
their space by 2. Again, this might be overestimated, as transposed Web graphs
compress slightly better than the original ones. In the next two columns, VNM

and VNM×2, we add the space of their pointers array, such that the compressed
graph can be randomly navigated. In the last column of the table we include
the results for our smallest representation (described in Section 13.3.1). As we can
observe, VNM obtains worse compression ration than our k2-tree representation when
compressing the normal and the transposed graph, even when no random access is
supported. No traversal times are reported by Buehrer and Chellapilla [BC08]
for their method. However, Claude and Navarro [CN10c] made an estimation,
comparing both algorithms, and stated that the two techniques have a similar time
performance. Hence, compared with the k2-tree technique VNM would be faster, but
requiring a significantly higher amount of space.

We also compare our proposal with the method in [AMN08] (Asano). As we do
not have their code, we ran new experiments on a Pentium IV of 3.0 GHz with 4
GB of RAM, which resembles better the machine used in their experiments. We
used the smallest graphs, on which they have reported experiments. Table 13.7
shows the space and average time needed to retrieve the whole adjacency list of a
page, in milliseconds per page. We also include the space of the estimation Asano×2

13.4. Extended functionality performance 235

Space (bpe) VNM(∞) VNM(∞)×2 VNM VNM×2 k2-tree

EU 2.90 5.80 4.07 8.14 3.47

Indochina - - - - 1.73

UK 1.95 3.90 3.75 7.50 2.78

Arabic 1.81 3.62 2.91 5.82 2.47

Table 13.6: Space comparison between k2-tree and Buehrer and Chel-
lapilla’s technique for several graphs. Columns VNM(∞)×2 and VNM×2 are
estimations.

obtained by multiplying their space by 2, of the space they would need to represent
both the normal and transposed graphs.

For the comparison shown in Table 13.7, we represent CNR with the Hybrid5

alternative where we use k = 4 only in the first level of the tree, and then we
use k = 2 for the rest of the levels. In the same way, we represent EU using the
Hybrid5 alternative where we change from k = 4 to k = 2 in the third level of the
tree. These are the most space-efficient configurations of the alternative Hybrid5

for those graphs. Compression ratio and time results are shown in the third column
of the table.

We observe that our method is orders of magnitude faster to retrieve an adja-
cency list, while the space is similar to Asano×2. The time difference is so large
that it is also possible to be competitive even if part of our structure (e.g. L) is
on secondary memory. Our main memory space in this case, omitting bitmap L,
is reduced to about half the space of the Hybrid5 alternative. The exact value (in
bpe) is shown in the last column of Table 13.7, denoted by Hybrid5 no-L. Time
results are slightly worse than the Hybrid5 alternative, since frequent accesses to
disk are required. However, it is still orders of magnitude faster compared to Asano
et al. technique.

13.4 Extended functionality performance

As we have said in Section 12.4, our representation supports extra navigability, in
addition to the most common functionality such as extracting direct and reverse
neighbors. This extended navigation includes single links or range queries.

13.4.1 Single link retrieval

If we want to know whether a Web page p links to another Web page q, the k2-tree
offers a more efficient procedure than extracting the whole adjacency list of Web

236 Chapter 13. Experimental evaluation

Space (bpe) Asano Asano×2 Hybrid5 Hybrid5 no-L

CNR 1.99 3.98 4.46 2.52

EU 2.78 5.56 5.21 2.89

Time (msec/page)

CNR 2.34 0.048 0.053

EU 28.72 0.099 0.110

Table 13.7: Comparison with approach Asano on small graphs. The second
column is an estimation.

Time (�s) Whole adjacency list Average time per link Single Link

EU 44.617 2.001 0.123

Indochina 88.771 3.391 0.182

Table 13.8: Checking individual links over Web graphs with the extended
functionality of the k2-tree representation.

page p to check if Web page q appears, which is the unique way to answer this query
for most Web graph compression methods.

There are some other proposals supporting only direct navigation that also ef-
ficiently determine whether two nodes are connected. Apostolico and Drovandi’s
[AD09] technique, explained in Section 11.3.5, achieves an average time which is
less than 60% of the retrieval time of the whole adjacency list. As we can observe in
Table 13.8, our technique can answer a single link query order of magnitudes faster
than retrieving the whole list. This comparative has been done using the smallest
alternatives of k2-tree over EU and Indochina graphs, which have been described
in Section 13.3.1. The first column of Table 13.8 shows the time (in �s) required
to retrieve the whole adjacency list for all the nodes in random order. The second
column shows the average time per link when the whole list is computed, that is,
we divide the value at the first column of the table by the number of retrieved links.
The last column of the table shows the average time needed for checking all the
links of the Web graph in random order. We can notice that checking individual
links requires less time than the average time per retrieved link when the whole list
is obtained. This is due to the fact that retrieving a whole list of a Web page may
cause several unsuccessful top-down traversals over the tree, some of them complete
traversals from the root node to a leaf of the k2-tree if there is any 1 in the same
leaf submatrix than the Web page of the query, due to direct neighbors of close Web
pages, but the Web page has no links in that submatrix.

13.4. Extended functionality performance 237

Time (�s) Ours AD (ℓ = 4)

EU 0.123 1.192

Indochina 0.182 1.055

Table 13.9: Comparison between our proposal and Apostolico and
Drovandi’s technique when checking individual links.

Table 13.9 compares our proposal with Apostolico and Drovandi’s technique
(AD) by showing the average time to test the adjacency between pairs of random
nodes, computed by checking all the pairs of nodes in random order. For our pro-
posal we use the smallest alternatives of k2-tree over EU and Indochina graphs,
which have been described in Section 13.3.1 and occupy 3.47 bpe and 1.73 bpe
respectively. The times reported for AD technique correspond to their fastest con-
figurations (setting ℓ = 4), which occupy 10.04 bpe and 5.30 bpe respectively when
representing simultaneously the direct and the transposed graph in order to sup-
port direct and reverse neighbors, as our technique, and occupy 5.50 bpe and 3.05
bpe when supporting only direct neighbors retrieval. As we can observe from the
results, our proposal tests the connectivity of pairs of random nodes around 5-10
times faster than AD technique, and it also requires significantly less space.

13.4.2 Range searches

We now show the performance of the range operation over the compact representa-
tion of Web graphs. We compare the time needed for retrieving r > 0 consecutive
lists of direct neighbors starting with the direct neighbors list of Web page p up to
the list of Web page p+ r − 1, and the time spent to obtain all the hyperlinks in a
range [p, p+ r − 1] × [0, n] for all p ∈ V in a random order, being both equivalent
operations with the same result set of connected Web pages. As we can see in Figure
13.9, only for r = 1 (that is, when the range includes just 1 node, and it is equivalent
to an adjacency list query) retrieving consecutive lists of direct neighbors obtains
better time results than the range query, as the range query adds some overhead
that is not compensated when only one list of neighbors is extracted. However,
when r > 1 the range query obtains almost constant time results, while retrieving
r consecutive list of neighbors increases linearly with r, as expected. These experi-
ments were performed over the compressed k2-representation of graph Indochina,
using the alternative 2× 2.

Therefore, whenever this type of range queries is needed, the k2-tree represen-
tation of the Web graph is a suitable representation, since it can obtain the result
more efficiently than retrieving several adjacency lists one by one as we have just
showed. Moreover, a biggest benefit is obtained if our goal is to check if there exists

238 Chapter 13. Experimental evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12 14 16 18 20

T
im

e
pe

r
qu

er
y

(m
s)

Range width

Time performance of the range query

without using range queries
using range queries

Figure 13.9: Range query performance compared to simple list retrieval
query for different width of ranges.

a link from a range of pages [p1, p2] to another [q1, q2]. In this case, as we have
explained in Section 12.4.2, the k2-tree can answer this query without the need of
extracting completely any list of adjacency, and what is more, in case of a positive
answer it can solve it before reaching the leaf node where the link is represented,
which saves navigational time.

Figure 13.10 shows the average query time in milliseconds that is required to
check if there is any link in the range [p, p + r − 1] × [0, n], with 1 ≤ r ≤ 20 and
0 ≤ p ≤ n, performed in random order. We compare this time with the time
required by the range query that reports all the links existing in the same range,
which was already shown in Figure 13.9. As we can see, the time required to find all
the links inside a range increases with the range width, but moderately compared to
the time to compute the neighbor lists individually, as we have seen in Figure 13.9.
However, checking the existence of a link inside the same range can be performed
significantly faster and the time required decreases as the range width increases.
This is due to the fact that the existence of a link in a bigger range can be detected
in a higher level of the tree and this avoids the navigation to lower levels of the
tree. Hence, this operation becomes extremely faster over the k2-tree technique,
especially if we take into account that checking the existence of a link in a range
must be performed by extracting the neighbors lists and checking if there is a link
in the sought range.

13.5. Comparison of the behavior between random graphs and Web graphs 239

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 2 4 6 8 10 12 14 16 18 20

T
im

e
pe

r
qu

er
y

(m
s)

Range width

Reporting all vs checking range query

reporting all range query
checking range query

Figure 13.10: Checking the existence of a link in a range compared to
finding all the links in the same range.

13.5 Comparison of the behavior between random

graphs and Web graphs

The k2-tree technique is especially designed to take advantage of the properties of
Web graphs, that is, the similarity of the adjacency lists, the skewed distribution
and the locality of reference. All these properties of Web graphs cause the sparseness
and clustering of their adjacency matrix, which are exploited in order to obtain very
compact representations of the Web graphs.

In this section we will show that the space and time analyses detailed in Sec-
tions 12.2.1.1 and 12.2.3.1 (calculated for uniformly distributed graphs) are too
pessimistic for Web graphs. In order to prove this hypothesis, we create two graphs
called RandReord and DomainReord that are equal to the original graph EU (de-
noted in this section as Original), but with a reordering of the identifiers of the
Web pages. This reordering of the identifiers causes a reordering of the rows and
columns in the adjacency matrix, since each row and each column of the adjacency
matrix represents one Web page according to its identifier. Web pages are alphabet-
ically sorted by URL in graph Original (graph EU), such that locality of reference
is translated into closeness of the ones in the adjacency matrix. RandReord and
DomainReord synthetic graphs are created as follows:

240 Chapter 13. Experimental evaluation

∙ Graph DomainReord tries to improve the locality of reference by the folklore
idea of sorting the domains in reverse order, as then aaa.bbb.com will stay
close to zzz.bbb.com. Hence, graph DomainReord is created from graph EU

such that Web page identifiers are sorted according to this.

∙ Graph RandReord is obtained after a random permutation of the Web page
identifiers. This reordering eliminates the locality of reference, such that ones
in a row are no longer together, but distributed along all the row.

In addition, we also create a uniformly distributed graph with the same number
of nodes and the same number of edges than graph EU. We denote this graph
by Uniform. This graph does not preserve any of the properties of Web graphs:
outdegrees of pages do not longer follow a skewed distribution and ones are spread
along all the adjacency matrix, so there is no locality of reference nor similarity of
adjacency lists.

Table 13.10 compares the behavior of the proposal for these four different graphs.
First column indicates the graph and the representation configuration used to com-
press it. As we have detailed, we compare four graphs: Original, DomainReord,
RandReord and Uniform, and we compress each of those four graphs with the k2-
tree technique using DACs in the leaf level with a fixed parameter b = 4. For all of
them, we first partition the adjacency matrix in submatrices of size 218 × 218 and
then create one hybrid k2-tree for each submatrix, where k = 4 for the first 5 levels
of the tree and k = 2 for the rest. The subdivision is not continued until the last
level, but the leaves of the last x levels are represented all together. For each graph,
we create 3 representations where x = 2, 3, 4, that is, obtaining leaf submatrices of
size 4× 4, 8× 8 and 16× 16 respectively. Hence, if we denote kL the value of k for
the last level of the hybrid k2-tree, then kL = 4, kL = 8 and kL = 16 respectively
for the 3 representations created.

The second column of the table shows the space (in bpe) obtained by each
representation. According to the space analysis in Section 12.2.1.1, for k = 2 the
space of the representation for uniformly distributed graphs is asymptotically twice
the information-theoretic minimum necessary to represent all the matrices of n×n

with m 1s, that is log
(

n2

m

)

, which is 15.25 for graph EU [CN10b]. As we can see in the
table, the representation of the uniformly distributed graph occupies around 24-27
bpe, close to twice that value. In fact, using a 2 × 2 subdivision of the adjacency
matrix, instead of using that hybrid approach, the space obtained would be 31.02.
For RandReord, the random reordering of the identifiers of the Web pages eliminates
some of the most important properties of Web graphs, so the space is also high.
However, we can observe that on graphs Original and DomainReord the space is
much better, as Web graphs are far from uniformly distributed and the k2-tree
technique takes advantage of this fact. The domain reordering slightly improves
the compression ratio, since it is common that pages point to other pages inside
the same domain, even if they do not share the same subdomain. These pages are

13.5. Comparison of the behavior between random graphs and Web graphs 241

distant in graph Original if their subdomains are not alphabetically close, but they
are near to each other in graph DomainReord.

Third column indicates the size of the vocabulary of leaf submatrices, that is,
the number of different non-zero kL × kL submatrices that appear in the adjacency
matrix. Fourth column shows the length of the sequence of submatrices of the last
level, that is, the total number of submatrices that are represented with DACs.
We can observe that the vocabularies of leaves for Original and DomainReord are
larger than for RandReord and Uniform. This happens since the adjacency matrices
of these last two graphs have their ones spread all along the matrix, such that it
is rare that several ones coincide in the same leaf submatrix. Hence, since there
are very few possible submatrices in the leaf level, the vocabulary of submatrices
is small, but the sequence of submatrices is larger. Moreover, due to the uniform
distribution of the ones in the adjacency matrix, the distribution of frequency of the
submatrices of the vocabulary is also uniform. Consequently, DACs cannot obtain
a very compact representation of the sequence. On the contrary, the vocabulary of
leaves for a Web graph, such as Original or DomainReord, is larger, but it follows a
skewed distribution. Typical patterns such as horizontal, vertical, and diagonal runs
are captured inside those leaf submatrices. Some of them appear more frequently
than others, so they are encoded using fewer bits than less frequent submatrices.
Hence, the space required for the leaves representation is lower than for random
graphs.

We can also notice from the results of the fourth column that the total number of
non-zero submatrices at the last level remains almost constant in case of a random
graph, since ones are spread all along the matrix and they do not coincide in the
same kL × kL submatrix, no matter if kL = 4 or kL = 16. In fact, the length of the
sequence of leaf submatrices is close to the number of edges of the graph, that is,
the total number of ones in the adjacency matrix, which is 19,235,140. However,
the length of the sequence of leaf submatrices for the Web graphs Original and
DomainReord is lower, and far from that total number of edges. Hence, ones are
located together in the adjacency matrix. Yet, the number of total non-zero 16 ×
16 submatrices when kL = 16 is lower than the number of total non-zero 4 × 4
submatrices, since close ones coincide in the same big submatrix.

The last column of the table shows the efficiency of direct neighbors retrieval by
measuring the average time per neighbor retrieved in �s/e. During the time analysis
of the proposal in Section 12.2.3.1, we have already anticipated that navigation over
Web graphs would be more efficient than over random graphs. This is due to the fact
that the k2-tree has numerous leaves in the case of RandReord and Uniform graphs,
as we can see in the table, so this implies that the retrieval of all the neighbors
of the graph must traverse all those leaves to return usually just one neighbor per
submatrix, whereas in the case of a Web graph, a leaf submatrix can be visited once
to answer several neighbors of the same page, which reduces the navigation time.
Hence, the total navigation time to retrieve all the neighbors of all the pages in a

242 Chapter 13. Experimental evaluation

Space (bpe) Leaves Voc. # Leaves Time (�s/e)

Original kL = 4 4.04 12,913 6,273,036 2.057

DomainReord kL = 4 4.03 13,054 6,276,012 1.994

RandReord kL = 4 25.79 226 18,800,628 48.774

Uniform kL = 4 27.71 136 19,231,353 53.315

Original kL = 8 3.56 209,901 3,344,592 2.037

DomainReord kL = 8 3.55 210,385 3,341,643 1.964

RandReord kL = 8 25.24 3,585 18,514,330 49.300

Uniform kL = 8 27.30 2,085 19,219,329 53.834

Original kL = 16 7.88 455,955 1,716,719 2.044

DomainReord kL = 16 7.86 454,691 1,704,056 1.982

RandReord kL = 16 23.23 78,294 18,109,891 50.707

Uniform kL = 16 24.43 28,345 19,171,732 54.498

Table 13.10: Effect of the reordering of the nodes and behavior of uniformly
distributed graphs.

random order is considerably lower in the case of Web graphs than in the case of
random graphs.

Moreover, as we have seen in Section 12.2.3.1, the navigation time to retrieve a
list of direct or reverse neighbors has no worst-case guarantees better than O(n).
For a random uniformly distributed matrix, this analysis was refined to O(

√
m), but

we guessed (and confirmed in Table 13.10) that the average performance for a Web
graph would be better, due to the clustering and sparseness of its adjacency matrix.
In addition, we also expected that the time to retrieve the neighbors of a Web page
would depend on the length of the output list, whereas the time to retrieve the
adjacency list of a node in a random graph would be slower and independent of the
length of the output list. This is due to the fact that the tree is close to complete
in all its levels, as ones are spread all along the adjacency matrix. Consequently,
when extracting the adjacency list of a node of a uniformly distributed graph,
numerous branches and leaves are traversed worthlessly, since they are the result
of a subdivision prompted by a near 1, but not by a neighbor of the node. Thus,
an almost stable time of O(

√
m) is needed to answer the query. On the contrary,

the k2-tree of a Web graph is not very branchy, since large areas of zeroes are
represented in a leaf node at an early level of the tree. Hence, when looking for
neighbors of a Web page, the navigation is guided towards the leaves where the
neighbors of the Web page are.

In order to confirm these hypotheses, we ran some experiments over the graphs
Original, RandReord and Uniform. We compute the time to retrieve the adjacency

13.6. Discussion 243

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0 20 40 60 80 100

Length of the neighbors list

Original

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94

Comparison: web vs random graphs

T
im

e
pe

r
qu

er
y

(m
s)

Uniform
RandReord

Figure 13.11: Adjacency list retrieval time (in ms) for Web graphs and
random graphs.

list of each node, for all the nodes of the graphs, in a random order. We illustrate
those results depending on the length of the list in Figure 13.11. The y axis has been
cut in order to properly visualize the curves, since results are considerably faster
for graph Original than for RandReord and Uniform, as we have already seen in
Table 13.10. In addition, we can observe that the time to retrieve an adjacency list
of graph Original depends linearly on the list length, while the time for random
graphs RandReord and Uniform increases with the list length but in a very moderate
way, in relative terms. This dependency on the list length can be better seen in
Figure 13.12, where the average query time to retrieve an adjacency list is divided
by the length of the list, that is, we measure the average time to retrieve a neighbor
and visualize it depending on the length of the adjacency list.

13.6 Discussion

In this chapter we have tested our proposal, the k2-tree technique, over different
Web graphs. We have studied different variants presented in the previous chapter
and compared them with the compression methods of the literature that support
both direct and reverse navigation over the graph.

We have concluded that the best space and time results for the k2-tree technique
are obtained when large k values are used at the top levels of the tree and also for

244 Chapter 13. Experimental evaluation

 0
 1
 2
 3
 4
 5
 6

 0 20 40 60 80 100

Length of the neighbors list

Original

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Comparison: web vs random graphs

T
im

e
(m

ic
ro

se
c/

ed
ge

)

Uniform
RandReord

Figure 13.12: Direct Neighbor retrieval time (in �/e) for Web graphs and
random graphs.

the leaf level, where DACs are used to represent the sequence of leaf submatrices in
a compact way. Compared to the state-of-the-art methods, the k2-tree technique
achieves some interesting results both in time and space. We achieve the smallest
space reported in the literature, while retrieving direct and reverse neighbors in an
efficient time.

Even though other methods, such as those presented by Claude and Navarro,
Boldi and Vigna or Apostolico and Drovandi (representing both graphs, original
and transpose), can be faster at retrieving direct and reverse neighbors, our method
always needs fewer bits per edge. Saving space is crucial in order to apply a rep-
resentation to real Web graphs. If we need less space to represent a small Web
graph, we will be able to operate faster in main memory with a larger one. We
save I/O accesses that spend much more time than the difference between our pro-
posal and the ones by Claude and Navarro, Boldi and Vigna or Apostolico and
Drovandi. In addition, we can perform other operations such as range searches or
checking whether two Web pages are connected or not without extracting the whole
adjacency list.

Chapter 14

Discussion

14.1 Main contributions

Compressed graph representations allow running graph algorithms in main memory
on much larger subsets than classical graph representations. Since the Web can be
seen as a huge graph, compressed representation of Web graphs are essential to run
algorithms that extract information from the Web structure in an efficient way.

We have introduced a compact representation for Web graphs that takes advan-
tage of the sparseness and clustering of their adjacency matrix. Our representation
is a particular type of tree, which we call the k2-tree, that enables efficient forward
and backward navigation in the graph (a few microseconds per neighbor found)
within compact space (about 2 to 5 bits per link). We have presented several vari-
ants of the method with different space requirements and time results, and have
shown the appropriate parameter tuning to obtain the smallest representation of
the Web graph, and also how the navigation can be improved.

Our experimental results show that our technique offers an attractive space/time
tradeoff compared to the state of the art. We achieve the smallest graph representa-
tion reported in the literature that supports direct and reverse navigation in efficient
time. Moreover, we support queries on the graph that extend the basic forward and
reverse navigation. For instance, it is possible to check if one Web page has a link
to another Web page without retrieving the whole list of direct neighbors. It is also
possible to recover all the connected pairs of Web pages inside a range in a very
efficient way.

245

246 Chapter 14. Discussion

14.2 Other Applications

The k2-tree technique was originally designed to represent Web graphs in a very
compact way. We have already shown in the experimental evaluation that its ef-
ficiency decreases for uniformly distributed graphs. However, the k2-tree can be
employed to represent other kind of graphs whose adjacency matrix also exhibits
sparseness and clustering properties, apart from Web graphs. For example, we
could use our proposal to compress social networks and compare its performance
with other solutions of the literature for this scenario [CKL+09]. Moreover, it can
be generalized to represent any binary relation.

Binary relations are an abstraction to represent the relation between the objects
of two collections of different nature. They can be used in several low-level structures
within a more complex information retrieval system, or even replace one of the
most used ones: an inverted index can be regarded as a binary relation between the
vocabulary of terms and the documents where they appear. The k2-tree technique
can be directly applied over the relation matrix of the binary relation, achieving a
navigable representation in a compact space. Our proposal may implement several
operations among those included in the extended set of primitives of interest in
applications of binary relation data structures proposed by Barbay et al. [BCN10].

In addition, the k2-tree representation can be the basis for a new method to
represent a graph database, where graphs are not as simple as Web graphs, but
rather have types, attributes, and multiedges. We present a preliminary proposal
of this application in the next section.

14.2.1 A Compact Representation of Graph Databases

Graph databases have emerged as an alternative data model with applications in
many complex domains. Typically, the problems to be solved in such domains
involve managing and mining huge graphs. The need for efficient processing in such
applications has motivated the development of methods for graph compression and
indexing. However, most methods aim at an efficient representation and processing
of simple graphs (without attributes in nodes or edges, or multiple edges for a
given pair of nodes). A recent proposal [ÁBLP10] presents a model for compact
representation of general graph databases. The goal is to represent any labeled,
directed, attributed multigraph.

The proposal consists in a new representation of a graph database based on the
k2-tree technique, which obtains very compact space enabling any kind of naviga-
bility over the graph. The k2-tree method, which is designed for simple directed
graphs, or more generally, for any binary relation between two sets, cannot be di-
rectly applied to represent any labeled, directed, attributed, multigraph G. Then,
a complex data structure is proposed, called Compact Graph Database (CGD),
which represents any graph G as a combination of three k2-trees and some extra

14.3. Future work 247

information. The relations that are represented using the k2-tree technique are the
following:

∙ The binary relation between the nodes and their attribute values. Let the
nodes be the rows of a matrix, and all the possible values of all the attributes
be the columns of that matrix. Then, a cell of the matrix will contain a 1 if
the node of the row has the attribute value of the column.

∙ Analogously to the relation between nodes and attribute values, the relation
between the edges and their attribute values is also represented using the
k2-tree technique.

∙ More intuitive is the k2-tree representation of the relation between the nodes
of the graph, that is, the edges of the graph. Since the graph is a multigraph,
some extension of the original method of k2-tree is needed in order to store
the multiple edges between the same pair of source and target nodes.

The algorithms to answer typical queries over graph databases (e.g. select,
getValue, etc) are detailed in this paper [ÁBLP10] and space and time performance
is measured over two datasets taken from real domains: Wikipedia and Youtube.
The difference in space requirements is significant compared to other graph database
systems. The proposal achieves compression rates around 50% between the compact
representation and the raw text representation of the database, while others needs
more than twice the size of the raw representation. The compression ratio achieved
affects the navigation performance, yet time results are still competitive. Hence,
this proposal represents an attractive alternative due to the compression rates it
achieves and the efficiency on query resolution.

14.3 Future work

Our proposal exploits the properties of the adjacency matrix, yet with a general
technique to take advantage of clustering rather than a technique tailored to partic-
ular Web graphs. We introduce a compact tree representation of the matrix that not
only is very efficient to represent large empty areas of the matrix, but at the same
time allows efficient forward and backward navigation. An elegant feature of our
solution is that it is symmetric, in the sense that forward and backward navigation
are carried out by similar means and achieve similar times. Due to the properties of
this general technique, we believe that it can be applied to several domains where
general binary relations can express the relations between the objects involved. For
instance, we can consider the relation between documents and terms (keywords) in
those documents, so that we can represent an index of the text collection with our
proposal. One interesting example could be the representation of discrete grids of
points, for computational geometry applications or geographic information systems.

248 Chapter 14. Discussion

Following this idea, we will study the application of our proposal to construct new
index structures or retrieval algorithms that take into account the spatial nature
of geographic references embedded within documents. These scenarios may not
present the same distribution as Web graphs, such as the locality of references and
clustering exhibited by the adjacency matrix where Web pages are sorted according
to the URL ordering, which has been probed to be the most efficient technique for
assigning identifiers in the case of Web Search Engines [Sil07]. Yet, several sparse
matrix reordering schemes, such as Reverse Cuthill- McKee and King’s algorithms
[CM69, Kin70], can be studied in order to improve the compression and navigation
times.

We also plan to extend our work by considering more complex navigation algo-
rithms over the graph. We have presented some basic and extended functionality,
such as retrieving the direct and reverse neighbors of a node, checking whether there
exists a link from one Web page to another, or retrieving all the connected pairs in
a range of node identifiers. More complex algorithms can be run over the graphs us-
ing these basic operations. These algorithms might be natively implemented using
the k2-tree data structure, outperforming the behavior of a naive implementation
of the algorithm using the basic operations. Several algorithms to solve classical
graph problems, such as obtaining the shortest path or minimum cuts in a graph,
can be considered and implemented.

We have proposed a static data structure, the k2-tree, to represent any Web
graph in very compact space. The tree is stored levelwise using static bitmaps.
Deleting a link between two Web pages can be performed by just changing the
bit to zero in the cell of the last level of the tree and also in upper levels of the
tree if the subtree represented with that bit represented the only link that is being
deleted. Hence, the cell is marked as deleted but no structural modifications of the
tree are performed. This procedure might not return an optimal k2-tree, since the
space of the data structure is maintained and it could be reduced. However, it is an
accurate representation of the Web graph and it can be navigated with the described
algorithms. Deleting Web pages is done in a similar way, by deleting the links that
are pointed by or point to that Web page. The problem arises if new links or Web
pages are added. If a link is added such that one new 1 is placed in the adjacency
matrix, and that 1 is surrounded by others 1s in the same k × k matrix, then the
link can be easily added by just changing the 0 to a 1 in the leaf matrix. However,
if it becomes the only 1 in the k × k matrix at the last level of the tree, a new leaf
must be created in the last level of the tree, and also its corresponding path from
an upper level of the tree. This would require the insertion of some nodes in the
tree and hence, the insertion of the representation of those nodes in the compact
representation of the tree. Therefore, some bits would be inserted in the middle
of the bitmaps that represent each level of the tree, which is not supported by the
data structures used for the bitmaps (we use a static representation). Even though
dynamism is not a vital characteristic for compression methods focused on Web

14.3. Future work 249

graphs, it may be an interesting feature, especially if we use our technique in other
scenarios. Hence, we plan to study how to modified our data structure in order to
support dynamism.

The improvement of the time efficiency of our proposal is also a goal for con-
tinuing our research. A recent joint work with Claude [CL11] consisted in combin-
ing our k2-trees and the RePair-Graph [CN10c]. The new proposal takes advan-
tage of the fact that most links are intra-domain, and represents the intra-domain
links using separate k2-trees (with a common leaf submatrices vocabulary), and the
inter-domain links using a RePair-based strategy. This new representation, called
k2-partitioned, significantly improves the time performance of k2-tree while almost
retaining the compression ratio. Hence, it achieves very compact spaces, smaller
than the rest of the techniques except for the k2-tree, obtaining very competitive
time results.

250 Chapter 14. Discussion

Part IV

Thesis Summary

251

Chapter 15

Conclusions and Future Work

15.1 Summary of contributions

The amount of digital data has been constantly growing since the birth of the first
computer. As the storage capacity and processing speed increase, larger volumes
of data must be manipulated. This data usually contains text, images or even
multimedia information such as music and video. Therefore, processing massive
datasets and extracting relevant information from them have become attractive
challenges in the field of computer science.

Some research has focused its efforts on studying new approaches to effectively
store information and support efficient query and modification, using the minimum
amount of space as possible. We are interested in compressed representations of the
data, where we can perform complex operations directly on the compact represen-
tation. These representations can even obtain enhanced functionality which is not
offered by the plain representation of the data.

In this thesis we have addressed the problem of the efficiency in Information
Retrieval by presenting some new general low-level data structures and algorithms
that can be used in several applications. We experimentally showed that these
structures obtain interesting space/time tradeoffs compared to other techniques
commonly used in those domains. The methods we presented, all of them conceived
to operate in main memory, were developed upon one base idea: since they are
compact data structures, they allow to represent large volumes of data in higher
and faster levels in the memory hierarchy.

This section summarizes the main contributions of this thesis:

∙ We have presented Directly Addressable Codes (DACs), a new variable-length
encoding scheme for sequences of integers that, in addition to represent the
sequence in compact space, enables fast direct access to any position of the

253

254 Chapter 15. Conclusions and Future Work

encoded sequence. We have also proposed an optimization algorithm that
computes the most compact configuration of our codes given the frequencies
distribution of the integers of the sequence to encode. Moreover, we have
presented a rearrangement strategy that can be applied over the encoded
sequences obtained by any variable-length encoding and provides direct access
to any element of the sequence by just adding some bitmaps over the sequence.

We have shown that the technique is simple and competitive in time and space
with existing solutions in several applications, such as the representation of
LCP arrays or high-order entropy-compressed sequences. It becomes a very
attractive solution when just direct access to the encoded sequence is required,
comparing this technique with classical solutions to provide direct access, such
as the use of sparse or dense samplings over the sequence.

Several recent implementations of classical data structures, such as compressed
suffix trees or PATRICIA trees, can benefit from the efficiency of our data
structure. When direct access is required over a sequence of non-uniformly
distributed integers, especially if most of them are small, but some of them
are larger, hence, our variable-length encoding scheme becomes the preferred
choice to obtain a very fast access to a very compact representation of the
integers.

∙ We have proposed the Byte-Oriented Codes Wavelet Tree (BOC-WT), a new
data structure that permits the compact representation and efficient manip-
ulation of natural language text. This tree-shaped structure maintains the
properties of the compressed text obtained by any word-based, byte-oriented
prefix-free encoding technique, that is, it maintains the same compression ra-
tio and comparable compression and decompression times, and in addition it
drastically improves searches.

The proposed data structure can be considered as a word-based self-indexed
representation of the text, which occupies a space proportional to the com-
pressed text (31%-35% of the size of the original text) and searches are per-
formed in time independent of the text length. BOC-WT obtains efficient
time results for counting, locating and extracting snippets when searching for
a pattern in a text. Compared to classical inverted indexes, it obtains in-
teresting results when the space usage is not high. By adding a small extra
structure to BOC-WT, searching is considerably improved and it competes
successfully with block-addressing inverted indexes that take the same space
on top of the compressed text. Compared to other word-based self-indexes,
our data structure obtains better times when searching for individual words
or extracting portions of text. Searching long phrase patterns is performed
more efficiently by other self-indexes, however, BOC-WT is still the preferred
choice for locating and displaying the occurrences of short phrases composed
of two words.

15.2. Future work 255

∙ Finally, we have proposed k2-tree, a new compact tree-shaped representation
for Web graphs which supports basic navigation over the Web graph, that is,
retrieving the direct and reverse list of neighbors of a page, in addition to
some interesting extra functionality. For instance, it is possible to check if one
Web page has a link to another Web page without retrieving the whole list of
direct neighbors. It is also possible to recover all the connected pairs of Web
pages inside a range in a very efficient way.

We present several variants of our technique. One of them includes a compact
representation of the leaves of the tree encoded using our first contribution,
the Directly Addressable Codes, which improves simultaneously both time and
space results. The experimental evaluation of our technique shows that this
variant achieves the smallest graph representation reported in the literature
that supports direct and reverse navigation in efficient time, and our proposal
offers an interesting space/time tradeoff when varying the configuration of
parameters. Our representation enables efficient forward and backward navi-
gation in the graph (a few microseconds per neighbor found) within compact
space (about 2 to 5 bits per link).

15.2 Future work

In this section we detail some future plans after this thesis. We will describe the
most interesting ones for each contribution.

∙ The Directly Addressable Codes can be applied in many different domains.
They are especially designed to enable direct access to any element of a com-
pressed sequence, so it can be used in lots of data structures. We plan to
study the feasibility and suitability of our proposal to other well-developed
scenarios, such as the compression of inverted lists and natural language texts.

Moreover, the rearrangement strategy used has been described as a contribu-
tion by itself. Hence, we will compare this rearrangement with the classical
solutions when providing direct access to non-statistical variable-length en-
codings.

∙ The second data structure presented in this thesis, the Byte-Oriented Codes
Wavelet Tree, presents a most consolidated status. We have shown the be-
havior of our proposal built over compressed natural language text with Plain
Huffman. We can extend our proposal to allow for more flexible searching.
For instance, we might want to find phrases regardless of whether the words
are separated by a space, two spaces, a tab, a newline, etc. Moreover, we
can consider only stemmed words for those searches or we can omit stopwords
such as articles or prepositions. Even if all this functionality is supported, our
data structure must reproduce the original text, returning the variants of the

256 Chapter 15. Conclusions and Future Work

stemmed words or the stopwords when needed. Hence, different vocabularies
can be distinguish to encode differently words from separators, similarly to
the strategy used to represent XML documents.

In addition, we plan to study the convenience of our data structure to rep-
resented in a self-indexed form other kinds of documents, not only natural
language text or XML documents, and study ways to provide dynamism to
the structure.

∙ We have already stated that our k2-tree data structure can be apply to several
domains, considering any binary relation as a graph, such that the k2-tree
can represent the associated relation matrix. Since general binary relations
may not present the same distribution as Web graph, such as the locality of
references and clustering presented in the adjacency matrix, we plan to study
several sparse matrix reordering schemes to improve the overall performance
of our technique.

We also plan to extend our work by considering more complex navigation
algorithms over the graph. We will natively implement several algorithm to
solve classical graph problems, such as obtaining the shortest path or minimum
cuts in a graph. Another interesting line of research can be to study a dynamic
version of our proposal. k2-tree is a static data structure which allows any
deletion of a link or a Web page, but only some insertions can be performed.
Hence, we will study if the k2-tree data structure can be modified in order to
support dynamism.

Appendix A

Publications and other research

results

This chapter summarizes the publications and research stays of the author directly
related with this thesis. For each publication, we include references to relevant
works in which it has been cited (these citations were updated by March 2011).

Publications

Journals

∙ Välimäki, N., Ladra, S., Mäkinen, V. Approximate All-Pairs Suffix/Prefix
Overlaps. In Information and Computation (To appear).

∙ Fariña, A., Ladra, S., Pedreira, O., Places, A. S. Rank and select for succinct
data structures. Electronic Notes in Theoretical Computer Science, 236, pp.
131-145, 2009.

International conferences

∙ Välimäki, N., Ladra, S., Mäkinen, V. Approximate All-Pairs Suffix/Prefix
Overlaps. In Proc. of the 31st Annual Symposium on Combinational Pattern
Matching (CPM) - LNCS 6129, pp.76–87. New York, USA, 2010.

∙ Álvarez, S., Brisaboa, N. R., Ladra, S., Pedreira, O. A Compact Represen-
tation of Graph Databases. In Proc. of the Eighth Workshop on Mining and
Learning with Graphs (MLG), pp. 18–25. Washington D.C., USA, 2010.

257

258 Appendix A. Publications and other research results

∙ Brisaboa, N. R., Ladra, S., Navarro, G. k2-trees for Compact Web Graph Rep-
resentation. In Proc. of the 16th International Symposium on String Process-
ing and Information Retrieval (SPIRE) - LNCS 5721, pp. 18–30. Saariselkä,
Finland, 2009.

This paper has been cited by:

– Claude, F., Navarro, G. (2010b). Fast and Compact Web Graph Repre-
sentations. In ACM Transactions on the Web 4(4):article 16, 2010.

– Claude, F., Navarro, G. (2010a). Extended Compact Web Graph Repre-
sentations. In Algorithms and Applications (Ukkonen Festschrift), LNCS
6060, pp. 77–91, 2010.

– Grabowski, S., Bieniecki, W. (2010). Tight and Simple Web Graph Com-
pression. In Proc. Prague Stringology Conference 2010 (PSC), pp. 127–
137, 2010.

– Boldi, P., Santini, M., Vigna, S. (2010). Permuting web and social
graphs. In Internet Mathematics, 6(3):257–283, 2010.

∙ Brisaboa, N. R., Ladra, S., Navarro, G. Directly Addressable Variable-Length
Codes. In Proc. of the 16th International Symposium on String Processing
and Information Retrieval (SPIRE) - LNCS 5721, pp. 122–130. Saariselkä,
Finland, 2009.

This paper has been cited by:

– Kreft, S., Navarro. G. (2011). Self-Indexing based on LZ77. In Proc.
of the 32nd Annual Symposium on Combinational Pattern Matching
(CPM), 2011. (To appear)

– Brisaboa, N. R., Cánovas, R., Claude, F., Martínez-Prieto, M. A., Navarro,
G. (2011). Compressed String Dictionaries. In Proc. of the 10th Interna-
tional Symposium on Experimental Algorithms (SEA), 2011. (To appear)

– Teuhola, J. (2010). Interpolative Coding of Integer Sequences Supporting
Log-Time Random Access. In Information Processing and Management.

– Cánovas, R., Navarro, G. (2010). Practical Compressed Suffix Trees. In
Proc. of the 9th International Symposium on Experimental Algorithms
(SEA) - LNCS 6049, pp. 94–105, 2010.

– Sirén, J. (2010). Sampled Longest Common Prefix Array . In Proc. of
the 31st Annual Symposium on Combinational Pattern Matching (CPM)
- LNCS 6129, pp.227–237, 2010.

– Conway, T. C., Bromage, A. J. (2010). Succinct Data Structures for
Assembling Large Genomes. In Proc. of the 9th International Symposium
on Experimental Algorithms (SEA) - LNCS 6049, pp. 94–105, 2010.

259

∙ Brisaboa, N. R., Fariña, A., Ladra, S., Navarro, G. Reorganizing compressed
text. In Proc. of the 31th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’08), pp. 139–146.
Singapore, 2008.

This paper has been cited by:

– Ferragina, P., Manzini, G. (2010). On compressing the textual web. In
Proc. of the 3rd ACM International Conference on Web Search and Data
Mining (WSDM), pp. 391–400, 2010.

– Arroyuelo, D., González, S., Oyarzún, M. (2010). Compressed Self-
Indices Supporting Conjunctive Queries on Document Collections. In
Proc. of the 17th International Symposium on String Processing and In-
formation Retrieval (SPIRE) - LNCS 6393, pp. 43–54, 2010.

– Brisaboa, N. R., Cerdeira, Navarro, G., Pasi, G. (2010). An Efficient
Implementation of a Flexible XPath Extension. In Proc. of the 9th
International Conference on Adaptivity, Personalization and Fusion of
Heterogeneous Information (RIAO), pp. 140–147, 2010.

– Ferragina, P., González, R., Navarro, G., Venturini, R. (2009). Com-
pressed Text Indexes: From Theory to Practice. In ACM Journal of
Experimental Algorithmics (JEA) 13:article 12, 2009.

– Barbay, J., Navarro, G. (2009). Compressed Representations of Permuta-
tions, and Applications. In Proc. of the 26th International Symposium on
Theoretical Aspects of Computer Science (STACS), pp. 111–122, 2009.

– Brisaboa, N. R., Cerdeira, Navarro, G., Pasi, G. (2009). A Compressed
Self-Indexed Representation of XML Documents. In Proc. of the Euro-
pean Conference on Digital Libraries (ECDL) - LNCS 5714, pp. 273–284,
2009.

– Claude, F., Navarro, G. (2008) Practical Rank/Select Queries over Ar-
bitrary Sequences. In Proc. of the 15th International Symposium on
String Processing and Information Retrieval (SPIRE) - LNCS 5280, pp.
176–187, 2008.

– Brisaboa, N. R., Fariña, A., Navarro, G., Places, A. S., Rodríguez, E.
(2008) Self-Indexing Natural Language. In In Proc. of the 15th In-
ternational Symposium on String Processing and Information Retrieval
(SPIRE) - LNCS 5280, pp. 121–132, 2008.

∙ Brisaboa, N. R., Cillero, Y., Fariña, A., Ladra, S., Pedreira, O. A New Ap-
proach for Document Indexing UsingWavelet Trees. In Proc. of the 18th In-
ternational Workshop on Database and Expert Systems Applications (DEXA),
pp. 69–73. Regensburg, Germany, 2007.

260 Appendix A. Publications and other research results

This paper has been cited by:

– Brisaboa, N. R., Luaces, M. R., Navarro, G., Seco. D. (2009). A New
Point Access Method based on Wavelet Trees. In Proc. of the 3rd In-
ternational Workshop on Semantic and Conceptual Issues in Geographic
Information System (SeCoGIS) - LNCS 5833, pp. 297–306, 2009.

∙ Cillero, Y., Ladra, S., Brisaboa, N. R., Fariña, A., Pedreira, O. Implementing
byte-oriented rank and select operations. In Proc. of SOFSEM SRF: Cur-
rent Trends in Theory and Practice of Computer Science (SOFSEM) Student
Research Forum, pp. 34–45. High Tatras, Slovakia, 2008.

National conferences

∙ Álvarez, S, Brisaboa, N. R., Ladra, S., Pedreira, O. Almacenamiento y ex-
plotación de grandes bases de datos orientadas a grafos. In Actas de las XV
Jornadas de Ingeniería del Software y Bases de Datos (JISBD), pp. 187–197.
Valencia, 2010.

∙ Brisaboa, N. R., Fariña, A., Ladra, S., Places, A. S., Rodríguez, E. Indexación
y autoindexación comprimida de documentos como base de su procesado. In
Actas del I Congreso Español de Recuperación de Información (CERI), pp.
137–148. Madrid, 2010.

∙ Fariña, A.; Ladra, S., Paramá, J. R., Places, A. S., Yáñez-Miragaya, A.:
Mejorando la búsqueda directa en texto comprimido. In Actas del I Congreso
Español de Recuperación de Información (CERI), pp. 283–290. Madrid, 2010.

∙ Álvarez, S., Cerdeira-Pena, A., Fariña, A., Ladra, S. Desarrollo de un com-
presor PPM orientado a palabra. In Actas de las XIV Jornadas de Ingeniería
del Software y Bases de Datos (JISBD), pp. 225–236. San Sebastián, 2009.

∙ Brisaboa, N. R., Cillero, Y., Fariña, A., Ladra, S., Pedreira, O. Indexación
de textos utilizando Wavelet Trees. In Actas de los Talleres de las Jornadas
de Ingeniería del Software y Bases de Datos (TJISBD), 1(7), pp. 37–46.
Zaragoza, 2007.

Research stays

∙ February 15th, 2008 – July 31st, 2008. Research stay at Universidad de Chile
(Santiago, Chile), under the supervision of Prof. Gonzalo Navarro.

∙ August 7th, 2009 – November 7th, 2009. Research stay at University of
Helsinki (Finland), under the supervision of Prof. Veli Mäkinen.

Bibliography

[ÁBLP10] S. Álvarez, N. R. Brisaboa, S. Ladra, and O. Pedreira. A compact
representation of graph databases. In Proc. of the 8th Workshop on
Mining and Learning with Graphs (MLG), pages 18–25, 2010.

[Abr63] N. Abramson. Information Theory and Coding. McGraw-Hill, 1963.

[AD09] A. Apostolico and G. Drovandi. Graph compression by BFS. Algo-
rithms, 2(3):1031–1044, 2009.

[AGO10] D. Arroyuelo, S. González, and M. Oyarzún. Compressed self-indices
supporting conjunctive queries on document collections. In Proc. of
the 17th Symposium on String Processing and Information Retrieval
(SPIRE), LNCS 6393, pages 43–54, 2010.

[AIS93] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules be-
tween sets of items in large databases. In Proc. of the 1993 ACM SIG-
MOD International Conference on Management of Data (SIGMOD),
pages 207–216, 1993.

[AM01] M. Adler and M. Mitzenmacher. Towards compressing Web graphs.
In Proc. of the 11th Data Compression Conference (DCC), pages 203–
212, 2001.

[AMN08] Y. Asano, Y. Miyawaki, and T. Nishizeki. Efficient compression of web
graphs. In Proc. 14th Annual International Conference on Computing
and Combinatorics (COCOON), LNCS 5092, pages 1–11, 2008.

[AN10] D. Arroyuelo and G. Navarro. Practical approaches to reduce the
space requirement of lempel-ziv-based compressed text indices. ACM
Journal of Experimental Algorithmics (JEA), 15(1.5), 2010.

[BBH+98] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S. Venkatasubra-
manian. The Connectivity Server: Fast access to linkage information
on the Web. In Proc. of the 7th World Wide Web Conference (WWW),
pages 469–477, 1998.

261

262 Bibliography

[BC08] G. Buehrer and K. Chellapilla. A scalable pattern mining approach to
web graph compression with communities. In Proc. 1st ACM Interna-
tional Conference on Web Search and Data Mining (WSDM), pages
95–106, 2008.

[BCF+11] N. R. Brisaboa, F. Claude, A. Fariña, G. Navarro, A. Places, and
E. Rodríguez. Word-based self-indexes for natural language text.
Manuscript, 2011.

[BCN09] N. R. Brisaboa, A. Cerdeira, and G. Navarro. A compressed self-
indexed representation of XML documents. In Proc.of the 13th Eu-
ropean Conference on Digital Libraries (ECDL), LNCS 5714, pages
273–284, 2009.

[BCN10] J. Barbay, F. Claude, and G. Navarro. Compact rich-functional binary
relation representations. In Proc. of the 9th Latin American Sympo-
sium on Theoretical Informatics (LATIN), LNCS 6034, pages 170–183,
2010. To appear.

[BCSV04] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler: A scal-
able fully distributed web crawler. Software: Practice and Experience
(SPE), 34(8):711–726, 2004.

[BCW84] T. Bell, J. Cleary, and I. Witten. Data compression using adaptive
coding and partial string matching. IEEE Transactions on Commu-
nications, 32(4):396–402, 1984.

[BCW90] T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall,
New Jersey, 1990.

[BDM+05] D. Benoit, E. Demaine, I. Munro, R. Raman, V. Raman, and S. S.
Rao. Representing trees of higher degree. Algorithmica, 43(4):275–
292, 2005.

[BFLN08] N. R. Brisaboa, A. Fariña, S. Ladra, and G. Navarro. Reorganiz-
ing compressed text. In Proc. of the 31th Annual International ACM
SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR), pages 139–146, 2008.

[BFN+08] N. R. Brisaboa, A. Fariña, G. Navarro, A. Places, and E. Rodríguez.
Self-indexing natural language. In Proc. of the 15th International
Symposium on String Processing and Information Retrieval (SPIRE),
LNCS 5280, pages 121–132, 2008.

[BFNE03] N. R. Brisaboa, A. Fariña, G. Navarro, and M. Esteller. (s,c)-dense
coding: An optimized compression code for natural language text

Bibliography 263

databases. In Proc. of the 10th International Symposium on String
Processing and Information Retrieval (SPIRE), LNCS 2857, pages
122–136, 2003.

[BFNP07] N. R. Brisaboa, A. Fariña, G. Navarro, and J. Paramá. Lightweight
natural language text compression. Information Retrieval, 10:1–33,
2007.

[BGMR06] J. Barbay, A. Golysnki, I. Munro, and S. Srinivasa Rao. Adaptive
searching in succinctly encoded binary relations and tree-structured
documents. In Proc. of the 17th Annual Symposium on Combinatorial
Pattern Matching (CPM), number 4009 in LNCS, pages 24–35, 2006.

[BHMR07] J. Barbay, M. He, I. Munro, and S. Srinivasa Rao. Succinct indexes
for strings, binary relations and multi-labeled trees. In Proc. of the
18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 680–689, 2007.

[BINP03] N. R. Brisaboa, E. Iglesias, G. Navarro, and J. Paramá. An efficient
compression code for text databases. In Proc. of the 25th European
Conference on Information Retrieval Research (ECIR), LNCS 2633,
pages 468–481, 2003.

[BKM+00] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener. Graph structure in the Web.
Computer Networks, 33(1–6):309–320, 2000. Also in Proc. 9th World
Wide Web Conference (WWW).

[BLN09a] N. R. Brisaboa, S. Ladra, and G. Navarro. Directly addressable
variable-length codes. In Proc. of the 16th International Symposium
on String Processing and Information Retrieval (SPIRE), LNCS 5721,
pages 122–130, 2009.

[BLN09b] N. R. Brisaboa, S. Ladra, and G. Navarro. K2-trees for compact web
graph representation. In Proc. of the 16th International Symposium
on String Processing and Information Retrieval (SPIRE), LNCS 5721,
pages 18–30, 2009.

[BM77] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Com-
munications of the ACM (CACM), 20(10):762–772, October 1977.

[BRSV11] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks. In Proc. of the 20th international conference on World Wide
Web (WWW), 2011.

264 Bibliography

[BSTW86] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A lo-
cally adaptive data compression scheme. Communications of the ACM
(CACM), 29(4), 1986.

[BV04] P. Boldi and S. Vigna. The WebGraph framework I: Compression tech-
niques. In Proc. of the 13th International World Wide Web Conference
(WWW), pages 595–601, 2004.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data com-
pression algorithm. Technical Report 124, Digital Systems Research
Center, 1994. http://gatekeeper.dec.com/pub/DEC/SRC/research-
reports/.

[BYRN99] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Informa-
tion Retrieval. Addison-Wesley Longman, May 1999.

[CFMPN10] F. Claude, A. Fariña, M. Martínez-Prieto, and G. Navarro. Com-
pressed q-gram indexing for highly repetitive biological sequences. In
Proc. of the 10th IEEE Conference on Bioinformatics and Bioengi-
neering (BIBE), pages 86–91, 2010.

[CHLS07] H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane. Compressed
indexes for dynamic text collections. ACM Transactions on Algorithms
(TALG), 3(2):article 21, 2007.

[CKL+09] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Pan-
conesi, and P. Raghavan. On compressing social networks. In Proc.
of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 219–228, 2009.

[CL11] F. Claude and S. Ladra. Practical representations for web and social
graphs. In Proc. of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), submitted, 2011.

[Cla96] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo,
Canada, 1996.

[CM69] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric
matrices. In Proc. of the 24th ACM National Conference, pages 157–
172, 1969.

[CM05] J. S. Culpepper and A. Moffat. Enhanced byte codes with restricted
prefix properties. In Proc of the 12th International Symposium on
String Processing and Information Retrieval (SPIRE), volume 3772 of
LNCS, pages 1–12, 2005.

Bibliography 265

[CM06] J. S. Culpepper and A. Moffat. Phrase-based pattern matching in
compressed text. In Proc. of the 13th International Symposium on
String Processing and Information Retrieval (SPIRE), volume 4209 of
LNCS, pages 337–345, 2006.

[CM07] J. S. Culpepper and A. Moffat. Compact set representation for in-
formation retrieval. In Proc. of the 14th International Symposium on
String Processing and Information Retrieval (SPIRE), LNCS 4726,
pages 137–148, 2007.

[CN08] F. Claude and G. Navarro. Practical rank/select queries over arbi-
trary sequences. In Proc. of the 15th International Symposium on
String Processing and Information Retrieval (SPIRE), LNCS 5280,
pages 176–187, 2008.

[CN09] F. Claude and G. Navarro. Self-indexed text compression using
straight-line programs. In Proc. of the 34th International Symposium
on Mathematical Foundations of Computer Science (MFCS), LNCS
5734, pages 235–246, 2009.

[CN10a] R. Cánovas and G. Navarro. Practical compressed suffix trees. In
Proc. of the 9th International Symposium on Experimental Algorithms
(SEA), LNCS 6049, pages 94–105, 2010.

[CN10b] F. Claude and G. Navarro. Extended compact web graph represen-
tations. In T. Elomaa, H. Mannila, and P. Orponen, editors, Al-
gorithms and Applications (Ukkonen Festschrift), LNCS 6060, pages
77–91, 2010.

[CN10c] F. Claude and G. Navarro. Fast and compact web graph representa-
tions. ACM Transactions on the Web (TWEB), 4(4):article 16, 2010.

[CW84] John G. Cleary and Ian H. Witten. Data compression using Adaptive
coding and partial string matching. IEEE Transactions on Commu-
nications, 32(4):396–402, 1984.

[DMLT05] D. Donato, S. Millozzi, S. Leonardi, and P. Tsaparas. Mining the inner
structure of the Web graph. In Proc. of the 8th Workshop on the Web
and Databases (WebDB), pages 145–150, 2005.

[DRR06] O. Delpratt, N. Rahman, and R. Raman. Engineering the louds suc-
cinct tree representation. In Proc. of the 5th International Work-
shop on Experimental Algorithms (WEA), LNCS 4007, pages 134–145,
2006.

[Eli74] Peter Elias. Efficient storage and retrieval by content and address of
static files. Journal of the ACM (JACM), 21:246–260, April 1974.

266 Bibliography

[Fan71] R. Fano. On the number of bits required to implement an associa-
tive memory. Memorandum 61, Computer Structures Group, Project
MAC, MIT, Cambridge, Mass., 1971.

[FGNV09] P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed
text indexes: From theory to practice. ACM Journal of Experimental
Algorithmics (JEA), 13:article 12, 2009. 30 pages.

[FM05] P. Ferragina and G. Manzini. Indexing compressed text. Journal of
the ACM (JACM), 52:552–581, July 2005.

[FMMN07] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed
representations of sequences and full-text indexes. ACM Transactions
on Algorithms (TALG), 3(2):article 20, 24 pages, 2007.

[FMN09] J. Fischer, V. Mäkinen, and G. Navarro. Faster entropy-bounded
compressed suffix trees. Theoretical Computer Science (TCS),
410(51):5354–5364, 2009.

[FNP08] A. Fariña, G. Navarro, and J. Paramá. Word-based statistical com-
pressors as natural language compression boosters. In Proc. of the
18th Data Compression Conference (DCC), pages 162–171, 2008.

[FV07] P. Ferragina and R. Venturini. A simple storage scheme for strings
achieving entropy bounds. In Proc. of the 18th Annual Symposium on
Discrete Algorithms (SODA), pages 690–696, 2007.

[GGMN05] R. González, Sz. Grabowski, V. Mäkinen, and G. Navarro. Practical
implementation of rank and select queries. In Poster Proc. Volume
of 4th Workshop on Efficient and Experimental Algorithms (WEA),
pages 27–38, 2005.

[GGV03] R. Grossi, A. Gupta, and J.S. Vitter. High-order entropy-compressed
text indexes. In Proc. of 14th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 841–850, 2003.

[GHSV06] A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. Compressed data
structures: Dictionaries and data-aware measures. In Proc. of the 2006
IEEE Data Compression Conference (DCC), 2006.

[GMR06] A. Golynski, I. Munro, and S. Rao. Rank/select operations on large
alphabets: a tool for text indexing. In Proc. of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 368–373,
2006.

Bibliography 267

[GN07] R. González and G. Navarro. Compressed text indexes with fast locate.
In Proc. of the 18th Annual Symposium on Combinatorial Pattern
Matching (CPM), LNCS 4580, pages 216–227, 2007.

[Gon09] S. González. Búsquedas en paralelo sobre texto comprimido auto-
indexado. Master’s thesis, Department of Computer Science, Univer-
sity of Chile, October 2009.

[GRRR06] R. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal
representation for balanced parentheses. Theoretical Computer Science
(TCS), 368(3):231–246, 2006.

[GV00] R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. In Proc. of the 32nd
Symposium on Theory of Computing (STOC), pages 397–406, 2000.

[Hea78] H. Heaps. Information Retrieval - Computational and Theoretical As-
pects. Academic Press, NY, 1978.

[Hor80] R. N. Horspool. Practical fast searching in strings. Software: Practice
and Experience (SPE), 10(6):501–506, 1980.

[Huf52] D. A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the Institute of Radio Engineers
(IRE), 40(9):1098–1101, 1952.

[Jac89a] G. Jacobson. Space-efficient static trees and graphs. In Proc. of the
30th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 549–554, 1989.

[Jac89b] G. Jacobson. Succinct static data structures. PhD thesis, Carnegie
Mellon University, 1989.

[JSS07] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representa-
tion of ordered trees. In Proc. of the 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 575–584, 2007.

[Kin70] I. P. King. An automatic reordering scheme for simultaneous equations
derived from network systems. International Journal for Numerical
Methods in Engineering, 2:523–533, 1970.

[KKR+99] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. The Web as a graph: Measurements, models, and meth-
ods. In Proc. of the 5th Annual International Conference on Comput-
ing and Combinatorics (COCOON), LNCS 1627, pages 1–17, 1999.

268 Bibliography

[KN11] S. Kreft and G. Navarro. Self-indexing based on LZ77. In Proc. of the
22th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS, 2011. To appear.

[Kre10] S. Kreft. Self-index based on lz77. Master’s thesis, University of Chile,
2010.

[LM00] J. Larsson and A. Moffat. Off-line dictionary-based compression. Pro-
ceedings of the IEEE, 88(11):1722–1732, 2000.

[Mal76] K. Maly. Compressed tries. Communications of the ACM (CACM),
19:409–415, July 1976.

[MC07] A. Moffat and S. Culppeper. Hybrid bitvector index compression.
In Proc. of the 12th Australasian Document Computing Symposium
(ADCS), pages 25–31, 2007.

[MK95] A. Moffat and J. Katajainen. In-place calculation of minimum-
redundancy codes. In S.G. Akl, F. Dehne, and J.-R. Sack, editors,
Proc. of the Workshop on Algorithms and Data Structures (WADS),
LNCS 955, pages 393–402, 1995.

[MM93] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line
string searches. SIAM Journal on Computing (SICOMP), 22(5):935–
948, 1993.

[MN05] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length
encoding. Nordic Journal of Computing, 12(1):40–66, 2005.

[MN07] V. Mäkinen and G. Navarro. Rank and select revisited and extended.
Theoretical Computer Science (TCS), 387(3):332–347, 2007.

[MN08] V. Mäkinen and G. Navarro. Dynamic entropy-compressed sequences
and full-text indexes. ACM Transactions on Algorithms (TALG),
4(3):article 32, 2008. 38 pages.

[MNZBY98] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast search-
ing on compressed text allowing errors. In Proc. of the 21th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR), pages 298–306, 1998.

[MNZBY00] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and
flexible word searching on compressed text. ACM Transactions on
Information Systems (TOIS), 18(2):113–139, 2000.

[Mof89] A. Moffat. Word-based text compression. Software: Practice and
Experience (SPE), 19(2):185–198, 1989.

Bibliography 269

[Mof90] A. Moffat. Implementing the PPM data compression scheme. IEEE
Transactions on Communications, 38, 1990.

[Mor68] D. R. Morrison. PATRICIA—practical algorithm to retrieve informa-
tion coded in alphanumeric. Journal of the ACM (JACM), 15(4):514–
534, 1968.

[MR01] I. Munro and V. Raman. Succinct representation of balanced paren-
theses and static trees. SIAM Journal on Computing (SICOMP),
31(3):762–776, 2001.

[MT96] A. Moffat and A. Turpin. On the implementation of minimum redun-
dancy prefix codes. IEEE Transactions on Communications, 45:170–
179, 1996.

[MT02] A. Moffat and A. Turpin. Compression and Coding Algorithms. Kluwer
Academic Publishers, 2002.

[Mun96] I. Munro. Tables. In Proc. of the 16th Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS),
LNCS v. 1180, pages 37–42, 1996.

[MW94] U. Manber and S. Wu. GLIMPSE: A tool to search through entire file
systems. In Proc. of the Winter 1994 USENIX Technical Conference,
pages 23–32, 1994.

[Nav04] G. Navarro. Indexing text using the ziv-lempel trie. Journal of Discrete
Algorithms (JDA), 2(1):87–114, 2004.

[NM07] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Computing Surveys (CSUR), 39(1):article 2, 2007.

[NMN+00] G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates.
Adding compression to block addressing inverted indexes. Information
Retrieval, 3(1):49–77, 2000.

[NT00] G. Navarro and J. Tarhio. Boyer-moore string matching over ziv-
lempel compressed text. In Proc. of the 11st Annual Symposium on
Combinatorial Pattern Matching (CPM), LNCS 1848, pages 166–180,
2000.

[OS07] D. Okanohara and K. Sadakane. Practical entropy-compressed
rank/select dictionary. In Proc.of the 9th Workshop on Algorithm En-
gineering and Experiments (ALENEX), pages 60–70, 2007.

270 Bibliography

[Pag99] R. Pagh. Low redundancy in static dictionaries with o(1) worst
case lookup time. In Proc. of the 26th International Colloquium on
Automata, Languages, and Programming (ICALP), number 1644 in
LNCS, 1999.

[PBMW99] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank cita-
tion ranking: Bringing order to the web. Technical Report 1999-66,
Stanford InfoLab, November 1999. Previous number = SIDL-WP-
1999-0120.

[RGM03] S. Raghavan and H. Garcia-Molina. Representing Web graphs.
In Proc. of the 19th International Conference on Data Engineering
(ICDE), page 405, 2003.

[RKT99] S. Rajagopalan R. Kumar, P. Raghavan and A. Tomkins. Trawling
the web for emerging cyber-communities. Computer Networks, 31(11-
16):1481–1493, 1999.

[RRR02] R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In Proc. of
the 13th Annual Symposium on Discrete Algorithms (SODA), pages
233–242, 2002.

[RSWW01] K. Randall, R. Stata, R. Wickremesinghe, and J. Wiener. The LINK
database: Fast access to graphs of the Web. Technical Report 175,
Compaq Systems Research Center, Palo Alto, CA, 2001.

[RTT02] J. Rautio, J. Tanninen, and J. Tarhio. String matching with stop-
per encoding and code splitting. In Proceedings of the 13th Annual
Symposium on Combinatorial Pattern Matching (CPM), pages 42–52,
2002.

[Sad03] K. Sadakane. New text indexing functionalities of the compressed
suffix arrays. Journal of Algorithms, 48(2):294–313, 2003.

[Sam06] H. Samet. Foundations of Multidimensional and Metric Data Struc-
tures. Morgan Kaufmann Publishers Inc., 2006.

[SC07] T. Strohman and B. Croft. Efficient document retrieval in main mem-
ory. In Proc. of the 30th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR),
pages 175–182, 2007.

[Sil07] F. Silvestri. Sorting out the document identifier assignment prob-
lem. In Proc. of the 29th European Conference on IR Research (ECIR,
pages 101–112, 2007.

Bibliography 271

[Sir10] J. Sirén. Sampled longest common prefix array. In Proc. of the
21th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS 6129, pages 227–237, 2010.

[SK64] E. S. Schwartz and B. Kallick. Generating a canonical prefix encoding.
Communications of the ACM (CACM), 7(3):166–169, 1964.

[Sol07] D. Solomon. Variable-length codes for data compression. Springer-
Verlag, 2007.

[ST07] P. Sanders and F. Transier. Intersection in integer inverted indices. In
Proc. of the 9th Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 71–83, 2007.

[STKA07] H. Saito, M. Toyoda, M. Kitsuregawa, and K. Aihara. A large-scale
study of link spam detection by graph algorithms. In Proc. of the 3rd
International Workshop on Adversarial Information Retrieval on the
Web (AIRWeb), page 48, 2007.

[Sto88] J. Storer. Data Compression: Methods and Theory. Addison Wesley,
Rockville, Md., 1988.

[SW49] C. E. Shannon and W. Weaver. A Mathematical Theory of Commu-
nication. University of Illinois Press, Urbana, Illinois, 1949.

[SWYZ02] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Compression of
inverted indexes for fast query evaluation. In Proc. of the 25th Annual
International ACM SIGIR conference on Research and development
in information retrieval (SIGIR), pages 222–229, 2002.

[SY01] T. Suel and J. Yuan. Compressing the graph structure of the Web.
In Proc. of the 11th Data Compression Conference (DCC), pages 213–
222, 2001.

[TM97] A. Turpin and A. Moffat. Fast file search using text compression. In
Proc. of the 20th Australasian Computer Science Conference (ACSC),
pages 1–8, 1997.

[Vig08] S. Vigna. Broadword implementation of rank/select queries. In Proc.
of the 5th Workshop on Experimental Algorithms (WEA), pages 154–
168, 2008.

[Vit87] J. S. Vitter. Design and analysis of dynamic huffman codes. Journal
of the ACM (JACM), 34:825–845, October 1987.

272 Bibliography

[Vit01] J. Vitter. External memory algorithms and data structures: deal-
ing with massive data. ACM Computing Surveys (CSUR), 33(2):209–
271, 2001. Version revised at 2007 from http://www.cs.duke.edu/

∼jsv/Papers/Vit.IO_survey.pdf.

[Wel84] T. A. Welch. A technique for high performance data compression.
Computer, 17(6):8–20, June 1984.

[WMB99] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Morgan
Kaufmann Publishers, New York, 2nd edition, 1999.

[WNC87] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compression. Communications of the ACM (CACM), 30(6):520–540,
1987.

[WZ99] H. E. Williams and J. Zobel. Compressing integers for fast file access.
The Computer Journal (COMPJ), 42(3):193–201, 1999.

[Zip49] G. K. Zipf. Human Behavior and the Principle of Least Effort.
Addison-Wesley (Reading MA), 1949.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 23(3):337–343,
1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory,
24(5):530–536, 1978.

[ZMR98] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus sig-
nature files for text indexing. ACM Transactions on Database Systems
(TODS), 23(4):453–490, 1998.

	Introduction
	Motivation
	Contributions
	Structure of the thesis

	Previous concepts
	Concepts of Information Theory
	Entropy in context-dependent messages

	Redundancy and Data Compression
	Classic Huffman Code
	Classification of compression techniques
	Measuring the efficiency of compression techniques

	Rank and select data structures
	Rank and select over binary arrays
	Rank and select over arbitrary sequences

	I Directly Addressable Variable-Length Codes
	Introduction
	Encoding Schemes for Integers
	Vbyte coding

	Previous Solutions to Provide Direct Access
	The classical solution: Sparse sampling
	Dense sampling
	Elias-Fano representation of monotone sequences

	Our proposal: Directly Addressable Codes
	Conceptual description
	Implementation considerations

	Minimizing the space
	Optimization Problem
	Optimization Algorithm
	Limiting the number of levels

	Applications and experiments
	Influence of the parameter b
	Applications
	LCP array representation
	High-Order Entropy-Compressed Sequences
	Natural language text compression

	Other experimental results

	Discussion
	Main contributions
	Interest of the rearrangement

	Other Applications

	II Reorganizing Compressed Text
	Introduction
	Natural Language Text Compression
	Word-based Bytewise Encoders
	Plain Huffman
	Tagged Huffman
	End-Tagged Dense Code
	Restricted Prefix Byte Codes

	Indexing
	Inverted Index
	Compressed inverted indexes

	Suffix arrays
	Self-indexes

	Our goal

	Our proposal: Byte-Oriented Codes Wavelet Tree
	Conceptual description
	Algorithms
	Construction of BOC-WT
	Random extraction
	Full text retrieval
	Searching

	Experimental evaluation
	Experimental framework
	Implementation details
	Evaluating the compression properties
	Searching and displaying
	Influence of the snippet length on extract operation
	Locating phrase patterns versus list intersection

	BOC-WT versus inverted indexes
	BOC-WT versus other self-indexes
	BOC-WT versus word-based Wavelet Trees
	Comparison with word-based self-indexes
	Comparison with word-based preprocessed full-text self-indexes

	Discussion
	Main contributions
	Other Applications
	A compressed self-indexed representation of XML documents
	Searching document collections

	III Compact Representation of Web Graphs
	Introduction
	Motivation
	Basic concepts on Web graphs
	State of the art
	Boldi and Vigna: WebGraph Framework
	Claude and Navarro: Re-Pair Based Compression
	Asano, Miyawaki and Nishizeki
	Buehrer and Chellapilla: Virtual Node Miner
	Apostolico and Drovandi: Compression by Breadth First Search

	Our goal

	Our proposal: k2-tree representation
	Conceptual description
	Navigating with a k2-tree

	Data structures and algorithms
	Data structures
	Space analysis

	Finding a child of a node
	Navigation
	Time analysis

	Construction

	A hybrid approach
	Extended functionality
	Single link retrieval
	Range queries

	An enhanced variation of the k2-tree technique
	Using DACs to improve compression
	Partition of the adjacency matrix

	Experimental evaluation
	Experimental framework
	Comparison between different alternatives
	Comparison with other methods
	Space usage
	Retrieval times

	Extended functionality performance
	Single link retrieval
	Range searches

	Comparison of the behavior between random graphs and Web graphs
	Discussion

	Discussion
	Main contributions
	Other Applications
	A Compact Representation of Graph Databases

	Future work

	IV Thesis Summary
	Conclusions and Future Work
	Summary of contributions
	Future work

	Publications and other research results
	Bibliography

