
UNIVERSIDADE DA CORUÑA

DEPARTAMENTO DE COMPUTACIÓN

DUALGRID:

A CLOSED REPRESENTATION SPACE

FOR CONSISTENT SPATIAL DATABASES

Tesis Doctoral
A Coruña, Septiembre 2012

Autor: José Antonio Cotelo Lema
Directores: Dr. Miguel Ángel Rodríguez Luaces

Prof. Dr. Ralf Hartmut Güting

Autor: José Antonio Cotelo Lema
Título: Dualgrid: A closed representation space for consistent spatial databases
Departamento: Computación
Directores: Dr. Miguel Ángel Rodríguez Luaces

Prof. Dr. Ralf Hartmut Güting
Año: 2012

PhD Thesis directed by:

Dr. Miguel Ángel Rodríguez Luaces
Departamento de Computación
Facultade de Informática
Universidade da Coruña
15071 A Coruña (Spain)
Tel: +34 981 167000 ext. 1254
Fax: +34 981 167160
luaces@udc.es

Prof. Dr. Ralf Hartmut Güting
LG Datenbanksysteme für neue Anwendungen
FernUniversität in Hagen
Postfach 940
D-58084 Hagen
Germany
Tel: +49 (2331) 987 4279
Fax: +49 (2331) 987 4278
rhg@fernuni-hagen.de

A Noelia, Rubén e Irene

Abstract

In the past decades, much effort has been devoted to the integration of spatial
information within more traditional information systems. To support such integration,
spatial data representation technology has been intensively improved, from conceptual
and discrete models for data representation and query languages, to indexing and
visualization technologies and interoperability standards. As a result of all these efforts,
Geographic Information Systems (GIS) are nowadays a widely used technology.

The existing spatial databases technology provides standardized data models
and operations [OGC06], based on conceptually solid spatial algebras. However,
translating such conceptual models into physical models suitable for their
implementation on computers, where only finite precision representations of the space
can be used, becomes a difficult task. As a result, the current implementations of
physical models are generally severely limited when compared to their conceptual
counterparts. They attempt to provide an implementation fulfilling the original
conceptual algebras, but at the physical level they cannot further ignore the problems
of robustness and topological correctness arising from the use of finite precision
numbers for representing spatial coordinates. This results in deceptive physical algebra
implementations because they break most of the properties of the conceptual algebra
that they rely on. More specifically, the physical models do not remain closed under
the data types and operations of the algebra, and the solutions applied to address
this problem, usually some kind of approximated result, do not fulfill the properties
expected from the affected operation. The consequence is that the physical models
fail to provide consistent implementations for the spatial operations. This makes
development of applications that rely on the properties of the conceptual model (e.g.,
spatial analysis applications) much more complex, if not impossible. Moreover, even
the implementation of the physical model itself becomes more complex, as it can
not rely anymore on the theoretical basis of the conceptual model it is supposed to
implement.

ii

The main goal of this research work is to provide a framework to develop spatial
database extensions capable of fulfilling the key properties of the conceptual spatial
algebra they implement. At the same time, the proposed framework meets the
constraints imposed by nowadays real world GIS applications in terms of performance
and resource requirements, as well as interoperability with existing applications and
standards.

To achieve this goal, we first analyze the current state of the art in spatial
information representation. The main focus is on the way the different approaches deal
with the limitations imposed by computers and the effects that these solutions have in
the properties of the conceptual model they intend to implement. Second, we study
the sources of these problems and propose a well-grounded physical model framework
(called Dualgrid) to guarantee that the implementations of spatial algebras keep their
key properties from the perspective of the user application. We also provide an example
of such an implementation and experimental results on how such a framework solves
the consistency and even the implementation problems of an existing and widely used
spatial database extension. Third, we revisit our framework to extend its properties
(DualgridFF) so that it is able to meet the additional restrictions imposed by current
spatial applications, tools and interoperability standards (OGC).

Resumen

En las últimas décadas se ha dedicado un significativo esfuerzo a la integración de las
tecnologías de Sistemas de Información Geográfica (SIG) con sistemas de información
más tradicionales. Para dar soporte a esa integración la tecnología de representación
de datos espaciales ha sido mejorada en múltiples aspectos, desde los modelos
(conceptuales y discretos) de representación de datos y lenguajes de consulta a las
tecnologías de indexación y visualización y a los estándares de interoperabilidad. Como
resultado de estos esfuerzos, la tecnología de Sistemas de Información Geográfica es
ampliamente utilizada en la actualidad en todo tipo de aplicaciones.

Las tecnologías de bases de datos espaciales actuales ofrecen modelos de datos
y operaciones estandarizados [OGC06], inspirados en álgebras espaciales con unas
bases conceptuales sólidas. En contraste, las implementaciones existentes en la
actualidad sufren severas limitaciones (en comparación con los modelos conceptuales
que pretenden soportar), resultantes de las dificultades inherentes a traducir esos
modelos conceptuales en modelos físicos susceptibles de su implementación en
ordenadores, donde es necesario usar espacios de representación de precisión finita.
A pesar del esfuerzo por ofrecer implementaciones que cumplan con el álgebra
conceptual original, no es posible seguir ignorando a nivel físico los problemas de
robustez y corrección topológica que surgen del uso de números de precisión finita para
la representación de las coordenadas espaciales. El resultado son implementaciones
que sólo cumplen en apariencia con las álgebra conceptuales originales, pero que
en realidad incumplen la mayor parte de las propiedades en que están basadas esas
álgebras. Más específicamente, los modelos físicos no mantienen sus propiedades de
cierre bajo el conjunto de tipos de datos y operaciones implementados, y las soluciones
aplicadas para solventarlo, normalmente algún tipo de resultado aproximado, no
cumplen con las propiedades esperadas de la operación en cuestión. En consecuencia,
el modelo físico resultante no es capaz de ofrecer una implementación consistente
de las operaciones espaciales ofrecidas a los usuarios. Como resultado, el desarrollo
de aplicaciones basadas en las propiedades del modelo conceptual (por ejemplo,

iv

aplicaciones de análisis espacial) se vuelve mucho más difícil, si no imposible. De
hecho, incluso la implementación del propio modelo físico se vuelve mucho más
compleja, al no poder apoyarse ni siquiera en las bases teóricas del modelo conceptual
que se supone se está implementando.

El objetivo principal de esta tesis es sentar las bases para el desarrollo de
extensiones de bases de datos espaciales capaces de cumplir las propiedades clave
del álgebra espacial conceptual en la que se basan, teniendo en cuenta además las
restricciones impuestas por la realidad de las aplicaciones GIS actuales en términos
de rendimiento y consumo de recursos y de interoperabilidad con las aplicaciones y
estándares existentes.

Para alcanzar dicho objetivo, se analiza primero el estado del arte actual en
representación de información espacial, prestando especial atención a las limitaciones
impuestas por los ordenadores y los efectos que esas soluciones tienen en el
(in)cumplimiento de las propiedades del modelo conceptual. En segundo lugar, se
estudian las raíces de esos problemas y se propone un marco teórico para el diseño
de modelos físicos (Dualgrid) que garantiza que las implementaciones de álgebras
espaciales basadas en él mantienen las propiedades clave desde el punto de vista
de las aplicaciones de usuario. Como prueba de concepto, se muestra un ejemplo
de una implementación basada en Dualgrid y resultados experimentales mostrando
cómo su uso soluciona los problemas de consistencia y (incluso) de implementación
de una extensión de bases de datos espaciales ampliamente utilizada. En tercer
lugar, se revisita dicho modelo para extender sus propiedades (DualgridFF) con el
fin de hacer posible el cumplimento de las restricciones adicionales (en términos
de rendimiento, espacio de almacenamiento e interoperabilidad) impuestas por las
aplicaciones, tecnologías GIS y estándares de interoperabilidad (OGC) existentes.

Resumo

Nas últimas décadas tense adicado un esforzo significativo á integración das
tecnoloxías de Sistemas de Información Xeográfica (SIX) con sistemas de información
mais tradicionais. Para dar soporte a esa integración a tecnoloxía de representación
de datos espaciais ten sido mellorada en numerosos aspectos, dende os modelos
(conceptuais e discretos) de representación de datos e linguaxes de procura ata as
tecnoloxías de indexación e visualización e os estándares de interoperabilidade. Como
resultado destes esforzos, as tecnoloxías de Sistemas de Información Xeográfica son
amplamente utilizadas na actualidade en todo tipo de aplicacións.

As tecnoloxías de bases de datos espaciais actuais ofrecen modelos de datos e
operacións estandarizados [OGC-SFS], inspirados en álxebras espaciais con unhas
bases conceptuais sólidas. Por contra, as implementacións existentes na actualidade
sofren severas limitacións (en comparación cos modelos conceptuais que pretenden
soportar), resultantes das dificultades inherentes a traducir eses modelos conceptuais
en modelos físicos susceptíbeis da súa implementación en ordenadores, onde é preciso
usar espazos de representación de precisión finita. A pesar dos esforzos por ofrecer
implementacións que cumpran coas álxebras conceptuais orixinais, non é posible
seguir ignorando a nivel físico os problemas de robustez e corrección topolóxica que
xorden do uso de números de precisión finita para a representación das coordenadas
espaciais. O resultado son implementacións que sómente cumpren en aparencia coas
álxebra conceptuais orixinais, pero que en realidade incumpren a maior parte das
propiedades en que están baseadas esas álxebras. Mais especificamente, os modelos
físicos non manteñen as súas propiedades de peche baixo o conxunto de tipos de datos
e operacións implementados, e as solucións aplicadas para solventalo, normalmente
algún tipo de resultado aproximado, non cumpren coas propiedades esperadas da
operación en cuestión. En consecuencia, o modelo físico resultante no é capaz
de ofrecer unha implementación consistente das operacións espaciais ofrecidas aos
usuarios. Como resultado, o desenvolvemento de aplicacións baseadas nas propiedades
do modelo conceptual (por exemplo, aplicacións de análise espacial) tornase moito

vi

mais difícil, se non imposible. De feito, incluso a implementación do propio modelo
físico se fai moito mais complexa, ao non poder apoiarse nin sequera nas bases teóricas
do modelo conceptual que se supón se está implementando.

O obxectivo principal de esta teses é sentar as bases para o desenvolvemento de
extensións de bases de datos espaciais capaces de cumprir coas propiedades clave da
álxebra espacial conceptual na que se basean, tendo en conta ademais as restricións
impostas por a realidade das aplicacións SIX actuais en termos de rendemento e
consumo de recursos e de interoperabilidade coas aplicacións e estándares existentes.

Para acadar o devandito obxectivo, analizase primeiro o estado da arte actual en
representación de información espacial, prestando especial atención as limitacións
impostas por os ordenadores e os efectos que esas solucións teñen no (in)cumprimento
das propiedades do modelo conceptual. En segundo lugar, estúdanse as raices de eses
problemas e proponse un marco teórico para o deseño de modelos físicos (Dualgrid)
que garante que as implementacións de álxebras espaciais baseadas en el manteñen as
propiedades clave dende o punto de vista das aplicacións do usuario. Como proba
de concepto, amosase un exemplo de unha implementación baseada en Dualgrid
e resultados experimentais mostrando como o seu uso soluciona os problemas de
consistencia e (incluso) de implementación de unha extensión de bases de datos
espaciais amplamente utilizada. En terceiro lugar, revisítase o devandito modelo para
estender as súas propiedades (DualgridFF) coa fin de facer posible o cumprimento
das restricións adicionais (en termos de rendemento, espazo de almacenamento e
interoperabilidade) impostas por as aplicacións, tecnoloxías SIX e estándares de
interoperabilidade (OGC) existentes.

Acknowledgements

I would like to thank all those who, directly or indirectly, have helped this thesis come
to be written. Especially, to Ralf Hartmut Güting, Nieves Rodríguez Brisaboa, Miguel
Rodríguez Luaces, Roberto Creo Hombre, Miguel Rodríguez Penabad and my family.

Also, I would like to thank the Databases Lab at University of A Coruña, the
Datenbanksysteme für neue Anwendungen group at FernUniversität Hagen and the
CHOROCHRONOS project. Had they not existed, this thesis would not have existed
either.

Agradecimientos

Mis agradecimientos a todos aquellos que, directa o indirectamente, han ayudado a que
esta tesis llegase a ser escrita. En especial, a Ralf Hartmut Güting, Nieves Rodríguez
Brisaboa, Miguel Rodríguez Luaces, Roberto Creo Hombre, Miguel Rodríguez
Penabad y mi familia.

Igualmente, al Laboratorio de Bases de Datos de la Universidad de A Coruña,
al grupo Datenbanksysteme für neue Anwendungen de la FernUniversität Hagen y al
proyecto CHOROCHRONOS. Si no hubiesen existido, esta tesis tampoco lo habría
hecho.

Contents

1 Introduction 1
1.1 Background and motivation . 1
1.2 Goals . 7
1.3 Scope and relevance . 8
1.4 Thesis outline . 9

2 State of the art 11
2.1 Geographic Information Systems and Spatial Information Modeling . 11
2.2 Abstract spatial models . 16
2.3 Discrete spatial models . 18
2.4 Physical spatial models . 21

2.4.1 Commercial approaches . 23
2.4.1.1 PostGIS . 24
2.4.1.2 Oracle Spatial . 25
2.4.1.3 Microsoft SQL Server 28

2.4.2 The ROSE Algebra: Realms 28
2.5 Analysis and conclusions . 32

3 Consistency of spatial operations 35
3.1 Understanding the relevance of consistency in the development of

applications . 35
3.2 Approaches to deal with inconsistency in vectorial spatial data models 38

3.2.1 Restriction of operations . 40
3.2.2 Restriction to orthogonal boundaries 40
3.2.3 Approximated operations . 40
3.2.4 Exact representation . 41
3.2.5 Realms approach . 42

x

3.3 Comparison of consistency support in the spatial dimension 42
3.3.1 Operations classification . 43
3.3.2 Consistency analysis . 43

3.4 Conclusions . 46

4 Dualgrid 49
4.1 Definition of Dualgrid . 50
4.2 Data importation and exportation . 55
4.3 Realms and the ROSE Algebra over Dualgrid 59
4.4 PostGIS-GEOS over Dualgrid . 62
4.5 Rigorous spatial logics over Dualgrid 64
4.6 Conclusions . 65

5 Dualgrid for floats 69
5.1 Original Dualgrid drawbacks . 69

5.1.1 Interoperability . 70
5.1.2 Performance . 71

5.2 Dualgrid For Floats . 72
5.3 Implementation issues . 78

5.3.1 Storage and performance cost of DualgridFF 78
5.3.2 Performance improving tips 80
5.3.3 Interoperability . 82

5.4 Conclusions . 83

6 Conclusions and future research lines 85
6.1 Summary of contributions . 85
6.2 Future work . 87

A Spatial inconsistencies example 91
A.1 Intersection test in Oracle Spatial . 91

A.1.1 Oracle commands . 92
A.2 Intersection test in PostgreSQL/PostGIS 95

A.2.1 PostgreSQL/PostGIS commands 95
A.3 Intersection test in SQL Server . 97

A.3.1 SQL Server commands . 98

B Publications and other research achievements 101

xi

C Descripción del trabajo presentado 107
C.1 Introducción . 107
C.2 Metodología utilizada . 109
C.3 Conclusiones y contribuciones . 111
C.4 Trabajo futuro . 113

List of Figures

2.1 Examples of geographic data represented at two different scales. . . . 18
2.2 Object represented using (a) raster, (b) vectorial or (c) constraint

databases models. 20
2.3 Two segments with end-points having integer coordinates. Their

intersection point has non-integer coordinates. 21
2.4 Example of objects over a realm. a) Elements in a realm. b) Some

objects over the realm. 29
2.5 Redrawing of a segment S. 30

3.1 Example of errors in intersection operations due to space discretization
and approximation. 37

4.1 Construction of a Realm with the arguments of a ROSE operation. a)
Non realm-based arguments. b) Realm-based arguments. 61

4.2 Replacement of Realms by a preprocessing step before applying an
operation. 62

5.1 Example of points belonging to GPF and GPI and segments belonging
to GSF and GSI . 74

5.2 Examples of DualgridFF points and polylines. 76

A.1 Simple set-theory test. 92

List of Tables

3.1 Consistency properties of operations for each data model in the spatial
domain. 44

4.1 Original PostGIS vs Dualgrid PostGIS. 63
4.2 Consistency properties of operations for each data model in the spatial

domain. 66

5.1 Original PostGIS vs Dualgrid-PostGIS performance comparative. . . 72
5.2 Percentage of new points generated by spatial operations. 79

A.1 Table test_regions in Oracle after inserting both geometries and their
intersection. 92

A.2 Oracle answers to the contains test. 93
A.3 Table test_regions in PostgreSQL/PostGIS after inserting both

geometries and their intersection. 95
A.4 PostgreSQL/PostGIS answers to the contains test. 95
A.5 Table test_regions in Microsoft SQL Server after inserting both

geometries and their intersection. 97
A.6 Microsoft SQL Server answers to the contains test. 98

List of Algorithms

5.1 Point-segment orientation test when P ∈ GPI 81
5.2 Point_comparison algorithm when P1 and P2 are GPI points. 82

Chapter 1

Introduction

This thesis presents the research and development work performed in the area of spatial
databases towards the definition of a physical data model that keeps the theoretical
properties of conceptual models.

To achieve this goal, we study the capability of existing spatial physical models
to reliably translate all the semantics and properties of their original spatial conceptual
models to the real world applications and spatial database extensions. Then, we analyze
the consequences of their failure to keep the conceptual model properties. After that,
we propose a new perspective to develop physical representation models that succeed
in translating the key conceptual model properties to the final implementations. Our
physical model drastically eases the use of such spatial database implementations by
GIS application developers. It also increases their capabilities to develop applications
with spatial reasoning functionalities.

1.1 Background and motivation

There has been much research effort in the last two decades on representing, querying
and exchanging spatial information in geographic information systems (GIS) and
spatial database management systems (SDBMS). This effort lead these technologies to
evolve from the original ad-hoc geographic-only applications (that were common in the
early 90s) to the nowadays standardized, interoperable and widely-used technologies
that enable applications in different domains to integrate spatial and non-spatial
information.

2 Chapter 1. Introduction

The improvement of the GIS field is mainly driven by advances in spatial
information modeling and technologies, which enable database management systems
and applications to take advantage of spatial information. The use of correct spatial
information models is fundamental for the evolution of the field, therefore, an important
research effort has been devoted to it.

The process of representing geographic information in a computer involves the
definition of a set of data models to represent real-world geographic features using
appropriate data structures. Typically, three different data models defined at three
different abstraction levels are used: the abstract spatial model (also called conceptual
model), the discrete spatial model (also called logical model) and the physical spatial
model.

The abstract spatial model describes the geographic features of the real world, the
relationships between different features and the operations that can be performed to
each feature. It uses formal concepts defined without taking into consideration the
implementation details. An example of an abstract spatial model is the ISO 19107:2003
international standard [ISO03], which defines conceptual types (e.g., curve, surface)
and operations (e.g., overlaps, touches) for geographic objects.

The discrete spatial model takes into account the limitations of a computer system
(e.g., limited memory and computing performance) to define data types and algorithms
that can be used to implement the concepts of an abstract data model. The Open
Geospatial Consortium standard for Simple Features in SQL [OGC06] is a common
example of a discrete spatial model for ISO 19107:2003. This model defines data
types such as linestring and polygon and ensure that the data types specifications are
appropriate to support the implementation of efficient algorithms (with regard to the
their algorithmic complexity) for the operations it defines.

Finally, a physical spatial model is a particular implementation of a logical model
in a specific computing environment. For example, the implementation of OGC SFS in
PostGIS [Ref10] for PostgreSQL using GEOS is a physical data model. A physical
model also defines some aspects left open by discrete models, like the particular
representation of spatial coordinates and the precision used for it.

Abstract spatial models define an algebra of spatial data types and operations with
solid theoretical properties. They ensure that these operations are closed, that is, that
the data types are powerful enough to represent any result of the spatial operations
(e.g., an abstract spatial model must ensure that the result of the intersection of any
two surface values can be represented using a surface value). Regarding the underlying
geographic space, they assume a continuous space over R3 [ISO03].

There has been much work over the last decades on the definition of abstract
spatial models, and these definitions are so mature that international standards like
the aforementioned ISO 19107:2003 have been defined and approved. However, the

1.1. Background and motivation 3

definition of discrete and physical spatial models that maintain the properties of an
abstract spatial data model has proven to be a difficult problem.

Discrete spatial models must define data types using a finite number of components,
and the designer must decide whether a computer-friendly representation is used or
not. For example, a discrete data model may represent curves using a set of linear
segments, surfaces using a set of segments to represent their boundary, and points with
a pair of numeric coordinates. If the discrete spatial model continues to assume a
continuous space, it can claim that the properties of the abstract spatial model are
maintained, but the problem of representing the spatial coordinates in a computer
(the discretization of the geographic space) is translated to the physical spatial model.
However, if the problem is addressed at the discrete spatial model by using a finite
space for coordinates (e.g., 64 bits integers or IEEE754 double-precision floating-
point numbers), then it is really difficult to maintain the properties of the abstract
spatial model. For example, it is not possible to represent the point with coordinates
(1

3 , 2
3) using double-precision floating-point numbers. Furthermore, if two segments

(e.g., S1 = ((0, 0), (1, 2)) and S2 = ((0, 1), (1, 0))) intersect at these coordinates, the
point resulting from the intersection operation cannot be represented precisely, and
subsequent predicates checking whether the point belongs to the original segments
will return false.

Spatial databases researchers have proposed several ways of addressing the
space discretization problem while trying to comply with the original spatial model
properties. Two such proposals are Realms [GS93] and the use of arbitrary precision
rational numbers [WS05].

In the Realms physical spatial model [GS93], each time a new spatial object is
inserted into the database, all boundary intersections with the existing objects are
detected. The objects involved are rewritten so that such intersection points are made
explicit in their representation. This ensures that, even if an intersection point needs
to be approximated to the underlying finite resolution space, all the involved objects
are adjusted so that such point continues to be part of their boundary. The result is
that, once the object is inserted in the database, all the spatial operations of the abstract
spatial model implemented by their proposal (the ROSE algebra [GS95]) remain closed
and coherent among them. However, this coherence is only maintained as far as no
new external objects are inserted (other than the ones resulting of spatial operations
over the already existing objects). Therefore, consistency is not guaranteed between
answers before and after an insertion. Moreover, its implementation in commercial1

databases can be problematic, because existing spatial objects can get modified without
1In the following, we will use the term commercial to refer to final product implementations in contrast

to research/experimental implementations, regardless of their business model (open source or proprietary
software).

4 Chapter 1. Introduction

user knowledge. In fact, the model implies that spatial object insertions made by a user
will cause modifications in objects over which the user may have no update (or even
read) privileges.

Some authors [WS05] propose the use of arbitrary precision rational numbers as
the underlying coordinates space. Although this would guarantee that the properties
of the original model are maintained, it imposes a big toll in performance and storage
requirements [BF09]. Therefore, no (commercial) spatial technology or DBMS has
adopted it.

Following a different approach, spatial database technology implementors
(Geomedia, ESRI, PostGIS, etc.) have systematically assumed that space discretization
problems were inherent to the discretization process and that adopting hardware-
supported representations for coordinates is a requirement (that is, integer or floating-
point numbers). The first implementations of spatial DBMS usually removed any
operation of the abstract spatial model that did not remain strictly closed under the
coordinate space used in the discrete model. However, most customers preferred
to have operations returning an approximation of the theoretical result (that could
be represented with the given data types) rather than not having the operation
at all. Therefore, current spatial DBMS implement the full set of operations of
the abstract models, using approximate versions of the problematic ones (e.g., an
intersection operation that, to be fair, should be called approximate_intersection).
With the adoption of approximate operations, they have focused on solving their own
implementation issues. For example, they usually ensure that their approximation is
still a valid spatial value after the approximation, so it can be used as the input for
another operator. They provide exact spatial predicates (implemented with algorithms
such as [ABD+97]) that guarantee that all precision issues are properly handled to
provide the correct answer for all spatial operations returning boolean values. They
also ensure that their implementation of more complex operations takes the correct
decisions. But, once they have addressed their problems, the remaining ones are left to
their users.

As shown, the development of physical spatial models that properly solve the space
discretization problems in a way suitable to be implemented in commercial DBMS
remains, despite the research efforts, unsolved. Moreover, the evolution of spatial
technologies is not driven by a coordinated effort. Instead, the improvements in spatial
technologies are being driven by different forces corresponding with the (usually not
coincident) perspectives of four collectives: spatial database researchers, commercial
spatial database technology2 developers, GIS software developers, and GIS application

2We will use the term commercial spatial database technology to refer to Spatial DBMS as well as other
technology for data management not directly related to databases, such as programming libraries and GIS

1.1. Background and motivation 5

users. In the following paragraphs we describe the points of view and motivations of
each of these four collectives. The failure to conciliate the perspectives of these four
collectives, combined with the existing open problems, undermines the evolution of
the GIS field.

Spatial database researchers tend to focus on proposing well-defined and powerful
theoretical models, without taking into account how well they can be adapted to
commercial DBMS requirements.

Commercial spatial database technology developers focus on creating database
management systems, libraries and tools. However, they are still not oriented to final
users, but rather to software developers. Therefore, they need to achieve a trade-
off between a robust model implementation, an appropriate performance, low storage
requirements, and power of their implementations. In addition to that, getting a solid
implementation is a key requirement. Hence, if they can manage to get the problem
sorted out well enough to get their code working without a sensible penalty in the
rest of aspects, it is enough for them. For the remaining part of the problem, they
can try to pass it on to the following element of the chain: GIS software developers.
Of course GIS software developers would prefer solutions that solve the problem and
avoid them any headache, but that would only make a difference in the selection of
spatial technologies if there were significant differences between solutions regarding
this issue, and not just “different flavors of tricks”.

GIS software developers need to provide final users with the functionalities they
require. They can hardly ignore the problem or move it to the user, because their
software is the one expected to do spatial reasoning. For example, if a user just
needs to know which pieces of land are adjacent to a given one, we could draw a
map of the area around the given piece of land and let him select the adjacent ones.
This way, the application itself does not need to implement the detection method.
But if the application itself needs such information to compute the result the user
needs (for example, to select the pieces of land adjacent to the ones that meet some
criteria), then it should find it out by itself, and can not “pass the problem” on to
the user. Therefore, GIS software developers would like to use spatial technologies
that do exactly what they are expected, and that comply, as much as possible, with
the original abstract model (which was, in fact, designed having the functionality
requirements of GIS software developers in mind). The less the spatial technologies
comply with the abstract model, the bigger the problems they will have when they try to
get their applications working. Just for a moment, think of implementing a simple small
program based in a programming language that has approximate boolean operations

development tools. They are grouped together because their developers share a common perspective with
regard to spatial models that plays, in fact, a big role in their common priorities.

6 Chapter 1. Introduction

(which 1 in 100 times return false for a = a), approximate counters (you can try to
implement a loop using floating-point-based counters) or approximate ifs (which in
fact are the result of an if with an approximate boolean operation). It would probably
be funny, as long as you do not have the client waiting for it and your boss accounting
the hours.

Finally, GIS application users (as any application user) need the applications to
provide them with the functionalities they require. The implementation details are
irrelevant as long as they have an acceptable performance, they behave as expected,
and they get the work done. GIS application users will usually be non-expert users
in spatial technologies, and they need the applications to behave in a predictable and
intuitive way.

Current commercial spatial DBMS/technology implementations break the main
properties of the abstract data model, either because they implement an ill-defined
discrete data model, or because they had to address somehow the space discretization
needs that the discrete data model avoided to address. As a result, their users
(GIS software developers) can no longer rely on such properties when developing
their applications. This is not a minor problem, because the abstract data model
properties had been carefully chosen to model the reality. If the basic properties
are not maintained, the simplest spatial reasoning algorithms become difficult to
implement. For instance, suppose that a basic set-theory property is not maintained
due to closure problems between data types and operations, which is fairly common in
commercial spatial database technology implementations. If the intersection point of
two segments P = S1∩S2 cannot always be represented, and hence we just represent an
approximation P′, it turns out that when we need to check which segments P′ belongs
to, we could get that neither S1 nor S2 contain it. Similarly, if no consistency is provided
among operations, it is possible to get false when testing whether A∩B ∈ A3. With
these incoherencies, it is really difficult to implement any spatial reasoning support in
GIS applications. As a result, the implementation of spatial reasoning functionality
tends to be unusual in GIS applications.

This thesis focuses on covering the gap that exists between the research work
on discrete spatial models and the implementations in commercial spatial database
management systems. First, it analyzes the properties that a physical spatial data model
needs to fulfill to be able to implement a discrete spatial data model without breaking
its closure properties, that is, to ensure that the result of any operation of the discrete
model continues to be representable at the physical model. Second, it proposes two new
physical spatial data models, called Dualgrid and Dualgrid For Floats (DualgridFF),

3Some of the current commercial spatial DBMS/technology implementations (e.g., Geomedia by
Intergraph) try at least to do a small effort and, for example, for any two segments s1 and s2 the test
s1 ∩ s2 ∈ s1returns always true.

1.2. Goals 7

which succeed in maintaining the closure properties at the physical level. Dualgrid
defines a finite resolution representation space that guarantees all the properties
required to keep the discrete data model closed. DualgridFF goes a step forward,
meeting the additional requirements of real commercial databases and technologies.
DualgridFF represents a trade-off between the needs of spatial database researchers,
commercial spatial database technology developers, GIS software developers and GIS
application users. It provides a solid physical representation model that succeeds in
keeping the main properties of the original abstract and discrete vectorial models.
This way, spatial DBMS and technology implementors can easily translate them to
their implementations whereas the behavior of the operations is kept intuitive and
well-defined. This should allow application developers to focus on the problems they
have to solve (the applications). At the same time, its design makes it possible to
implement them without expensive performance and storage costs. It also illustrates
how important is to have into account all stakeholders4 needs when designing physical
data models.

1.2 Goals
The problems presented in the previous section motivated the primary goal of this
thesis: to improve the applicability of research works in discrete spatial models
to commercial databases and technologies, allowing technology developers to avoid
dealing with spatial model closure problems. This will improve the applicability of
those technologies and spread the use of spatially enabled applications with spatial
reasoning capabilities.

To achieve this, we need to reach the following specific goals:

• Analyze the problems that are generated when a discrete/physical spatial data
model breaks the original abstract model properties.

• Identify the issues that have to be addressed by the physical spatial data model
to keep the properties of the discrete and abstract data models.

• Propose a first physical spatial data model that allows to recover the properties
of the abstract spatial model that were lost in the implementation, while at the

4The term stakeholders is used in business to refer to all parts which have some impact from/to business
operations. In this case, we use it to refer to all the parts that are affected by the decisions taken at the physical
model. As it happens with business stakeholders, physical model stakeholders needs should be taken into
account, as the positive and negative impacts that design decisions could take on their needs will drive their
own decisions. The different stakeholders interests not being aligned will jeopardize the possibilities of the
proposed model to have a real impact in final users.

8 Chapter 1. Introduction

same time trying to require as few changes as possible in the data structures and
algorithms that are already implemented.

• Propose a second physical spatial data model that allows to keep the properties of
the abstract spatial model and at the same time can be efficiently implemented in
new commercial spatial databases and technologies, or efficiently incorporated
into existing ones through more extensive changes in their data structures and
algorithms.

1.3 Scope and relevance

Spatial databases technology has reached a high level of maturity. Nowadays
all relevant database management systems (PostgreSQL, MySQL, Oracle, DB2,
Microsoft SQL Server, Informix, etc.) provide spatial data types and operations,
usually implementing widely accepted spatial standards (SFS, ISO SQL/MM, etc.).
However, all existing implementations suffer a common base problem: they are not
robust/consistent, in the sense that they fail to fulfill even the more basic theoretical
properties of the abstract model they intend to implement.

This thesis makes three main contributions to the field:

1. It establishes the basic properties that a physical spatial model needs to meet to
ensure that it is able to correctly implement a vectorial discrete model without
breaking its theoretical properties.

2. It defines the Dualgrid representation space, designed to reincorporate to existing
spatial implementations (e.g., ROSE algebra, PostGIS/GEOS, etc.) those
robustness/consistency properties originally lost when implementing the discrete
model.

3. It defines the DualgridFF physical spatial model, aimed at the implementation of
new spatial databases and technologies. It provides all the benefits of Dualgrid
while allowing the implementation of commercial quality spatial models, in
terms of performance, storage overload and interoperability.

That is, the contributions of this thesis allow a qualitative improvement on spatial
databases/technologies that should provide developers of spatially-enabled applications
with the solid grounds they are demanding.

1.4. Thesis outline 9

1.4 Thesis outline
Chapter 2 studies the current state of the art in geographical information systems and
spatial representation. It outlines the requirements of modern geographical information
systems, and gives an introduction to the more common spatial representation
models. Although it focuses in vectorial representations, other representation models
(constraint databases, raster, etc.) are presented. For each of them, the chapter
describes how physical models address the discretization problems, as well as the
impact that such decisions have from the user applications perspective.

Chapter 3 analyzes in detail the spatial operations consistency provided by the more
common physical representation models.

Chapter 4 focuses on the key reasons for such inconsistencies and proposes a new
physical model framework to provide spatial databases implementations that fulfill the
requirements of their conceptual model counterpart.

Chapter 5 goes a step forward, and revisits the proposed physical model to
incorporate the restrictions imposed by current commercial GIS applications and
standards, so that the proposed physical model is suitable for its use in commercial
spatial databases and technologies.

Finally, Chapter 6 concludes the thesis and points to future research directions.

Chapter 2

State of the art

This section shows an overview of the state of the art in geographic information systems
(GIS) and spatial data representation. It gives an introduction to the GIS field, and more
specifically to the more relevant spatial representation models. The section also shows
how the different spatial physical models address the discretization of the space (i.e.,
the representation of spatial coordinates using finite-size representations) and how they
handle the problems that arise from it. Furthermore, it also highlights the impact of
those decisions from the perspective of the user applications. Finally, this state of the
art focuses mainly in vectorial representation models, as they are widely used in GIS
applications, which are specially affected by the space discretization problems.

2.1 Geographic Information Systems and Spatial
Information Modeling

The exponential improvement in the performance of computer systems and the
advances in spatial information modeling in the last decades have made possible
the appearance of new tools (Geographic Information Systems, GIS for short) to
manipulate the geographic properties of objects and to represent them in a graphical
way as a map on a computer screen.

Geographic Information Systems are more than just cartographic tools to produce
maps because they are a step forward over traditional information systems. They offer
an appropriated environment for capturing, storing and managing both alphanumeric
and geographic information, and they provide tools for processing and analyzing them
together. By geographic information we mean here information about the spatial

12 Chapter 2. State of the art

properties of objects. This information can be as simple as the position in the map
of all the hospitals of a country or as complex as the partition of the country’s land
with regard to the kind of vegetation that grows on it.

According to [BM98], any GIS application should provide certain functionalities
that can be classified as follows:

1. Data input and verification. This covers all aspects of capturing and verifying
the correctness of geographic data, as well as their conversion to digital form.

2. Data storage and management. This functionality deals with all the aspects
related to the structure and organization of geographic information. It must
take into account both the way the geographic information is perceived by the
users (abstract model) and the way it is handled by the computers (discrete and
physical models).

3. Data transformation and analysis. This functionality is covered by the processes
for editing the information (to keep it up to date or to remove errors) and for
analyzing it. Data analysis is one of the main tasks of GIS, and it consists in
the application of analysis methods to the information to achieve answers to the
questions posed by the users.

4. Data output and presentation. The functionality of producing maps and map-
based material is a highly distinctive feature of GIS compared with a general
purpose information system. Together with the analysis techniques, this is the
aspect that differs the most from traditional information systems.

A GIS must allow the efficient exploitation of all the information it manages, not
only providing spatial operations for geographic data, but also allowing to analyze
and browse these data graphically, and allowing the identification of geographic
relationships between objects. Examples of application domains for GIS are, among
others, cadastre management, sanitation and communication networks, computer
assisted navigation, and decision support systems. Some of them have even become
highly popular among home users in the last decade:

• Online mapping services and applications as Google Maps (http://maps.
google.es), Microsoft Bing Maps (http://www.bing.com/maps/) or Yahoo!
Maps (http://maps.yahoo.com/) have popularized the access to worldwide
maps with a detail never dreamed a decade ago.

• GPS Navigation software (to be run on dedicated GPS devices and/or
in modern general-purpose smartphones with GPS support) has become a

http://maps.google.es
http://maps.google.es
http://www.bing.com/maps/
http://maps.yahoo.com/

2.1. Geographic Information Systems and Spatial Information Modeling 13

common tool for route planning, for both commercial and domestic daily
use. TOMTOM (http://www.tomtom.com/), Navman (http://www.navman.
com/), ROUTE66 (http://www.66.com/route66/) and iGo (http://www.
igomyway.com/) are a few examples.

• Content geolocation is starting to become common. Examples are the
geolocation-oriented photo sharing services Flickr (http://www.flickr.
com/) and Panoramio (http://www.panoramio.com/), or the persons
geolocation services Google Latitude (http://www.google.com/mobile/
latitude/) and Foursquare (http://www.foursquare.com/).

It is important to distinguish clearly between a GIS application and a tool to develop
GIS applications (herein GIS development tool). GIS development tools provide
developers with the capabilities required for capturing, storing and managing both
alphanumeric and geographic information. They are used as the basis to develop GIS
applications that provide users with an environment adapted to their specific needs.
This difference is somehow similar to the one between database management systems
(or software development tools) and information systems.

Examples of GIS development tools are:

• Spatial database management systems: database extensions to provide support
for spatial information. Examples of this type are Oracle Spatial (http://www.
oracle.com/es/products/database/options/spatial/index.html), the
commercial spatial extension for Oracle, and PostGIS (http://www.postgis.
org/), a spatial extension for PostgreSQL, released as open source software.

• Geospatial web services: services for spatial data publishing, usually following
OGC standards as WFS [OGC09], WMS [OGC06b] or WCS [OGC09b].
Examples are the open source geospatial servers GeoServer (http://www.
geoserver.org/) and MapServer (http://www.mapserver.org/).

• GIS desktop clients, as the open source GIS clients QGIS (http://www.qgis.
org/) and uDIG (http://udig.refractions.net/).

• Libraries and APIs for online spatial data visualization, as the open source
JavaScript library OpenLayers (http://www.openlayers.org/) or the Google
Maps API (http://code.google.com/apis/maps/index.html).

• Wide range GIS development platforms, trying to cover a wide range of GIS
development aspects. Example are the commercial solutions provided by ESRI
(http://www.esri.com/) and Intergraph (http://www.intergraph.com/).

http://www.tomtom.com/
http://www.navman.com/
http://www.navman.com/
http://www.66.com/route66/
http://www.igomyway.com/
http://www.igomyway.com/
http://www.flickr.com/
http://www.flickr.com/
http://www.panoramio.com/
http://www.google.com/mobile/latitude/
http://www.google.com/mobile/latitude/
http://www.foursquare.com/
http://www.oracle.com/es/products/database/options/spatial/index.html
http://www.oracle.com/es/products/database/options/spatial/index.html
http://www.postgis.org/
http://www.postgis.org/
http://www.geoserver.org/
http://www.geoserver.org/
http://www.mapserver.org/
http://www.qgis.org/
http://www.qgis.org/
http://udig.refractions.net/
http://www.openlayers.org/
http://code.google.com/apis/maps/index.html
http://www.esri.com/
http://www.intergraph.com/

14 Chapter 2. State of the art

The popularization of GIS in the last decade is illustrated by recent initiatives to
promote the interoperability of public data infrastructures and the access to free and
public spatial data sources. Two of these initiatives are INSPIRE and OpenStreetMap.

• INSPIRE (http://inspire.jrc.ec.europa.eu/) is an European Directive
(Directive 2007/2/CE) whose goal is to establish an infrastructure for spatial
information in Europe to support Community environmental policies. INSPIRE
forces the creation of public spatial data infrastructures and initially addresses
the publication of 34 spatial data themes needed for environmental applications.
The public spatial data infrastructures publish the information following widely
used OGC spatial standards.

• OpenStreetMap (http://www.openstreetmap.org/) is a collaborative project
to create a free editable map of the world. The maps are created using data from
portable GPS devices, aerial photography, other free sources or simply from local
knowledge. Both rendered images and the source vector dataset are available for
download under a Creative Commons Attribution-ShareAlike 2.0 license.

Both initiatives emphasize the needs of spatial data interchange, highlighting the
importance of semantic and technical interoperability of spatial data and tools.

The area of GIS has been widely covered by some authors from different
perspectives. [RSV01] helps researchers new to the field to get a wide understanding of
the current state of the art in spatial databases technologies, from spatial data modeling
and representation to storage, retrieval and manipulation, as well as algorithms and
indexing methods. [Wor04], on the other hand, is a good reference for computer
science professionals new to the development of spatial and GIS technologies, as it
addresses GIS from a computing perspective. For GIS users, [BM98] becomes a good
reference to understand the applications of GIS, providing a wide perspective of the
field and giving an introduction to the theoretical and technical principles that need to
be understood to work effectively and critically with GIS.

The completely different perspectives of these three books proves the existence
of different interest groups in the GIS field, such as those described in Chapter 1
(spatial database researchers, commercial spatial database technology developers, GIS
software developers, and GIS application users). Each of these groups has a different
perspective on what is highly important, what is almost irrelevant, and what is someone
else’s problem.

A remarkable characteristic of current GIS systems is their high interoperability
requirements. The high costs of producing spatial data, the importance of data analysis
and processing to convert those data in information relevant to users with completely
different needs, and the advantages of spatial information sharing among organizations

http://inspire.jrc.ec.europa.eu/
http://www.openstreetmap.org/

2.1. Geographic Information Systems and Spatial Information Modeling 15

have made interoperability and modularity a key aspect in the evolution and growth of
the GIS field.

Nowadays, a typical Geographical Information System relies in spatial database
systems to store its data. Those data have been generated by several different
sources (using their own specific GIS applications) and preprocessed when fed to
the system to fit to the organization requirements. Some input data are processed
automatically whereas other are introduced and managed by specific GIS applications.
The information is processed again to create different presentations that fit the specific
view of the world of different user types. Some information is even provided
through standardized interfaces (SFS [OGC06], WFS [OGC09], WMS [OGC06b],
WCS [OGC09b], etc.) that can used by other organizations for different applications.

To be able to succeed in such a complex environment, the GIS domain has
drastically evolved from the ad-hoc systems in the early nineties to the nowadays highly
standardized, interoperable and modularized systems. The wide effort in standards
definition, mainly driven by the Open Geospatial Consortium and ISO, in data
representation (SFS [OGC06], GML [OGC07, ISO07b], ISO 19107:2003 [ISO03],
etc.), functional modules (ISO 19142:2010 [ISO10], WFS [OGC09], WMS [OGC06b],
WCS [OGC09b], etc.) and even metadata (CSW [OGC07b]) and processing
(WPS [OGC05]) services, and their adoption in the GIS field, has been a key factor
on this evolution. Both OGC and ISO families of GIS services standards follow a
modular approach, where each specific standard addresses some specific functionality
requirements. This approach simplifies the development of GIS development tools, as
developers can focus at each moment on one specific group of functionalities. It also
promotes and ensures interoperability between implementations, as service modules
will interconnect through well know standards.

However, previous to all this evolution, the development of generic spatial data
models (initially as a research field on its own [Güt88, SH91, GS95, Ege94] and later
in the form of international standards [ISO03, ISO05a, ISO05b, OGC06]), has been of
fundamental importance. Such data models pursue two basic goals. On the one hand,
they provide a set of spatial data types suitable to accurately and efficiently represent
the kind of spatial data managed by a wide set of application environments. On the
other hand, they offer a powerful set of operations over these types that fulfills the
requirements of those applications.

Spatial data models are usually classified as abstract (sometimes called conceptual),
discrete (sometimes called logical) or physical spatial data models, depending on
the abstraction level at which they are defined. Abstract spatial data models focus
on the definition of conceptually meaningful representations of real world spatial
information, as well as a powerful and meaningful set of operations for exploiting
it. They are designed trying to model the spatial information in a way similar to how

16 Chapter 2. State of the art

it is understood, classified and analyzed by GIS application users. Discrete spatial
data models try to adapt abstract data models to the reality of computers and algorithm
complexity, where finite storage space and computation power need to be taken into
account. Finally, physical data models map discrete spatial data models to specific data
structures and algorithms so that they can be directly (and efficiently) implemented.

In the following sections each of these three types of spatial models are explained
in more detail.

2.2 Abstract spatial models
Research proposals first ([GS95, LTR99]) and international standards later ([ISO05a,
ISO03, ISO05b]) have defined abstract spatial data models attempting to capture the
semantics of data types and operations as they are seen by spatial information users,
settling a formal and high level basis to represent and query spatial information.
They represent spatial information over a continuous geographic space, a space of
coordinates (usually R2 or R3) over which spatial data are mapped. This space is,
usually, either Cartesian (the GIS uses a flat model of the earth) or geodesic (the space
tries to better model the reality by taking into account the Earth’s shape and curvature,
trying to represent distances and areas in a more realistic way).

Current international standard ISO 19109:2005 [ISO05a] defines the way GIS
applications should model information representing the real world through features.
A feature describes objects with a geographic location (buildings, a digital terrain
model, a map, etc.). The standard formalizes the features structure through the General
Feature Model (GFM). In it, features have a type (e.g., roads, rivers, buildings, etc.),
attributes, relations between feature types and behaviors. Features can be either
geographic objects or coverages (space mapping functions). Geographic objects are
defined in depth at abstract level by the standard ISO 19107:2003 [ISO03], whereas
coverages are specified in standard ISO 19123:2005 [ISO05b].

According to ISO 19107:2003 [ISO03], a geographic object or entity is an
application object for which the GIS stores geographic attributes and (optionally)
alphanumeric attributes. A geographic attribute represents a geographic property
(position, extension, etc.) of an object. A geographic domain is the set of values that a
geographic attribute may have. The more relevant geographic domains, according to
ISO 19107:2003 [ISO03], are:

• Primitives: basic types. They can be:

– Point: represents a single point in the space, for example the location of a
farm.

2.2. Abstract spatial models 17

– Curve: represents a sequence of contiguous points in the space (a curve).
An example of such value is the course of a road.

– Surface: represents a connected area in the space, possibly with holes. A
piece of land or the area belonging to a municipality are examples of such
values.

• Complex: they are a combination of primitive elements representing a single
object. They might be either homogeneous, where all the elements belong to
the same type (called composites), or heterogeneous, where elements of various
types coexist. An example of the former is the area covered by the snow in a
country. The hydrography of a given area, including both rivers (lines) and lakes
(regions) is an example of the latter.

• Aggregates: collections of primitive elements. They differ from complex in that
they intend to represent a collection of objects, instead of a complex object.

Coverages are specified by the standard ISO 19123:2005 [ISO05b] as a data
representation that directly assigns values to geographical positions. A coverage
is a function from the geographic domain to a value of other domain (numeric,
classification, etc.), where each geographic location has a unique value assigned.
Coverages can represent both discrete or continuous functions. The standard
defines several interfaces for different types of mapping methods (discrete coverages,
rectangular or hexagonal grids, Triangulated Irregular Networks (TIN), etc.). But, as it
corresponds to an abstract model, it does not impose any limitations on how the data
are stored or managed.

Figure 2.1 shows two possible representations of a set of features, depending on
the information relevant for users at two different scales. At scale E1 the object c is
represented using the entity city_locations, whose geographical location is represented
by an attribute of type point. The geographic object r belongs to a feature rivers whose
geographic attribute is represented by an attribute of type line. For scale E2, cities are
represented by the entity city_areas, whose geographic attribute is a region. The rivers
feature is also represented. In addition, coverages vegetation (a discrete coverage,
splitting the space into the vegetation types ts1, ts2, ts3, ts4) and salinity (a continuous
coverage, represented in the map with darker colors to represent lower soil salinity) are
also depicted at scale E2.

18 Chapter 2. State of the art

r

c
r

c

ts1
ts2

ts4

ts3

(a) Scale E1 (b) Scale E2

Figure 2.1: Examples of geographic data represented at two different scales.

2.3 Discrete spatial models

Conceptually, the spatial values represented by abstract models are usually non-empty
and infinite subsets of the geographic space. However, in order to represent such values
in a computer system (and in order to implement most operations over them), infinite
sets must be modeled by some kind of finite representation.

Several discrete spatial data models have been proposed in the spatial scientific
literature, some of them being nowadays widely used. They try to provide efficient
and finite representations for the usually infinite sets of points of spatial objects. These
models can be roughly classified into a few basic categories [Par95] depending on the
approach followed in the representation and the intended target application domains.
The three main categories are the following:

1. Raster models. Raster models are based on the concept of maps of bits. The
infinite points of the space are represented by a finite number of raster points,
which are uniformly distributed over the space. They are usually represented
using some kind of array data structure. Raster representations have some
advantages (typical spatial operations are intuitive and simple to implement),
but have also important drawbacks, such as the big space requirements for
storing spatial objects (all the points belonging to the object have to be explicitly
represented). These models are often used for spatial information generated by
imagery techniques, and as a way to represent coverages.

2.3. Discrete spatial models 19

2. Vectorial models. In vectorial models [LT92], the information in the
n-dimensional space is represented using m-dimensional hyperspaces, with
m < n. More informally explained, the infinite set of points belonging to a
spatial object is represented by its boundary, usually using linear representations.
For instance, in the two dimensional space the following types are usually
defined [GS95, OGC06]:

• Points.

• Graphs, composed by nodes (points) and arcs between nodes (segments).

• Polylines, represented as a finite sequence of points.

• Polygons, represented as a closed and no self-intersecting polyline.

• Complex objects, as for example sets of polylines, complex polygons
(composed by a set of polygons, possibly with holes) or heterogeneous
sets of objects containing elements belonging to any of the previous types.

Vectorial data models are widely used and numerous query languages [Cha94,
Rig94, Güt94a, Ege94] and algebras [Güt88, Güt89, Güt94b] are based on them.
One of the advantages of this family of models is the existence of efficient
data structures [Gun88], as well as very efficient algorithms for detecting
relationships between the objects [Sam90] and for computing set-theory
operations. Furthermore, they are very appropriate for GIS applications where
spatial objects have clearly defined boundaries (e.g., territory administration) and
for visualization in user interfaces because the objects support zooms, rotations
and other transformations without loosing quality. As disadvantages, using
these models to represent continuous coverages would require to discretize and
vectorize them in geometries, setting sharp and precise value boundaries to
objects that conceptually are continuous. Moreover, they are not appropriate
for imagery representation.

3. Constraint databases models. Under the constraint databases models, data
are represented using linear constraints. The same approach can be used for
representing spatial data in the space, as shown in [KPV95, GK97, GRSS97,
GRS98]. For example, the constraint x > 1 ∧ 2x− y−5 < 0 ∧ y < 7 (displayed
in Figure 2.2.c) represents a region in the space. The advantage of this approach
is that the extension of constraint databases systems to the management of spatial
information is quite straightforward, representing them through constraints,
similarly to all other data types. The disadvantages are the high computational
complexity of query evaluation in constraint database systems [RSV01] and the

20 Chapter 2. State of the art

�

�

����� �����

���	
�

�

�

����
����� ������������� ��������������

���

�

�

��� ��	�	���

Figure 2.2: Object represented using (a) raster, (b) vectorial or (c) constraint databases
models.

difficulty of implementing them in non-constraint database systems (it would
require to incorporate a constraints engine just for supporting spatial data).

Figure 2.2 shows the same object represented using a raster, a vectorial and a constraint
databases model.

Although all those types of spatial data models are used (each of them in their
specific niche of application domains), only two of them are used in general purpose
spatial databases and tools: the raster and vectorial models. Raster models are
mainly used in imagery processing and domains where the spatial information of
interest corresponds with coverages. They are also covered by several ISO standards
(e.g they are considered in some of the interfaces for coverages defined by the ISO
19123:2005 [ISO05b]). Vectorial models are more widely used on GIS applications
where the spatial data to be managed correspond mainly with geographic objects. They
are also used in some of the international standards (e.g., [ISO07]).

This research work focuses its attention in vectorial data models, given that they
are the ones where inconsistency problems are more relevant. Nevertheless, and to
put in context the analysis here performed, we compare in Chapter 3 the consistency
properties of the different solutions used in vectorial models with the ones exhibited by
the other data model types.

2.4. Physical spatial models 21

x

y

(1,2)

(8,5)

(1,5)

(4,7)

5

5

P'

P

Figure 2.3: Two segments with end-points having integer coordinates. Their
intersection point has non-integer coordinates.

2.4 Physical spatial models

The main problem in defining physical spatial models that translate the expressiveness
of abstract and discrete spatial models to computer applications (that is, commercial
spatial database technologies) is that abstract and discrete spatial models are usually
defined over a continuous domain, but for their implementation we need to define
a physical spatial model that uses discrete representations for the spatial types. For
example, a value of type point [ISO03] can be represented at physical level as a pair of
coordinates, each of them represented as a 32 bit signed integer number. A curve can
be represented as a sequence of point values defining a polyline. And surface can be
represented as a polygon, which in turn is represented as the sequence of point values
representing its boundary.

The problems arising from the need to use a discrete space at physical level are far
from trivial. For example, if we decide to use the previously described discrete space
(coordinates represented as 32 bit signed integer numbers), then the representation
space is no longer closed under the set-theory operations (e.g., union or intersection).
This happens because the intersection point of two segments defined between points
represented with integer coordinates does not usually have integer coordinates (an
example is shown in Figure 2.3). The straightforward solution to such problems (as
for example, to approximate the non-representable points by the closest representable

22 Chapter 2. State of the art

ones) makes the operations closed,1 but it violates the basic properties of set-theory.
For example, for regions A and B, the following relationships A⊆ (A∪B), (A∩B)⊆ A
or (A \ B) ∩ B = /0 do not hold any more, generating inconsistencies between the
answers. In certain domains (e.g., graphical user interfaces) such rounding errors may
be acceptable, but they cannot be tolerated in query evaluation for spatial analysis,
since they may lead to wrong answers. For example, the intersection of a river and a
highway may be found to lie neither on the river nor on the highway.

Depending on their approach to this problem, spatial extensions for commercial
databases can be classified in one of the following two groups:

1. They do not provide operations that are not closed under the selected discrete
representation. This usually means that they provide only predicates over spatial
data types and operations for composing and decomposing such objects (e.g.,
operations for constructing the segment between two given points).

2. They provide the whole set of operations, but for those operations that are
not closed over the selected discrete representation space they return an
approximation of the result.

Examples of the first group of spatial implementations were the first generations of
spatial databases extensions, such as Illustra 2D Spatial Datablade [Ill94], earlier
versions of Oracle’s spatial extension (Oracle8 Spatial Cartridge) [Ora97] and MySQL
5.5 [Mys10]. Illustra’s extension [Ill94] provided data types Point, Line (in the
mathematical sense), Segment, Path (a polyline), Polygon and Polygon Set (a region
as a set of polygons with holes), apart from some other data types such as Circle,
Ellipse or Box. The provided operations were basically predicates and operations
for decomposing/constructing a value (for example, retrieving the n-th Segment of
a Path or constructing the Segment having as end points two given Point values).
Any operations that became non-closed over the discrete representation used, such
as the set-theory operations, were not provided.2 Current MySQL 5.5 provides
also spatial extensions [Mys10]. However, it only provides spatial operations
(returning spatial values) that are already expected to return approximated results (e.g.,
Centroid(), PointOnSurface(), etc.), decomposition operations (retrieving elements of
the representation of other object, e.g., Boundary(), StartPoint(), EndPoint(), PointN(),
ExteriorRing(), InteriorRingN(), etc.) and constructor operations (building another

1Artificially closed, because now we are not implementing the intersection operation (for instance), but
an approximate intersection operation.

2The only exception to this are operations that are already expected to return approximate values, as
getting the approximation of an Ellipse value as a Polygon or getting the bounding box of any spatial value.

2.4. Physical spatial models 23

spatial object representation from existing ones, e.g., Point(), LineString(), Polygon(),
etc.).

Examples belonging to the second group are more modern generations of spatial
databases, such as DB2’s Spatial Extender [Dav98] (by ESRI, available also under
Informix), more modern versions of Oracle’s extension (Oracle8i Spatial Cartridge)
[Ora99, Ora10] and most of current spatial databases (Oracle Spatial 11g [Ora10],
PostgreSql/PostGIS [Ref10] and SQL Server 2008 [Mic09]).

The problem of robustness and topological correctness of geometric computation
has also been addressed in the computational geometry literature [DS90, For85].
The literature distinguishes between perturbation-free approaches where the idea
is to perform geometric computations with sufficiently high precision so that no
errors occur (e.g., [KM83, OTU87]) and perturbation (approximation) approaches
(e.g., [DS90, GM95, Mil89, Sch94]) that allow to slightly change the input data of
computations (in order to reduce errors in the computations) or the results (in order to
be able to represent data at a fixed level of precision).

A special application of the perturbation approach within the area of spatial
databases is used in the ROSE algebra [GS95]. The ROSE algebra uses an underlying
discrete geometric basis called a realm [GS93]. Intuitively, a realm contains a
consistent representation of all geometric data of an application. All numerical
problems are treated at the realm level, which uses a particular perturbation method.
Values of spatial data types are defined on top of realms which ensures that all
operations (including the set-theory operations) return consistent answers (for example,
all the relationships A ⊆ (A ∪ B), (A ∩ B) ⊆ A or (A \ B) ∩ B = /0 hold in the
implementation).

In Section 2.4.1 we show three representative examples on how problems arising
form space discretization are addressed in commercial and research solutions. A more
detailed explanation on how realms work is shown in Section 2.4.2.

2.4.1 Commercial approaches
Among current commercial solutions, PostGIS, Oracle Spatial and Microsoft SQL
Server are the three more representative and used. PostGIS is the most commonly used
free (GPL) spatial database extension (used with PostgreSQL), whereas Oracle spatial
is a reference among commercial (proprietary) spatial database extension (used with
Oracle DBMS). The spatial support is a relatively new feature in Microsoft SQL Server,
although already fulfilling most spatial standards. All of them follow (in one way or
another) the perturbation/approximation approach and are representative of the current
state of the art in current commercial spatial database technologies. And all of them
fail to provide appropriate consistency among spatial operations. Appendix A shows a

24 Chapter 2. State of the art

very simple example that causes all of them to return answers that are inconsistent with
the properties expected from their abstract spatial models.

2.4.1.1 PostGIS

PostgreSQL (http://www.postgresql.org/) is one of the more widely used free (non
commercial) database management systems. It started as an evolution of the original
Postgres project (directed by Michael Stonebraker), evolving from it to a fully SQL92
compliant DBMS. Postgres was the first prototype of extensible DBMS, allowing users
to extend it with new modules of data types and functions.

PostGIS (http://postgis.refractions.net/) is a free (GPL) spatial extension
for PostgreSQL developed by Refractions Research. It extends PostgreSQL with new
spatial data types and functions fully implementing the OGC SFS standard.

PostGIS uses a discrete coordinates space, using double-precision floating-point
numbers for representing the coordinates [Ref10]. Initially it restricted operations,
avoiding the implementation of the operations that became non closed with the space
discretization. However, later versions incorporated them using the GEOS engine
(http://geos.refractions.net/), a port to C++ of the JTS Topology Suite [Viv03]
(http://www.vividsolutions.com/jts/). GEOS (as JTS) is a library designed
with high care in numerical stability, trying to minimize errors arising from the space
discretization. PostGIS/GEOS uses the perturbation approach, approximating the
results of operations. It also uses some techniques to increase its reliability and improve
numerical stability in computations [Viv03]. For example:

• It implements algorithms for boolean operators that ensure that the answer
(true/false) is correct, using an implementation of [ABD+97].

• It uses translation techniques to improve the probabilities of correct generation
of result geometries. When a spatial operation that should return a geometry
generates a Topological Exception, it performs the operation with a translation
of the problem (input arguments) to the origin of the axis, therefore removing
the common bits between the input coordinates. This translation results in a
reduction of the significant bits of the coordinates, leaving extra precision bits
available to reduce rounding errors in computations. This reduces the likelihood
that precision errors lead the algorithm to unexpected states, making it more
likely that the result can be computed this second time. This translated result
is then corrected again to recover the common bits removed, and the resulting
geometry is then returned.

Even though these techniques improve the reliability of PostGIS, they do not always
guarantee the correct behavior, nor do they guarantee consistency among operations.

http://www.postgresql.org/
http://postgis.refractions.net/
http://geos.refractions.net/
http://www.vividsolutions.com/jts/

2.4. Physical spatial models 25

Moreover, PostGIS does not handle possible topological errors produced by the
approximation of results or numerical precision errors. As a result of all this, the
combination of operations (a spatial operation having as argument the result of another
spatial operation) can lead to Topological Exception in GEOS. These errors where not
properly handled by PostGIS 1.0, because a single topology exception in a query would
abort the whole query without returning any result. Starting in PostGIS 1.5 and later,
these errors are handled returning a null geometry in those cases where a Topological
Exception was generated. At least, this way the query does not get interrupted. A better
view of these errors and how often they appear is shown later (in Table 4.1).

2.4.1.2 Oracle Spatial

Oracle Database, commonly known as Oracle RDBMS or simply as Oracle, is an
object-relational database management system developed by Oracle Corporation. Its
first version was commercialized in 1979. Oracle Spatial [Ora10] is an extension
module (licensed as an option to the core Oracle DBMS) that extends Oracle with
spatial capabilities. Oracle Spatial was officially launched as an extension to Oracle 7
named “Spatial Data Option” (SDO), and is sold as “Oracle Spatial” since Oracle 8.

Oracle Spatial is conformant with the following International Organization for
Standardization (ISO) standards:

• ISO 13249-3 SQL Multimedia and Application Packages - Part 3: Spatial.

• ISO 19101: Geographic information - Reference model (definition of terms and
approach).

• ISO 19109: Geographic information - Rules for application schema (called the
General Feature Model).

• ISO 19111: Geographic information - Spatial referencing by coordinates (also
OGC Abstract specification for coordinate reference systems).

• ISO 19118: Geographic information - Encoding (GML 2.1 and GML 3.1.1).

• ISO 19107: Geographic information - Spatial schema (also OGC Abstract
specification for Geometry).

Oracle Spatial provides support for storing, retrieving, querying and analyzing spatial
data. It fulfills the OGC Simple Feature Specification SFS [OGC06], providing the
whole set of operations on it, including both boolean operators (e.g., intersects or
overlap) and set-theory operations (intersection, union, difference, etc.). Oracle Spatial

26 Chapter 2. State of the art

data can be associated with geodetic (geographical) or cartesian (either projected or
local) coordinate systems:

• Geodetic coordinates (sometimes called geographic coordinates) are angular
coordinates (longitude and latitude), closely related to spherical polar
coordinates, and are defined relative to a particular Earth geodetic datum. (A
geodetic datum is a means of representing the figure of the Earth and is the
reference for the system of geodetic coordinates).

• Cartesian coordinates are coordinates that measure the position of a point from
a defined origin along axes that are perpendicular in the represented two-
dimensional or three-dimensional space. If a coordinate system is not explicitly
associated with a geometry in Oracle, a Cartesian coordinate system is assumed.
Cartesian coordinates can be either projected or local:

– Projected coordinates are planar Cartesian coordinates that result from
performing a mathematical mapping from a point on the Earth’s surface
to a plane. There are many such mathematical mappings, each used for a
particular purpose.

– Local coordinates are planar Cartesian coordinates in a non-Earth (non-
georeferenced) coordinate system. Local coordinate systems are often used
for CAD applications and local surveys.

When performing operations on geometries, Oracle Spatial uses either a Cartesian or
curvilinear computational model, as appropriate for the coordinate system associated
with the spatial data.

Oracle Spatial uses a discrete space for representing spatial objects. Points in the
(2D) space are represented as a pair of coordinates (X,Y), where X and Y are fixed-
point decimal numbers (Oracle and SQL’92 standard NUMBER data type). Oracle
Spatial is an option for Oracle Enterprise Edition, and must be licensed separately. It
is not included as an option in the Oracle Standard Edition. Current version is Oracle
Spatial 11.2 (for Oracle Database 11g Enterprise Edition).

To include basic support of spatial data in Oracle Database, a limited version of
Oracle Spatial (named Oracle Locator) is distributed as part of the basic license of
Oracle (both in Oracle Standard Edition and Oracle Enterprise Edition). Oracle Locator
provides support for spatial data types as well as the basic operations to interact with
them, such as operations for querying spatial data properties (e.g., area or length) and
logical relations among them (boolean operators, as intersects or overlaps). However,
although Oracle claims that both Oracle Spatial and Oracle Locator are fully OGC
SFS compliant (and the Open Geospatial Consortium officially recognizes it), the

2.4. Physical spatial models 27

licensing facts are that it explicitly excludes from the Oracle Locator license, among
others, the set-theory operations (e.g., difference, union, etc.). For more information
on functionalities licensed with Oracle Locator see “Appendix B: Oracle Locator”
in [Ora10].

To address the problems arising form space discretization, Oracle Spatial makes
intensive use of tolerances. Tolerances define how numerically close two coordinates
must be to be considered the same coordinate. With this approach, users and developers
can adjust the behavior of Oracle Spatial to the requirements of the data managed (e.g.,
with which precision the data were capture or which precision is relevant in that specific
GIS application). This provides users with a way to handle the imprecisions in their
data, but also helps to hide the consequences of using a non-closed discrete space.

Oracle Spatial deals with space discretization problems using a perturbation
approach. Tolerances provide both a way of implementing input perturbations
(assuming that two input coordinates are the same if they are close enough) and output
perturbations (defining which precision is acceptable in the output). The fact that for
set-theory operations Oracle Spatial suggests the tolerances to be higher than a given
value evidences that numerical stability problems in the algorithms implementing them
requires that an artificially reduced precision has to be considered in the input values.

Anyway, all these impositions do not free users from getting a computing exception
due to an invalid geometry even though the input geometries are valid. This makes
the user (i.e., the GIS software developer) responsible of adjusting the tolerances
appropriately and handling the resolution of computing exceptions that may arise.
Moreover, the use of tolerances does not solve the inconsistency problems, but instead
moves them to another place. With tolerances is easy to get the right answer when
querying whether an intersection point belongs to the originating segments. But it can
return inconsistent answers as that P1 = P2, P2 = P3 but P1 6= P3, or that P ∈ S1, P ∈ S2
but P 6= (S1∩S2).

Summing up, the way Oracle faces the space discretization problems differ between
Oracle Locator and Oracle Spatial:

• With Oracle Locator, the approach is to discard any operation that does not
remain closed under the used discrete space.

• With Oracle Spatial, they provide them by using a perturbation approach. The
use of tolerance thresholds becomes a flexible way of providing GIS software
developers with a method to adjust the behavior of the input and output
perturbation techniques implemented in Oracle Spatial. The limitations that
Oracle Spatial imposes in the minimum values that can be used as thresholds
for the set-theory operations highlight the difficulties of correctly implementing

28 Chapter 2. State of the art

these operations, and that the coordinate resolution has to be reduced in order to
achieve an acceptable stability of the algorithms.

2.4.1.3 Microsoft SQL Server

SQL Server is Microsoft´s commercial relational DBMS. Starting with SQL Server
2008, it provides also support for spatial data, implementing OGC´s Simple Feature
Specification [OGC06].

Version 2008 was the first to provided spatial data types. It provides geometry and
geographic data types, allowing computations in the plane and in the sphere. Unlike
Oracle, it does not make use of the tolerance artifacts, having a functionality closer
to the one provided by PostGIS. The syntax of spatial functions, on the other hand, is
quite different, using a syntax closer to object oriented languages than the typical for
SQL functions.

Although Version 2008 already represented spatial data through double-precision
floating-point coordinates, for spatial operations (union, intersection, difference, etc.)
it used a precision of only 27 bits in the input spatial data (a precision of roughly 10cm
on georeferenced data). This raised complaints because the errors introduced were
too evident even when used for visualization applications. Version 2012 extends the
precision used to 48 bits, making spatial computations more precise. That precision
improvement addresses the complaints regarding the visualization of spatial results,
but the inconsistencies among operations remain. Section A.3 shows that, just like in
PostGIS and Oracle, even the simplest spatial tests can retrieve inconsistent results,
with answers that do not follow the expected spatial logic. Moreover, SQL Server
exhibits a rather weird behavior: a tendency to slightly move coordinates in the result,
producing the alteration of their less significant bits. This behavior is exhibited even
in cases where the coordinate in the results is not a computed coordinate, but instead
comes directly from the input arguments, and even if the coordinate value is exactly
representable with the 48 bits precision used in the spatial operations. As a result,
inconsistencies among operations become more usual than in other spatial database
solutions (such as PostGIS and Oracle).

2.4.2 The ROSE Algebra: Realms
In [GS95] the ROSE algebra is proposed. It offers the spatial data types points (a
set of disconnected points in the plane), lines (a set of line segments) and regions (a
set of non overlapping polygons with holes). The operations provided include a wide
set of spatial predicates as well as binary operations over spatial types, including the
set-theory operations.

2.4. Physical spatial models 29

a)

��
��

��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

����
�
�
�
���

�
�
�
�

�
�
�
�

�
�
�
�

��

����

��
��
��
��
��

�
�
�
�

������
�
�
�
�

�
�
�
�

����

�
�
�
�

��
��
��
����

��
��
��

����

��

�
�
�
�

����
����
����

����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��������
�
�
�
�

����
����
����

����
����
����

��
��
��
��
��

��
��
��
��
��

����
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

�����
�����
�����

�����
�����
������
�
�
�

�
�
�
���
��
��
��

��
��
��
��

���
���
���

���
���
���

��������
����
����

����
����
����

��������������
������
������

������
������
������

b)

����
���� ���� ����

���� ���� ����
���� ���� ����

���� ����
����

��������
���� ����

����

�
�
�
�

�
�
�
�

�
�
�
�

����
�
�
�
���

�
�
�
�

�
�
�
�

�
�
�
�

��

����

��

�
�
�
�

������
�
�
�
�

�
�
�
� ����

����
����

����
����
����

��
��
��
��

�
�
�
�

�
�
�
���
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��
��

��
��
��
��
��

����

��
��
��
��

��
��
��
��

���
���
���
���

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
�����������

����
����

����
����
����

�
�
�
���������

A
B

L
P

Figure 2.4: Example of objects over a realm. a) Elements in a realm. b) Some objects
over the realm.

In contrast to other proposals, the definition of the ROSE algebra takes into account
the fact that values need to be finitely represented, and introduces an underlying
discrete geometric basis called a realm for ensuring the consistency of answers returned
by the DBMS.

A realm is basically a finite set of points and non-intersecting line segments over
a discrete domain (a grid). Spatial values are represented in the database in terms of
points and segments present in the realm. For example, given the realm in Figure 2.4,
A and B would be valid regions values, L would be a valid lines value and P would be
a valid points value.

Whenever a new spatial object (represented at the lowest level in terms of points
and line segments) is inserted into the database, its points and segments are inserted
into the realm and the spatial object is rewritten in terms of elements of the new realm.

For each point or segment that is inserted in the realm, some extra steps must be
followed to ensure that the resulting realm is a valid one:

1. When a new point P is inserted, any segment Sr in the realm containing P in
its interior (i.e., P lies on Sr but it is not an end point of Sr) is split into two
new segments connecting the original end points with P. The original segment is
replaced by the new ones in the realm, and any spatial object using it is modified
to reflect this change.

2. When a new segment S is inserted into the realm, its end points are also inserted.
If S contains a realm point Pr in its interior, it is split at Pr. Furthermore, all
intersections of S with segments already present in the realm are determined. For
each true intersection point Pi of S with some segment Si the closest grid point
Pi is determined. Then, a redrawing of S is performed which transforms S into
a polyline (a sequence of line segments) passing through all the grid points Pi.
(This process of redrawing is explained in more detail below.) Each segment Si is

30 Chapter 2. State of the art

S

P

P'Sr

Figure 2.5: Redrawing of a segment S.

redrawn as well to pass through Pi, its grid intersection point with S. Finally, all
changes in segments are propagated to the database to modify the spatial objects
using these segments.

To explain the redrawing (originally proposed in [GY86]), the concept of an envelope is
needed. For a segment S, its envelope consists (roughly) of the grid points immediately
below or above it. Figure 2.5 shows the grid points forming the envelope of S.

Intuitively, the process of redrawing can be easily understood if we view the
segment S as a rubber band and the points on the envelope of S as nails on a board.
When a second segment Sr is found that intersects it in a point P, we grab the rubber
band at point P and pull it around the closest nail P′. As a result, the rubber band will
touch one or more nails of the board (of the envelope). The resulting list of segments is
the redrawing of S. This is also illustrated in Figure 2.5. This approach guarantees that
the polyline into which the segment is decomposed always remains within the envelope
of the original segment. For more details, see [GS93].

The use of realms as the basis for the representation of spatial objects has the
following advantages:

• It enforces geometric consistency of spatial objects. For example, the common
part of the boundary of two adjacent regions will belong completely to both
regions and be exactly the same in both of them.

• It guarantees closure properties for the spatial objects. For example, the
intersection of two regions A and B can always be represented, because it will be
just a new combination of segments of the realm belonging to regions A and B.

• Simplicity and efficiency of spatial operations. Given that no intersection points
between segments need to be detected, the algorithms for implementing spatial
operations are more simple and more efficient.

2.4. Physical spatial models 31

• It ensures numerical correctness and robustness of geometric computations.
Those problems arise basically in the computation of intersection points of
line segments, which in general will not lie on the grid. As there is no pair
of segments in the realm that intersects, this problem does not arise when
performing geometrical computations. All these problems are solved at the realm
level, whenever a new value is inserted into the database.

Although the realms approach has several advantages, it also has some disadvantages,
some of which make the use of a realm-based representation in commercial databases
(e.g., offering the ROSE algebra as an extension module) difficult:

• The relationships between points and segments can change after rewriting. The
rewriting of segments can cause points of the realm that previously did not lie on
the segment to now lie on it. This can change topological relationships between
point objects and objects of type lines and regions. This problem could be solved
(as pointed out in [GS93]) by adding the restriction that points of the realm
cannot lie on the envelope of segments already in the realm.

• Complexity of data structures. The original implementation proposed in [GS95],
with a layer representing the realm and the representation of spatial objects
referencing the elements of the realm of which they are composed, results
in a rather complex representation. The use of virtual realms, as proposed
in [MPF+96, FDP+99], simplifies it. The spatial objects are directly represented
in the database in a realmized form (making intersection points explicit),
but without further references to realm elements. Instead of storing the
corresponding realm explicitly, the portion of it that is needed is dynamically
computed whenever a new insertion is performed, reducing in that way the size
of the data stored in the database and the time needed to recover the spatial
objects from it.

• Space overhead. Due to the rewriting process, a segment of a spatial object can
be decomposed into multiple sub-segments in the realm. If the overlapping of
spatial objects in one area of the plane is high, the overhead produced can lead to
a considerable increase in the space needed to store the objects of such an area.
Indeed, the fact of representing the object with a higher number of segments will
negatively affect the efficiency of the spatial operations. Proposals as the use of
virtual realms [MPF+96] try to overcome this limitation.

• Complexity and efficiency of updates. Given that the update of spatial objects
in the database can lead to a cascade of rewritings, the efficiency of update
operations can be seriously affected, mainly if the spatial object is inserted into

32 Chapter 2. State of the art

an area of the plane with a high concentration of objects. Some proposals try to
mitigate it by optimizing the order in which segments are used to compute the
realm [ZZC+02].

• Values can change without directly modifying them. A region A stored in the
database can slightly change its value just because the insertion of a second
region B has caused the rewriting of some of the segments in the realm that
compose it. This will be true even if the user that inserted B has no access rights
for modifying A.

• Consistency over time. Although consistency between answers is guaranteed
as long as no new values are introduced in the database, it is not guaranteed
between operations performed with different contents of the database. After
introducing a new value in the database, the answers of the algebra operations
will be consistent again, but perhaps not with respect to the answers given before
inserting the new value. For example, the answer to (A \ B)∪(A∩ B) can be
different from A if a third object C has been inserted into the database between
the computation of (A \ B) and (A ∩ B). This might complicate transaction
management. Moreover, it is a problem for applications in which the time
dimension (transaction time) is relevant and hence the consistency of answers
over time is also a requirement.

2.5 Analysis and conclusions

In this section the application domain of the spatial databases and geographic
information systems (GIS) has been introduced. Current spatial data models (at
abstract, discrete and physical level) have been introduced and the basic spatial data
types described. It has been shown in detail the problems that arise when trying
to translate abstract spatial models to discrete models, physical models and final
commercial implementations. Open issues arising from the needs of using a discretized
space for coordinates representation have been also outlined. The current state of the
art in dealing with the discretization problem has been presented and the strong and
week points of those approaches have been shown. Solutions applied in the more
representative commercial spatial database extensions (PostGIS and Oracle Spatial)
have been described, as well as their limitations. With regard to research proposals,
the ROSE-Realms approach has been described in detail, because it is the only one
that attempts to “minimize” the key side effects of space discretization, specially with
regard to consistence among operations. The reasons that prevent the ROSE-Realms

2.5. Analysis and conclusions 33

approach to be adopted by current commercial spatial databases technology have also
been identified and analyzed.

The rest of this research work presents two new physical spatial models (Dualgrid
and DualgridFF) that address the problems arising from the space discretization
(namely, closure among data types and operations and consistency among operations),
taking into account at the same time (DualgridFF) the additional requirements of
commercial-quality spatial database technologies and standards.

Chapter 3

Consistency of spatial
operations

The goal of this chapter is to analyze the existing discrete and physical spatial data
models (and their proposed implementations) from the perspective of the consistency
among operations1. We will show the implications that the selection of the physical
spatial model has in the appearance of consistency problems due to breaking the basic
properties on which the abstract spatial model relied.

The chapter is structured as follows: Section 3.1 highlights the relevance of
consistency problems in the development of spatial applications. Then, Section 3.2
reviews several techniques used in the implementation of vectorial spatial databases to
deal with inconsistencies. After that, Section 3.3 compares the consistency properties
of the representation models and approaches that rely on the techniques described in
Section 3.2. Finally, Section 3.4 concludes the chapter.

3.1 Understanding the relevance of consistency in the
development of applications

Abstract spatial data models (introduced in Section 2.2) are usually defined over a
continuous space, usually Rn. This helps to define in a formal way intuitive models,
focusing in what needs to be represented (data types) and how the users will need to
process it (operations). The intuitiveness of the abstract model allows the user to easily

1For the sake of clarity, from now on we will call it just consistency.

36 Chapter 3. Consistency of spatial operations

understand and interact with it. For example, if he asks for the intersection point P of
two curves C1and C2, he can safely assume that P ∈ C1 and P ∈ C2. And if he asks
for the area R of a province P whose land salinity is lower than x, he can be sure that
R⊆ P.

Discrete models (described in Section 2.3) take a step towards the implementation
of abstract models in computers by defining the representation of data types in terms
of finite basic elements. They also take care that the proposed logical representation
is appropriate for the efficient implementation of the data model operations. However,
they do not enforce the use of a given data structure or algorithm.

Physical models (presented in Section 2.4) finish the process of defining a computer
implementable model: they define the exact representation for the data types, including
finite representations for the basic elements of the data type defined at the discrete
model, and efficient data structures to store and process them. Therefore, defining a
spatial physical model implies that the infinite continuous space assumed at abstract
and discrete level must be replaced by some kind of finite approximation (a space
discretization), so that spatial basic elements can be represented using a limited storage
space. For example, one can use a space based on a grid of integer coordinates Kn,
where K = {−n, . . . ,−1, 0, 1, . . . , n}, or a similar one using IEEE754 floating-point
numbers. However, as a result of such an approximation, the closure properties of the
original (continuous) abstract model are usually broken. For example, in the physical
implementation of a discrete vectorial spatial model using a space based on a grid of
integer coordinates, the intersection of two segments can yield as result a point whose
coordinates do not belong to Kn (see Figure 2.3). Figure 3.1 shows another example
where the intersection between polygons RA and RB is approximated to the underlying
grid (let us call this approximated intersection RAB). We can see that the approximated
intersection has the following incoherencies:

• Point P1a is in the boundary of RAB, even though it does not belong to RA or RB.

• Points P2a, P2b and P2c should belong to the interior of RAB (because they belong
to the interior of both RA and RB), but they instead belong to its boundary.

• Points P3a, P3b, P3c and P3d should belong to the boundary of RAB (because they
belong to the interior of one of the regions and the boundary of the other), but
they do not belong to RAB at all.

• Points P4a, P4b and P4c do not belong to RAB, even though they belong to the
interior of both RA and RB.

3.1. Understanding the relevance of consistency in the development of applications37

P1a

Figure 3.1: Example of errors in intersection operations due to space discretization and
approximation.

• Points P5a, P5b and P5c belong to the boundary of RAB, but they belong only to
the interior of one of the regions and therefore they should not belong to the
intersection.

• Point P6a belongs to the boundary of RAB, but it belongs only to the boundary of
one of the regions and therefore it should not belong to the intersection.

The significance of the problems arising from such a space discretization depends
on the discrete data model chosen and the relevance that the inconsistencies generated
by the physical model have on the target application domain.

For applications using raster models consistency among operations has usually
low relevance because these applications tend to require techniques closer to image
processing than to spatial reasoning. Also, set-theory operations are always consistent
under this model because all the points of the discrete space are always explicitly
represented, and no new space points are generated as a result of any operation.

Constraint database models have few consistency problems. They allow the
consistent implementation of set-theory operations because the set of constraints
resulting from an operation is composed by a subset of the constraints of the input

38 Chapter 3. Consistency of spatial operations

arguments. Consistency problems arise only when exact point coordinates need to be
computed.

Vectorial discrete models are widely used in GIS applications. Their main
advantage over raster and constraint models is that there are efficient algorithms in
the literature for implementing vectorial operations, and that they are more suitable to
express additional information, as for example topological relationships. However, one
of the main problems of vectorial models is that, unlike raster and constraint database
models, they are very sensible to consistency problems due to space discretizations.
This makes it difficult to implement spatial analysis and reasoning applications over
them. Therefore, they are the family of discrete spatial models with a wider literature
and proposals to deal with (and to mitigate) consistency problem. We analyze the more
relevant proposals in the following section.

3.2 Approaches to deal with inconsistency in vectorial
spatial data models

As explained previously, the process of defining discrete and physical models that
implement abstract spatial data models implies the definition of a discrete space over
which spatial objects are represented. The consequences of such a space discretization
become specially severe for implementations of vectorial discrete models, where the
space discretization breaks the properties of the space on which the closure of the
abstract and vectorial discrete models rely. As an example, we have shown in Figure 2.3
that the intersection of two segments cannot always be represented over the selected
discrete space.

There are two simple and (at first glance) straightforward approaches to deal with
this problem: either to provide only those operations that remain closed in the new
(discrete) space, or to provide approximated operations that return a representable
result acceptably close to the theoretical one. The first solution has the disadvantage
of severely restricting the power of the original data model, therefore making it less
useful. The second solution has several consistency drawbacks, as we will show on the
following paragraphs.

First of all, the use of approximated operations implies that they will be inconsistent
with the properties that they are supposed to fulfill. For example, it can happen that the
intersection point P′ of two segments does not belong to any of them (Figure 2.3),
or that the overlapping area of two polygons is not completely contained within
them (Figure 3.1). Even this small detail breaking the model properties can have
disastrous consequences. The reason is that spatial algorithms rely on that small

3.2. Approaches to deal with inconsistency in vectorial spatial data models 39

detail, and therefore the implementation of spatial operations will not consist in a
direct and (more or less) straightforward translation of theoretical geometry algorithms
to a programming language. If we do so, such a direct translation would easily
reach unexpected states and fail. Instead, their algorithms need to be redesigned to
ensure that, regardless of these inconsistencies, they will be robust (always finish) and
return topologically correct results. This adds a higher degree of complexity to the
implementation of spatial database technologies.

Moreover, even if such goals are achieved, and we manage to properly implement
those operations, the inconsistencies among operation results are unavoidable. For
example, as shown in Figure 3.1, due to those approximations the result of RA ∩RB
could contain points that do not belong to RA, points that do not belong to RB or even
points that do not belong to any of them (see point P1 in the figure). Furthermore, it
could even fail to contain points that belong to both of them (see point P2 in the figure).

Whether any of the two solutions described above is acceptable depends mainly on
the application domain where the resulting implementation is used.

If the spatial data model is basically used to display the spatial objects, (e.g., to
represent in a map the location of one facility or the geographic extension of one
parcel), then inconsistencies are in general perfectly acceptable and, for example, it
does not matter if the intersection of two regions is only an approximation, as far as it
is accurate enough to be indistinguishable by the user from the theoretical one. In those
domains, it is usually more interesting to provide a powerful set of operations than to
ensure the consistency among the operations provided.

However, for target application domains where the provided operations are going
to be used to build more complex algorithms, then the use of approximated operations
can be a big handicap. As in the case of the implementation of the approximated
spatial operations, the new algorithms will have to be carefully designed to deal with
the inconsistencies returned by the data model operations, increasing the complexity
of the final application. The disadvantage is specially relevant in those applications
where some kind of automated reasoning over the spatial data is performed. On these
domains, it is usually preferable to provide a smaller set of operations, less powerful but
with a consistent behavior. However, such a set of operations must be at the same time
large enough to provide the minimal functionalities required by the target application
domain.

The set of operations that can be provided together consistently depends on the
specific discrete space and the spatial representation used. Therefore, these two become
a key aspect when selecting the spatial data model implementation to be used for
one given application domain. In the following sections, we present the different
approaches that can be used to define a consistent physical data model.

40 Chapter 3. Consistency of spatial operations

3.2.1 Restriction of operations
The idea of this approach is that the algebra will provide only a set of operations
that remain closed over the physical implementation. With that purpose, a subset of
operations of the original algebra is removed, to ensure that the remaining set is closed.
The specific set of operations to be removed depends on both the properties of the data
model and the relevance of the different operations for the target application domain.

One disadvantage of models following this approach is that they drastically reduce
the set of available operations. For example, they usually do not provide set-
theory operations. The operations that they provide are usually restricted to spatial
predicates (e.g., topology relationships), decomposition and construction operations
(pointN(line), boundary(region), line(point[]), etc.) and numerical operations (e.g.,
distance, area, etc.). Current examples of this approach are MySQL (since version 5.0
provides spatial support) and Oracle Locator extensions to Oracle DBMS (due to its
licensing policy).

3.2.2 Restriction to orthogonal boundaries
If the only spatial objects allowed are those with boundaries composed of segments
orthogonal to the plane axes, then the model remains closed under most of the spatial
operations. For example, set-theory operations are closed.

An example of this approach is [LTR99]. The advantages of this approach are its
simplicity (both the approach itself and the implementation of most of the operations
over it) and that the implementation of algorithms does not even have to address
numerical problems.. The disadvantages are that it reduces the expressiveness of
the spatial representation, and implies a high storage and computational overhead for
representing complex objects with an acceptable accuracy.

3.2.3 Approximated operations
As we cannot return the exact result of an operation because it is not representable
(e.g., a point of the boundary in a intersection of lines is not a point of the discrete
space), we return a very close approximation (e.g., representing it as the discrete
space point closest to that intersection point). If we view this approach as a result
approximation, we tend to think that the consequences are irrelevant because whether
a point is 10 nanometers to the left or to the right is usually of no concern (we wouldn’t
be able to notice it anyway). However, if we see it as an approximated operation,
the perspective changes. Now, the intersection operation becomes an approximated
intersection operation whose result could contain some points that only belong to one

3.2. Approaches to deal with inconsistency in vectorial spatial data models 41

of (or even none of) the input objects, and could even not contain some points belonging
to both arguments. If we describe it in such a way (that is in fact equivalent to the
result approximation description), it clearly shows the risks of performing any spatial
reasoning using such operations.

As a result of this, approximated operations are acceptable in application domains
where the properties of the operations are not that relevant (e.g., spatial information
visualization). However, there are some other domains (e.g., automated spatial
reasoning, spatial knowledge discovery, etc.) where approximated operations are not
a suitable solution, as such applications rely on the theoretical properties of these
operations. Almost all current commercial solutions follow this approach (except a
few that follow the restriction of operations approach). The three commercial solutions
described in Section 2.4.1 follow the approximated operations approach.

3.2.4 Exact representation

In this approach, the continuous space Rn is replaced by a Qn space that uses variable
length rationals are used to represent spatial coordinates. The advantage of this
approach is that (almost) all the geometric operations that are closed in Rn are also
closed in Qn, and therefore the source of inconsistency problems in the implementation
of spatial models disappears. The coordinates of such a space are still (in theory)
numbers of infinite-size. However, considering that the original spatial data are
represented using coordinates of fixed-size, the result of operations will be represented
with coordinates of finite-size (proportional to the size of the original coordinates and
the number of operations applied to them). Therefore, it will be possible to represent
them in a computer. An example of this approach is [WS05].

The disadvantages of this approach are the storage overhead due to the use of larger
and variable-size coordinate values, and the computational overhead due to not using
the integer or floating-point numbers supported by the arithmetic unit of the computer2.
Also, the complexity of the required data structures increases: compact representations
(records) are more efficient and usually preferred in database implementations, but
the use of variable-size coordinates makes it necessary to use more complex data
structures. Therefore, this approach is sometimes used in geometric computation, but
not in database management systems.

2Due to the use of large numbers. The appropriated use of numeric filters can reduce it.

42 Chapter 3. Consistency of spatial operations

3.2.5 Realms approach

In this approach, described in Section 2.4.2 and proposed in [GS93, GS95], all
intersections among spatial objects stored in the database are made explicit at
insertion/update time, slightly modifying the spatial objects if needed. As a result,
there will be no intersecting segments in the internal representation.

The advantage of this approach is that consistency among operations over static
sets of data is guaranteed for a wide set of spatial operations, including set-theory
operations. Moreover, fixed-size representation for coordinates (e.g., integers) can be
used, and efficient algorithms have been already defined for it [GdRS95, MPF+96]. As
a disadvantage, consistency is not guaranteed when the set of data stored in the database
changes (e.g., updates). Also, the implementation of object access permissions and
transaction management can become tricky in databases using this approach, given that
one spatial object A can be modified due to the insertion of another object B. A deeper
explanation of this approach, its advantages and disadvantages, has already been given
in Section 2.4.2.

An example of algebra implemented using realms is the ROSE algebra [GS95].

3.3 Comparison of consistency support in the spatial
dimension

In order to compare the power of the different approaches to address the consistency
problems, it is interesting to analyze their capability to provide consistency over the
different sets of operations that are typical in the different application domains. That
way, given an application domain and the set of operations over which consistency
is relevant in that domain, it would be possible to analyze which data model families
and/or consistency solutions (in the case of the vectorial model) are the more suitable
ones for that domain.

With that purpose, in Subsection 3.3.1 we will first classify the most common
spatial operations according to they properties and then, in Subsection 3.3.2, we
will analyze the capability of the different spatial models and approaches to provide
consistent answers for each family of operations. A more comprehensive analysis can
be found in [Cot01].

3.3. Comparison of consistency support in the spatial dimension 43

3.3.1 Operations classification
For this analysis we will classify the spatial operations usually provided in spatial
algebras in the following classes3:

• Spatial predicates. Operations in this family return a boolean value depending
on whether their arguments have some spatial relationship. Examples of these
operations are equals, disjoint, touches, within, overlaps, crosses, intersects,
contains and relate.

• Set-theory operations. Operations implementing the set-theory operators over
spatial data, like intersection, union, difference. and symDifference.

• Decomposition operations. These operations decompose spatial objects in the
components of their boundary. Examples of these operations are boundary, x, y,
pointN, exteriorRing, interiorRingN and geometryN.

• Construction operations. They build new spatial objects, usually from their
components. Examples are envelope, centroid, pointOnSurface, buffer and
convexHull.

• Numeric operations. They return numeric results. Examples are length, area and
distance.

• Scaling and rotation operations.

• Translation operations.

3.3.2 Consistency analysis
Table 3.1 shows the consistency properties of the different data models for each set of
operations:

• C indicates that the set of operation can be provided in the data model with
consistency.

• NC (Not Consistent) indicates that the operations can be provided in the data
model, but without consistency.

• − indicates that the operation cannot be provided and/or has no sense in that
model.

3For the sake of clarity, names of some operations belonging to each group are given, using (when
possible) the names proposed in the OGC-SFS standard [OGC06].

44 Chapter 3. Consistency of spatial operations

Vectorial models

R
as

te
rm

od
el

s

C
on

st
ra

in
tm

od
el

s

R
es

tr
ic

.o
fo

pe
ra

tio
ns

R
es

tr
ic

.t
o

or
th

og
on

al

A
pp

ro
x.

A
rb

itr
ar

y
Pr

ec
.R

at
io

na
ls

R
ea

lm
s

Spatial predicates C C C C C C C

Set-theory operations C C - C NC C C

Decomposition
operations

- C/NC(1) C C C C C

Construction operations - C/NC(2) C C/NC(2) C C C/NC(2)

Numeric operations C C C C C C C

Scaling and rotation
operations

NC NC - NC NC C/NC(3) NC

Translation operations C NC C/NC(4) C/NC(4) C/NC(4) C NC

Table 3.1: Consistency properties of operations for each data model in the spatial
domain.

Wherever several levels of consistency are indicated, they have the following meanings:

• (1) Operations x and y can only be provided through an approximated
implementation.

• (2) Only a consistent implementation of envelope and pointOnSurface can be
provided.

• (3) Scaling can be provided consistently, but rotations cannot.

• (4) Consistency can be achieved only if a uniform grid is used.

Spatial predicates and Numeric operations can be consistently implemented in
every family of spatial data models because they do not need to return spatial objects.

Numeric operations can also be consistently provided in all of them, as they do not
return spatial objects either.

Set-theory operations can be consistently implemented in raster and constraint
database models. In the vectorial model, the non-consistent versions of the operations

3.3. Comparison of consistency support in the spatial dimension 45

can be implemented in all of the approaches except in the approach of restricting the
operations, because its philosophy does not allow approximate results. However, only
the restriction to orthogonal, exact computation and Realms based approaches can
provide consistency among these operations. The restriction to orthogonal approach
ensures consistency because orthogonality implies that X and Y coordinates of any
computed point will correspond with X and Y coordinates of some point of the
input argument (and hence is guaranteed to be representable). The exact computation
approach uses the precision required to exactly represent the result coordinates. Finally,
in the Realms approach boundary intersection points have already been made explicit
at insertion time, so no new points need to be computed when performing set-theory
operations and their result is guaranteed to be exactly representable.

Decomposition operations have usually no meaning in the raster model, where
a region is just a collection of raster points and has no boundary. They can be
implemented consistently in the vectorial model because spatial objects are already
stored representing their boundary, which is usually the basis of the decomposition
operations. In the constraint database model they can also be consistently implemented,
except for the x and y operations that can only be provided as an approximated
operation.

Construction operations have again no meaning in raster models because no
topology is explicitly identified in them. For vectorial models, they can be consistently
implemented in the approximation approach because a segment can be defined without
restrictions between any two representable points. The restriction of operations
approach can also implement them consistently. Finally, constraint models, the
restriction to orthogonal boundaries approach and Realms can provide a consistent
implementation of envelope and pointOnSurface, but only an approximated one for
centroid, buffer and convexHull4.

Scaling and rotation operations can be provided by constraint databases, vectorial
and raster models, although none of them in their consistent version.

Finally, translation operations can be provided (in their consistent version) in raster
models, whereas constraint database models can only provide them with approximated
implementations. Vectorial models can also provide them, although the type of grid
used for the representation determines whether consistent or approximated operations
must be implemented. If the grid is uniform (always the same distance between
adjacent points, as for example when using integer coordinates), then consistency
can be provided. In a similar way, and due to the rewriting process of making

4However, in the Realms based approach either such an approximated version of convexHull takes care
that the resulting region remains convex after inserting it in the underlying realm, or the possibility of it
returning a non-convex convexHull should be considered acceptable. Otherwise, one should consider that
Realms would not be able to implement convexHull.

46 Chapter 3. Consistency of spatial operations

intersection points explicit, the Realms approach can only provide an approximated
implementation.

Of course, the arbitrary-size rationals approach can provide almost all of these
operations consistently. The only exception are rotation operations, given that they
can generate non-rational coordinates.

It can be seen that, except for the arbitrary-size rationals approach, the models that
provide a better support for the consistent implementation of spatial algebras are the
constraint model and the vectorial model following the Realms based approach. They
provide the wider range of consistency for the most usual spatial operations. However,
their weak points are the construction and translation operations. Moreover, we must
not forget that Realms ensure such a consistency as far as no new objects are inserted
in the database between operation and operation. Other approaches can provide also a
wide set of operations, but their capabilities to provide consistency are more limited.

3.4 Conclusions
We have shown in this chapter the differences among the most common spatial
representation models with regard to their capabilities to handle consistency among
operations. In the case of the vectorial model (the most prone to experience consistency
problems), we have analyzed the capabilities provided by the more common/promising
approaches followed in their implementation.

It has been shown that the representation model and approach used determines
the sets of operations over which consistency can be ensured. Therefore, when
implementing a physical spatial model focused on a specific set of application domains,
it is worthwhile to analyze the consistency requirements of those domains and take
them into account to choose the more appropriate representation model.

The analysis in Section 3.3 shows that the capabilities of several implementation
approaches for vectorial models are close in consistency terms to constraint database
models. However, when the consistency of set-theory operations becomes important,
none of the existing vectorial approaches provides a fully acceptable solution:

• The arbitrary precision approach offers consistency together with a powerful
representation, but at a high computation cost and difficulties to be adopted in
commercial spatial databases5.

• Realms provide consistency together with a powerful representation. However
consistency is only guaranteed for static datasets, and the complexity of the

5Fixed-size data structures are more efficient, simple and usually preferred in databases, but they cannot
be directly used with arbitrary precision numbers.

3.4. Conclusions 47

realms machinery makes it difficult to be implemented in commercial spatial
databases.

• The restriction to orthogonal boundaries approach provides consistency and
allows for the use of simpler algorithms, but at a high cost in space and
performance for non-simple spatial objects.

• The approximated operations approach provides good performance and low
storage requirements, but it is not able to provide consistency and makes
algorithm implementations much more complex (due to having to deal with all
the inconsistencies it generates).

As a result, we have seen that none of existing vectorial approaches provide consistency
at a low storage and performance cost and low implementation complexity. Therefore,
the goal of this thesis is to propose an approach for the implementation of vectorial
models providing a level of consistency similar to the arbitrary precision approach,
while using fixed-size coordinates and aiming to storage and performance costs closer
to those of the approximated operations approach.

Chapter 4

Dualgrid

In the previous chapter, we have analyzed the most common spatial data representation
models and their approaches for dealing with inconsistencies among operations.
We have shown that among the vectorial models, the Realms approach [GS93]
was specially successful in dealing with avoiding any consistency problem among
operations. However, we have also shown in Section 2.4.2 that several drawbacks
prevent it from being used as the basis for implementing commercial-quality spatial
database management systems. The Realms approach only manages to avoid
inconsistencies as far as the collection of spatial objects in the database system is static.
This means that it is not able to avoid inconsistencies along the time, because updates
on the stored spatial data generate inconsistencies among operations computed before
and after the updates. This also means that operations involving non-persistent values
(spatial values not stored in the database, but provided as a constant in a query) can
also yield inconsistent results.

This chapter introduces Dualgrid, an approach that provides all the advantages
provided by Realms without any of its drawbacks. Unlike other approaches, which
at the physical data model replace the continuous representation space by a discrete
space where most spatial operations lose their closure properties, Dualgrid defines a
discrete representation space using fixed-size coordinates that manages to keep the
main properties of the original abstract spatial data models. As a result, the typical
spatial operations (including set-theory operations) remain closed under Dualgrid,
solving the source of the consistency problems of current vectorial spatial data models
from the basis.

The chapter is structured as follows. Section 4.1 introduces Dualgrid, defines it
formally and mathematically proves its main properties. Section 4.2 further analyzes it

50 Chapter 4. Dualgrid

from the perspective of its capabilities to interact with external applications and data.
The following sections present the results of experimental adaptations to Dualgrid of an
implementation of the ROSE Algebra over Realms (Section 4.3) and an implementation
of PosgreSQL/PostGIS with GEOS (Section 4.4). Both sections show how the
main problems of ROSE/Realms and PostgreSQL/PostGIS can be solved by using an
appropriate dualgrid as their representation space. Section 4.5 shows the links between
Dualgrid and the Regular Polytope proposal in [Tho07], and analyzes through it the
formal logics that a model over Dualgrid is able to fulfill. Finally, Section 4.6 concludes
the chapter.

4.1 Definition of Dualgrid

In Chapter 3 we have shown how different approaches deal with the need of
physical spatial data models to define finite representations for coordinates and the
consequences of such finite representations to keep the closure properties of the abstract
spatial data model. We have described the advantages and disadvantages of each
approach, and shown that none of them manage to isolate spatial databases users from
such problems. Instead, inconsistencies among spatial operations are usual, making
the development of spatial algorithms difficult. For example, the most commonly used
approach in commercial spatial databases, operations approximation, makes no real
efforts to provide consistency among operations, assuming that users do not need it
as far as the result is close enough to the theoretical one. We have shown that such
an assumption, although probably valid for visualization applications, is not valid for
general purpose GIS applications, where the implementation of any spatial algorithm
needs to rely on the theoretical properties of spatial operations.

In Section 2.4.2, the Realms approach [GS93] was introduced and described. It
was used as the basis for the development of the ROSE algebra [GS95], and it was
designed to isolate the consistency problems at the physical level, simplifying the
implementation of the ROSE algebra operations whereas keeping the consistency
among them. The reason why the use of Realms solves most of the problems when
implementing the ROSE algebra is that the set of operations of this algebra has a nice
property: given the set of segments and points defining the boundary of the arguments
of the operation, the result (if it is a spatial value) can be constructed using only
segments and points already present in the input arguments, or sub-segments or points
resulting from the intersection of input segments. As the redrawing process performed
in the insertion of new segments in the Realm decomposes them into sub-segments (see
Figure 2.5 and its explanation), making the intersection points explicit, the operations

4.1. Definition of Dualgrid 51

of the ROSE algebra only need to recombine (in the appropriate way) the elements of
the input values to build the result.

However, as points are represented using a finite discrete grid (in the original
Realms proposal, 32-bits integer coordinates), in the general case the intersection
points do not lie on the underlying grid, and they have to be approximated to the
closest representable ones. Therefore, the rewriting process modifies the exact value
represented. Furthermore, the insertion of new objects can modify again the value of
objects previously stored. This is the main reason of the unsolved problems of the
Realm approach, such as the inconsistencies between answers over time.

The consistency problems arise when the continuous representation space is
replaced by a discrete one that breaks the closure properties of the abstract spatial
model. A solution to avoid it in vectorial spatial models consists in finding a discrete
and finite space to represent spatial data types that ensures that any intersection point
(the result of the intersection of two segments) that can appear as result of the abstract
model operations can be exactly represented.

If we can define such a discrete space, the consistency problems would never arise
because the physical data model would remain closed under all the spatial operations
defined. Using such a discrete representation space would allow implementations based
on operations approximation, Realms and other approaches to become closed as well.
Hence, the consistency problems on any of them would disappear without the need of
doing relevant changes on their algorithms.

With this goal, we define Dualgrid, a discrete representation space based in fixed-
size coordinates that allows the definition of physical vectorial spatial data models that
keep the closure properties of their operations. As the formal statement of the problem,
we need to define a discrete representation space consisting of a grid of points Gp and
a grid of segments Gs fulfilling the following three properties:

1. The end points of any segment of Gs are points of Gp.

2. For any two intersecting and non collinear segments1 S1, S2 ∈ Gs, their
intersection point P = S1∩S2 belongs to Gp.

3. For any segment S = (Pa, Pb), S ∈Gs and any P ∈Gp, if P ∈ S and P /∈ {Pa,Pb},
then the sub-segments Sa = (Pa, P) and Sb = (P, Pb) belong to Gs.

We will call such a pair of grids Gp and Gs a dualgrid. If valid spatial values are
restricted to those whose boundary can be represented using only points and segments

1For collinear segments, it is obvious that their intersection, if not empty, will be either a point that is an
end point of the original segments (if they meet) or a segment whose end points will be end points of the
original segments (if they overlap). Therefore, it belongs to GP.

52 Chapter 4. Dualgrid

belonging to Gp and Gs, then the result of the more typical spatial operations of
common spatial vectorial data models (for example, the operations in the ROSE algebra
or in the SFS standard [OGC06], including set-theory operations) will be representable,
that is, the spatial data model will remain closed when implemented over a dualgrid. As
non-closure is the root of the inconsistencies among operations in vectorial models, this
means that consistency between operations (even over time) will also be guaranteed.

The requirements above mean, first of all, that the domain Coord over which the
coordinates of points in Gp are defined has to be closed under the arithmetic operations
+,−, ∗, and /. This requirement is needed to be able to represent the intersection point
of two linear segments. A subset of the real numbers that fulfills such a requirement
are the rational numbers (Q). Given the obvious need for a finite representation, the
coordinate domain must be restricted to a subset of the rational numbers.

Definition 4.1.1. The domain of point coordinates Coord(n,m) is the set of rational
numbers whose numerator and denominator can be represented with integer numbers
of n and m bits, respectively2, that is, Coord(n,m) = {x ∈ Q | x = num

den , num,den ∈ Z,
|num|< 2n, 0 < den < 2m, n,m ∈ N}.

We will see later on that the use of a Coord(n,m) domain for the coordinates will
be enough for defining a closed representation.

Definition 4.1.2. A grid of points Gp(n,m) is the set of points that can be represented
with coordinates in Coord(n,m), that is, Gp(n,m) = {(x,y) | x,y ∈Coord(n,m)}.

Proposition 4.1.1. Gp(n,m)⊆ Gp(n+ i,m+ j), ∀i, j ≥ 0.

This is obvious, as any integer (and here numerator and denominator are integer
values) that can be represented with x bits can be represented with x + i bits (with
i > 0).

Once the set of valid points Gp has been defined, the set of valid segments Gs must
be defined in such a way that the intersection of two segments (when the result is a
point) belongs to Gp.

Definition 4.1.3. A grid of segments Gs(n,m) is the set of segments S = (Pa, Pb), such
that Pa, Pb ∈Gp(n,m) and their supporting lines (the lines over which they are defined)
can be represented with equations A · x+B · y =C having integer coefficients, with |A|
and |B| smaller than

√
2m−1 and |C|< 2n−1

√
2m−1 .

2We are intentionally ignoring the bit required for representing the sign of these numbers. To take it into
account would only make these explanations more complex. Just keep in mind that whenever we speak about
a numeric value the extra bit required for the sign is implicit.

4.1. Definition of Dualgrid 53

The bounds on the values of the coefficients A, B and C ensure that the intersection
point of any pair of segments S1, S2 ∈ Gs(n,m) belongs to Gp(n,m). It will be
demonstrated in the following theorems.

Theorem 4.1.1. The intersection of any two segments of Gs(n,m) (if not empty) is
either a segment of Gs(n,m) or a point of Gp(n,m). Formally, ∀S1,S2 ∈Gs(n,m), (S1∩
S2 =⊥) ∨(S1∩S2 ∈ Gs(n,m)) ∨ (S1∩S2 ∈ Gp(n,m)).

Proof. If S1∩S2 is a segment, it must belong to Gs(n,m), because the resulting segment
must have the same supporting line as S1 and S2 (and hence fulfill the requirements
for the coefficients) and each of its end points is an end point of either S1 or S2, and
therefore belongs to Gp(n,m).

If S1 ∩ S2 is a point, either S1 ∩ S2 is an end point of both S1 and S2 (because they
meet at their end point) or, given r : Arx+Bry=Cr and s : Asx+Bsy=Cs the supporting
lines of S1 and S2 respectively,

S1∩S2 = P =


∣∣∣∣ Cr Br

Cs Bs

∣∣∣∣∣∣∣∣ Ar Br
As Bs

∣∣∣∣ ,
∣∣∣∣ Ar Cr

As Cs

∣∣∣∣∣∣∣∣ Ar Br
As Bs

∣∣∣∣
=

(numx

den
,

numy

den

)

Let us denote by ‖A‖, ‖B‖ and ‖C‖ the maximum values that |A|, |B| and |C| can
have, respectively. Then,

|numx|= |BsCr−BrCs| ≤ 2 · ‖B‖ · ‖C‖< 2 ·
√

2m−1 · 2n−1
√

2m−1
= 2n

In the same way,

|numy|= |ArCs−AsCr| ≤ 2 · ‖A‖ · ‖C‖< 2 ·
√

2m−1 · 2n−1
√

2m−1
= 2n

|den|= |ArBs−AsBr| ≤ 2 · ‖A‖ · ‖B‖< 2 ·
√

2m−1 ·
√

2m−1 = 2m

Therefore, given that |numx| < 2n, |numy| < 2n and |den| < 2m, it is proved that
S1∩S2 ∈ Gp(n,m). �

Theorem 4.1.2. ∀i, j ≥ 0, j ≤ 2 · i : Gs(n,m)⊆ Gs(n+ i,m+ j) .

54 Chapter 4. Dualgrid

Proof. We have already seen that Gp(n,m) ⊆ Gp(n+ i,m+ j). Hence, all what we
have to prove is that for any segment S belonging to Gs(n,m) the coefficients of its
supporting line also fulfill the requirements for Gs(n+ i,m+ j). For coefficient A, it is
clear that if A <

√
2m−1 then also A <

√
2(m+ j)−1. In the same way, this is shown for

coefficient B. For coefficient C, we can see that if C < 2n−1
√

2m−1 then also C < 2(n+i)−1√
2(m+ j)−1

,

because

2(n+i)−1
√

2(m+ j)−1
=

2n−1
√

2m−1
· 2i
√

2 j

and

j ≤ 2i⇒
√

2 j ≤ 2i⇒ 2i
√

2 j
≥ 1

Hence, Gs(n,m)⊆ Gs(n+ i,m+ j). �

Definition 4.1.4. A dualgrid DG(n,m) is a pair of grids Gp(n,m) and Gs(n,m), where
Gp(n,m) is a grid of points and Gs(n,m) is a grid of segments. Formally speaking,
DG(n,m) = Gp(n,m)∪Gs(n,m).

The dualgrid defined above fulfills the three requirements identified previously,
and hence its use as the underlying discrete representation space ensures that all the
boundary intersections between spatial objects can be represented. Therefore, the
implementation of any vectorial discrete model in a physical spatial model that uses
Dualgrid as the discrete representation space ensures that the spatial operations remain
closed (including set-theory operations) and that there are no consistency problems.
Furthermore, the dualgrid details are completely transparent to the user.

In the case of realm-based representations over Dualgrid, it would also guarantee
that the insertion of new elements into a Realm does not modify the value of any spatial
object in it. As a result, it solves the consistency problems over time, as well as most
of the remaining problems of the realms-based approach.

Corollary 4.1.1. ∀i, j ≥ 0, j ≤ 2 · i, any element of a dualgrid DG(n,m) is also an
element of a dualgrid DG(n+ i,m+ j).

Proof. Obvious given that Gp(n,m)⊆Gp(n+ i,m+ j) and Gs(n,m)⊆Gs(n+ i,m+ j).
�

4.2. Data importation and exportation 55

This last property defines the restrictions that have to be fulfilled to ensure that data
provided in a specific dualgrid resolution can be imported into a table where a different
resolution is used (for example, when importing data from another database). It shows
that it is possible to improve the resolution of the dualgrid used by a set of spatial data
without altering such data at all.

4.2 Data importation and exportation
Users would expect the following properties from a spatial database system
implementing Dualgrid with regard to import and export operations:

• Data in the database can be exported using a resolution α for points (including
end points of segments) and α′ for segment slopes.

• Data using a resolution α for points and a resolution α′ for segment slopes can
be loaded into the database.

• Data using a resolution β for points and end points of segments, with no
restrictions for segment slopes, can be loaded into the database.

Fulfilling the first and second properties ensures that data can be exported and re-
imported into the database without loss of information. Fulfilling the third property
ensures that data in the usual formats (where no restrictions for segment slopes exist)
can be loaded into the database. Such properties are important because they ensure that
user applications can effectively interact with the spatial database, retrieve and modify
spatial objects and store them back in the database, and also because they ensure that
existing data can be imported. Whereas the first and second points are already fulfilled
by any dualgrid, we need to study some further properties of dualgrids to be able to
determine which subset suitably fulfills the third one.

Theorem 4.2.1. Let Gp(n,1) be a grid of points with integer coordinates (that is, the
only valid value for the denominator is 1). Then, ∀S = (Pa,Pb), Pa,Pb ∈ Gp(n,1) : S ∈
Gs(3n+3, 2n+3).

Proof. To make the proof more readable, let n′ = 3n+ 3 and m′ = 2n+ 3. What we
have to prove is that ∀S = (Pa,Pb), Pa,Pb ∈ Gp(n,1) : S ∈ Gs(n′, m′).

It is clear that Gp(n,1) ⊂ Gp(n′, m′) and hence Pa, Pb ∈ Gp(n′, m′). Therefore,
the only thing that needs to be proved is that ∀Pa, Pb ∈ Gp(n,1), the supporting line
r : A · x+B · y = C of segment S = (Pa, Pb) has |A| and |B| smaller than

√
2m′−1 =√

2(2n+3)−1 = 2n+1 and |C|< 2n′−1√
2m′−1

= 2(3n+3)−1√
2(2n+3)−1

= 22n+1.

56 Chapter 4. Dualgrid

Given Pa = (Xa, Ya) and Pb = (Xb, Yb), the coefficients of the supporting line are
A = Ya−Yb, B = Xb−Xa and C = XbYa−XaYb. It is easy to see that:

|A|= |Ya−Yb|< 2n +2n = 2n+1

|B|= |Xb−Xa|< 2n +2n = 2n+1

|C|= |XbYa−XaYb|< 2n ·2n +2n ·2n = 22n+1 ≤ 22n+1

�

Theorem 4.2.2. Let Gp(n,m) be a grid of points. Let Pa = (numax
dena

,
numay
dena

) and
Pb = (numbx

denb
,

numby
denb

) be two points with homogeneous3 coordinates such that Pa, Pb ∈
Gp(n,m). Let S = (Pa, Pb). Then, S ∈ Gs(3n+m+3, 2n+2m+3).4

Proof. To make the proof more readable let n′ = 3n+m+3 and m′ = 2n+2m+3, that
is, we have to prove that S ∈ Gs(n′, m′).

In the previous proof for points with integer coordinates we have already seen that
the supporting line of S is r : A · x + B · y = C, with A = Ya −Yb, B = Xb − Xa and
C = XbYa−XaYb. In this case,

A =
numay

dena
−

numby

denb
=

denb ·numay−dena ·numby

dena ·denb

B =
numbx

denb
− numax

dena
=

dena ·numbx−denb ·numax

dena ·denb

C =
numbx

denb
·

numay

dena
− numax

dena
·

numby

denb
=

numbx ·numay−numax ·numby

dena ·denb

Such a line is equivalent to the line r′ : A′ · x+B′ · y =C′, where

3Two coordinates are called homogeneous if they have the same denominator.
4Note that we give an upper bound for the values of n and m in the required segment grid Gs(n,m), and

do not define the minimum for them. In specific cases (as in the one with integer coordinates shown above)
a segment grid with slightly smaller sizes for numerator and denominator could be used.

4.2. Data importation and exportation 57

A′ = A ·dena ·denb = denb ·numay−dena ·numby

B′ = B ·dena ·denb = dena ·numbx−denb ·numax

C′ =C ·dena ·denb = numbx ·numay−numax ·numby

Hence,

∣∣A′∣∣= ∣∣denb ·numay−dena ·numby
∣∣< 2n+m+1

∣∣B′∣∣= |dena ·numbx−denb ·numax|< 2n+m+1

∣∣C′∣∣= ∣∣numbx ·numay−numax ·numby
∣∣< 22n+1

It is easy to see that:

√
2m′−1 =

√
2(2n+2m+3)−1 = 2n+m+1 >

∣∣A′∣∣
√

2m′−1 =
√

2(2n+2m+3)−1 = 2n+m+1 >
∣∣B′∣∣

2n′−1
√

2m′−1
=

2(3n+m+3)−1
√

2(2n+2m+3)−1
=

23n+m+2

2n+m+1 = 22n+1 >
∣∣C′∣∣

Therefore, S ∈ Gs(3n+m+3, 2n+2m+3). �

As a result of the previous analysis, we can conclude that if we intend to import
external data (which will not have restrictions on segment slopes), then we have
two basic possibilities. One is to use a dualgrid able to load data where the point
coordinates are integer numbers of n bits (this would be the resolution β mentioned
above). In this case, (as we have seen in the previous analysis) the best option is to
use a dualgrid DG(3n+ 3, 2n+ 3). The other option is to choose a dualgrid able to
accept external data whose points are represented with homogeneous coordinates (the

58 Chapter 4. Dualgrid

same denominator for both coordinates), where n bits are used for the numerator and
m for the denominator (this would be another example of a resolution β). In this case,
the optimal dualgrid would be DG(3n+m+ 3, 2n+ 2m+ 3). Such a dualgrid would
also accept data with integer coordinates of n+ m

3 bits. Note that one special case of
data provided in such a homogeneous format is the case when point coordinates are
represented as fixed point decimal numbers. If i bits are used for the integer part and m
bits are used for the decimal part, then we can represent those points with homogeneous
coordinates with i+m bits for the numerator and m bits for the denominator.

As an example, suppose that we want to store data represented with UTM
coordinates using the spatial reference system EPSG:230295, which uses the geodetic
datum ED50 and projected coordinates following the Universal Transverse Mercator
coordinate system. This spatial reference system is widely used for representing spatial
data in the geographical area of continental Portugal and Galicia (northwestern region
of Spain). The area covered by EPSG:23029 has projected coordinates (in meters)
between 230.000 and 800.000 in the X axis, and between 4.000.000 and 6.700.000 in
the Y axis.

Supposing that we want to store data with a precision of 1cm, and hence we decide
to represent coordinates in centimeters instead of meters, that means that coordinates
will have integer values smaller than 670.000.000. This means that input spatial data
without restrictions on the segment slopes requires 30 bit integers for the coordinates,
because 229 = 536.870.912 < 670.000.000 and 230 = 1.073.741.824 > 670.000.000.

This would mean that input spatial data (without segment slope restrictions, the β

resolution above) require 30 bit integers for coordinates. Applying Theorem 4.2.1, this
would require a Dualgrid using (at least) rational coordinates with a 3 ∗ 30+ 3 = 93
bits numerator and a 2∗30+3 = 63 bits denominator.

As another example, let suppose now that we want to store data represented using
the spatial reference system EPSG:43266, which represents coordinates in degrees over
a reference ellipsoid using the geodetic datum WGS84. This spatial reference system
is widely used, being the coordinate reference system used by the Global Positioning
System (GPS) and for NATO military geodetic surveying.

The area covered by EPSG:4326 is the entire world, using spherical coordinates in
degrees, with values ranging from −180 to +180 in the X axis, and from −90 to +90
in the Y axis.

At the equator, 360 degrees are approx. 40.000 km, that is, 4.000.000.000 cm.
This means that each degree covers approx. 4.000.000.000

360 = 11.111.112 cm. Hence, to
represent the coordinates in degrees with a precision of 1 cm we need 8 bits for the

5http://spatialreference.org/ref/epsg/23029/
6http://spatialreference.org/ref/epsg/4326/

http://spatialreference.org/ref/epsg/23029/
http://spatialreference.org/ref/epsg/4326/

4.3. Realms and the ROSE Algebra over Dualgrid 59

integer part (28 = 256 > 180) and 24 bits for the decimal part (224 = 16.777.216 >
11.111.112). As all the coordinates in the representation space use a fixed comma, we
can instead see the problem as representing the space in 1

224 degree units, and hence
we can represent the coordinates without comma. This way, the representation of input
spatial data coordinates (without segment slope restrictions, the β resolution above)
requires 24+ 8 = 32 bit signed integers7. Applying Theorem 4.2.1, this requires a
Dualgrid using (at least) rational coordinates with a 100 bits numerator (3∗32+3 = 99
bits for the absolute value plus 1 bit for the sign) and a 2∗32+3= 67 bits denominator.

4.3 Realms and the ROSE Algebra over Dualgrid

In the original implementation proposed for the ROSE algebra [GdRS95, GS95] all the
spatial data types are defined over a Realm, in which all the intersection points between
the boundaries of the spatial objects are made explicit at insertion time, and their values
are approximated, if needed, to the closest representable point. The points of the Realm
are points with unsigned integer coordinates of a given size n (in bits).

It is important to note that the algorithms implementing operations of the ROSE
algebra rely on the fact that all intersection points are explicit. These algorithms are
generally simpler and more efficient because of this, but they will crash or yield wrong
results if they receive arguments with intersecting segments.

The basic idea for implementing a realm-less version of the ROSE algebra (which
can also be viewed as using an implicit Realm) is to represent data over a dualgrid such
that all intersection points are representable without loss of precision. In addition, we
need to make sure that the algorithms receive only arguments that do not have proper
segment intersections. In the following paragraphs we first explain how a Realm can
be represented over a dualgrid, and in the next step, how the (explicit) Realm can be
omitted altogether.

For representing a Realm over a dualgrid DG(n,m), the domain of valid points of
the Realm must be Gp(n,m), and the set of valid segments must be Gs(n,m). Formally,
a Realm over a dualgrid DG(n,m) is a subset R = P∪S of DG(n,m) such that:

1. P⊆ Gp(n,m), S⊆ Gs(n,m)

2. ∀p ∈ P∀s ∈ S : ¬(p ins)

3. ∀s, t ∈ S, s 6= t : ¬(s intersects t)∧¬(s overlaps t)

7This means using 32+1 bits, because we need an extra bit for the sign.

60 Chapter 4. Dualgrid

The predicates in, intersects, and overlaps are defined precisely in [GS93]. Informally,
they mean that a point does not lie on a segment except possibly on an end point,
that two segments do not intersect except in their end points, and that two collinear
segments can only touch in an end point.

Now, the operations provided for importing data into the database8 should check
that the input data conform to the dualgrid requirements (see properties and notations
at start of Section 4.2). If the data to be imported is represented with a resolution of
type β (e.g., integer coordinates of size i such that DG(3i+ 3,2i+ 3) ⊆ DG(n,m)),
then no check needs to be performed. This will be the normal case when importing
data from external sources. Otherwise, the import algorithm must check that the type
of the input coordinates is compatible with the one used in the dualgrid (the resolution
α for end points) and the supporting lines of all segments of the input values fulfill
the restrictions given for segments of a dualgrid (the resolution α′ for segment slopes).
This case will normally only occur when data have been exported previously from a
Dualgrid database of the same resolution.

If these conditions are fulfilled, it is guaranteed that intersection points can be
represented as Realm points. One can now proceed as before inserting data into a
Realm (splitting segments at intersection points), but with the following advantages:

• Relationships between points and segments are not altered by the redrawing
process.

• Insertion of new data does not modify other data in the database. The new
inserted data are also inserted without modifying their values.

• Consistency of answers over time is also guaranteed.

Yet, two problems of the realm-based approach remain in this case:

• Complexity of updates. Although the cascade of rewritings in the Realm
is reduced when using Dualgrid (because when a segment in the Realm is
decomposed, the resulting segments still contain the same set of points, and
hence the new segments will not intersect extra points or segments of the Realm),
the rewriting process can still produce a considerable overhead when the new
data are located in areas of the plane with a high density of objects.

• Space overhead. Although some decompositions of segments are avoided
because no modifications of the values represented in the Realm are produced

8Although they are not part of the ROSE algebra, they should be provided when implementing a spatial
extension for a database.

4.3. Realms and the ROSE Algebra over Dualgrid 61

a)
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

b)
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 4.1: Construction of a Realm with the arguments of a ROSE operation. a) Non
realm-based arguments. b) Realm-based arguments.

(and hence there is no risk of triggering an updates cascade), one should still
expect a considerable overhead for data located in high density areas of the plane.

However, there exists a better solution: given that now the use of a Realm does not
modify the data stored in the database, the ROSE operations will return the same value
whether the Realm is constructed with all the objects of the database or it is constructed
only with the arguments of the operation. Hence, instead of storing in the database
the realm-based representation of the data, we can simply store the data as they are
inserted into the database. Whenever a pair of spatial objects is used as argument of
an operation, a preprocessing step (realmizator) is added that computes a realm-based
version of the two arguments, where only the intersection points between them are
made explicit (any other objects in the database are ignored). This is illustrated in
Figure 4.1. This realm-based version is then passed to the ROSE algebra algorithm,
which computes the result. Such a preprocessing algorithm can, for example, be
implemented as a variant of the well-known plane-sweep algorithm by Bentley and
Ottmann for finding intersections of line segments [BO79] (see also [PS85]) which
requires O(n logn + k) time where n is the total number of line segments and k
the number of intersections. Furthermore, the realmization process only has to be
implemented once and it can be applied to all ROSE operations without changing them,
instead of having to modify all the ROSE algorithms to detect intersections.

Optionally, a post-processing step (derealmizator) can be added to normalize the
result (e.g., to melt into one the contiguous segments of the returned object that are
collinear). Both pre- and post-processing steps are illustrated in Figure 4.2.

An experimental adaptation to Dualgrid of a ROSE algebra implementation, using
the preprocessing algorithm instead of Realms, was developed during a research stay
of the author of this Thesis at the Fernuniversität Hagen as a proof of concept. Such

62 Chapter 4. Dualgrid

R
ea

lm
iz

at
io

n
pr

oc
es

s

(n
on

 r
ea

lm
 b

as
ed

)

ar
gu

m
en

ts
In

pu
t

R
ea

lm
-b

as
ed

ar
gu

m
en

ts R
ea

lm
 b

as
ed

re
su

lt

D
e-

re
al

m
iz

at
io

n
pr

oc
es

s

ROSE

algebra

operation

R
es

ul
t

Figure 4.2: Replacement of Realms by a preprocessing step before applying an
operation.

an implementation was developed as an extension package for Secondo and Informix
Illustra. Both implementations were used for research and teaching purposes at the
FernUniversität Hagen. Although many optimization techniques were applied, the
implementation was around twenty times slower using Dualgrid than using hardware-
supported integer coordinates. The implementation in Secondo was used until a major
rewrite of Secondo in 2002.

4.4 PostGIS-GEOS over Dualgrid
In [Cre06] a partial adaptation of PostGIS v1.0.2 to Dualgrid representation was
implemented. The implementation focused on the spatial operations and predicates
provided by GEOS and the analysis of the impact in robustness and consistency.
The resulting implementation was tested against the original PostGIS implementation
by performing a series of queries testing the most basic properties of spatial set-
theory operations. We used two spatial datasets consisting of two collections of
regions delimiting the territory of comarcas (Spanish administrative region that
groups several adjacent municipalities) and municipios (municipalities) on the
region of Galicia (Spain). The comarcas table had 52 elements, whereas the
municipios table had 313 elements. Even though the geometries of municipios
(and respectively comarcas) were not supposed to overlap each other, these datasets
were created for visualization purposes without any quality checks. This was not
a problem for our test because we wanted to test how well PostGIS handles spatial
operations between overlapping datasets.

A summary of the test results is shown in Table 4.1. It is important to remark at this
point that PostGIS v1.0.2 (on which the Dualgrid-PostGIS implementation was based)
produced a topology exception for tests 1, 2, 5, 6, 14 and 15 that prevented it from

4.4. PostGIS-GEOS over Dualgrid 63

Test % wrong answers
(PostGIS v1.0.2)

% wrong answers
(Dualgrid-PostGIS)

1 (A∩B)−A = /0 N/A (2,25% in v1.5.11) 0%

2 (A∩B)−B = /0 N/A (2,37% in v1.5.11) 0%

3 (A∩B)⊆ A 5,66% 0%

4 (A∩B)⊆ B 5,97% 0%

5 A∪ (A∩B) = A N/A (2,25% in v1.5.11) 0%

6 B∪ (A∩B) = B N/A (2,37% in v1.5.11) 0%

7 (A∩B)⊆ (A∪B) 0% 0%

8 A⊆ (A∪B) 2,31% 0%

9 B⊆ (A∪B) 2,31% 0%

10 dis joint((A−B),(A∩B)) 0% 0%

11 dis joint((B−A),(A∩B)) 0% 0%

12 dis joint((A−B),B) 3,48% 0%

13 dis joint((B−A),A) 2,31% 0%

14 (A∪B)−B = (A−B) N/A (3,48% in v1.5.11) 0%

15 (A∪B)−A = (B−A) N/A (2,31%in v1.5.11) 0%

16 (A−B)⊆ A 3,08% 0%

17 B−A⊆ B 2,31% 0%

18 (A∪B)− (A∩B) = symdi f f (A,B) 0% 0%

19 (A−B)∪ (B−A) = symdi f f (A,B) 0% 0%

Table 4.1: Original PostGIS vs Dualgrid PostGIS.

generating a result, whereas PostGIS v1.5.11 handles such cases by returning NULL
as the result of the failing operation (we show the test result of PostGIS v1.5.11 on
those cases). In all other cases PostGIS v1.5.11 and PostGIS 1.0.2 return the same
results.

The test results show that, whereas the original PostGIS implementations failed to
behave correctly in almost all the tests (returning wrong results in 2-6% of the answers,
depending on the specific test), our modified version of PostGIS using Dualgrid passed
all of the tests, retrieving in all cases the right answers. This evidences the capability of
Dualgrid to provide consistency to existing implementations, without the need of deep
algorithmic changes.

64 Chapter 4. Dualgrid

4.5 Rigorous spatial logics over Dualgrid
In [Tho07] the Regular Polytope 2D/3D spatial representation is proposed. On it, the
segments (2D) and faces (3D) of spatial objects are represented by their line and plane
equation coefficients (Ax+By+Cz+D=0), instead of by their vertexes. In the proposed
model no boundary points exist. Instead, a spatial object can be directly understood as
a point set as in set-theory. A simple decision rule defines whether a point lying in the
segments/faces representing the object boundary belongs to the object interior or to its
interior.

Apart from defining the Regular Polytope representation, [Tho07] also analyzes
the algebraic and logical properties that such a representation can offer, depending
on whether an underlying discrete space based on integer, domain restricted rationals
(dr-rationals) or floating-point numbers is assumed. On such analysis, the concept
of dr-rationals follows exactly the approach proposed by Dualgrid, using a grid1 of
integer coordinates points and a grid2 of finite-size rational coordinates for line/plane
intersection coordinates.

In fact, the Regular Polytope in 2D over dr-rationals is completely equivalent to the
vectorial representation over Dualgrid with regard to their underlying representation
spaces. The three main differences between both are relative to their discrete models:

• The Regular Polytope over dr-rationals stores the line equation coefficients,
instead of storing the exact vertex coordinates as Dualgrid does. But as such
coordinates can be represented exactly with dr-rationals (equivalent to Dualgrid),
and the expressiveness of Regular Polytope is equivalent to that of a vectorial
representation, both can represent exactly the same objects.

• The Regular Polytope proposal has no boundary points: every point in the space
is either in the interior or in the exterior of the spatial object. But in fact, such a
property is not related to the Regular Polytope representation or the underlying
discrete space used, but instead to a simple interpretation rule that defines (in a
logic-consistent fashion) whether a point lying under a line defining the boundary
is supposed to belong to the interior or the exterior. Such a rule could also be
identically applied over a vectorial representation to get as well a no boundary
points vectorial model.

• The Regular Polytope proposal allows unbounded geometries. It does so through
the straightforward solution of restricting the space limits to the limits of the
coordinates representation (from −M to +M, being respectively the minimum
and maximum value a coordinate can get on their model). A similar approach
could be followed in a vectorial representation, and in fact the ISO 19107

4.6. Conclusions 65

standard already allows the definition of unbounded geometries. Dualgrid-based
representations could also follow exactly the same approach.

As a result, the same properties apply to Regular Polytopes and vectorial
representations over Dualgrid extended with the no boundary points additional rule.
[Tho07] shows therefore that vectorial representations over Dualgrid (in the no
boundary interpretation) would support a rigorous algebra that covers the axiomatic
definitions of the topological space, metric space, the region connection calculus, the
discrete Boolean connection algebra and the weak proximity space.

As an advantage over Dualgrid, the Regular Polytope representation has been
defined to support 3D modeling. As a disadvantage, and due to the approach followed
by Regular Polytope, the time-complexity of the algorithms proposed for implementing
its main operations are, at best, quadratic.

4.6 Conclusions
In this chapter we have presented Dualgrid [CG02], an approach for the representation
of spatial objects that solves the robustness problems in the computation of spatial
operations and ensures the consistency between answers. This has been done by
selecting an appropriate discrete representation space for the spatial values that is
completely closed under the set of target operations (e.g., the operations of the ROSE
algebra), including set-theory operations. Therefore, it does not impose any change
in the discrete spatial model and the algorithms to be used, affecting only to the
numerical data types used for the representation of coordinates and for the intermediate
computations. We have also shown how the use of a dualgrid as the domain set of
Realms not only solves the open problems of the original implementation of the ROSE
algebra, but also simplifies the insertion of elements into the database and allows a very
efficient representation of spatial values.

Table 4.2 updates Table 3.1 shown in Chapter 3, showing the consistency properties
provided by vectorial models implemented over Dualgrid [Cot01]. Dualgrid provides
a consistency level similar to the one provided by Realms. Moreover, consistency is
provided also over dynamic datasets (not only on static datasets as Realms does) and it
does not need any of the Realms internal data structures. Also, the insertion of a new
object has no impact over the other objects representations (object representations are
independent), making it easier to implement in transactional databases. Finally, it uses
fixed-size coordinates, making it easier to implement in databases than the arbitrary
precision rationals approach.

The Dualgrid approach provides closure and consistency between answers for an
important set of operations, including the set-theory operations. Although some other

66 Chapter 4. Dualgrid

Vectorial models

R
as

te
rm

od
el

s

C
on

st
ra

in
tm

od
el

s

R
es

tr
ic

.o
fo

pe
ra

tio
ns

R
es

tr
ic

.t
o

or
th

og
on

al

A
pp

ro
x.

A
rb

itr
ar

y
Pr

ec
.R

at
io

na
ls

R
ea

lm
s

D
ua

lg
ri

d

Spatial predicates C C C C C C C C

Set-theory operations C C - C NC C C C

Decomposition
operations

- C/NC(1) C C C C C C

Construction operations - C/NC(2) C C/NC(2) C C C/NC(2) C/NC(2)

Numeric operations C C C C C C C C

Scaling and rotation
operations

NC NC - NC NC C/NC(3) NC NC

Translation operations C NC C/NC(4) C/NC(4) C/NC(4) C NC NC

Table 4.2: Consistency properties of operations for each data model in the spatial
domain.

interesting operations are left out9 (e.g., the convex-hull operation or the computation of
Voronoi diagrams), we expect the consistency between answers for such operations not
to be so important as for the set-theory operations. For example, an implementation
of the convex-hull operation that returns an approximate result but ensures that all
the generator points are contained in it is not likely to produce consistency problems
between answers, because the more important properties of the result as well as its
more important relationships with the arguments are fulfilled.

Finally, let us remark that although the proposal of this chapter is relatively simple
and easily implementable, it solves an important problem in offering the only spatial
database algebra with guaranteed robustness and correctness properties besides the
(original, realm-based) ROSE algebra. Compared to the original ROSE algebra, the
relatively complex Realm machinery (especially the redrawing) and its interaction with
a DBMS does not need to be implemented any more; yet, the correctness properties of
the Dualgrid approach are even better than those of the realm-based ROSE algebra. Our

9Such operations are not part of the ROSE algebra because they would not be closed over the Realm
basis.

4.6. Conclusions 67

experimental adaptation of the widely used spatial database extension PostGIS-GEOS
to use Dualgrid [Cre06], presented in Section 4.4, also shows that it successfully solves
all the consistency problems that its implementers were unable to handle. Moreover,
Section 4.5 shows how the representation space proposed by Dualgrid has been used
as the basis for the development of the Regular Polytope representation in [Tho07]. In
it, the Dualgrid representation space is systematically used to support the analysis of
the formal logics that Regular Polytope can fulfill, proving the suitability of Dualgrid
for providing spatial models with sound formal logic properties.

Dualgrid has its own drawbacks. The most important ones are the performance and
storage costs derived from using rational numbers. Moreover, Dualgrid is only suitable
for input data that uses integer or fixed-point coordinates. Dualgrid is completely
unsuitable for data with floating-point coordinates because of the huge number of
bits required to represent the coordinates. In the following chapter we explain this
drawbacks and we present an alternative to solve them.

Chapter 5

Dualgrid for floats

In the previous chapter we presented Dualgrid [CG02], a representation approach that
defines a physical representation model for spatial databases closed under all types of
operations (most importantly, set-theory operations). Although Dualgrid is suitable for
domain-specific technologies where interoperability and performance are less relevant
than the advantages provided by Dualgrid, it also has some drawbacks that prevent its
use in general-purpose spatial database technologies.

In this chapter, we analyze the drawbacks of the original Dualgrid proposal
(Section 5.1), and then, we define DualgridFF (Dualgrid For Floats) in Section 5.2.
DualgridFF [CL10] goes a step further from Dualgrid by proposing not only a
finite discrete representation space, but also a physical spatial representation model
that overcomes the drawbacks of Dualgrid, and it allows efficient implementations
capable of interacting with other vectorial spatial technologies based in floating-
point coordinates. The result is a physical spatial model suitable for its use in
commercial general-purpose spatial database technologies. Finally, Section 5.3
estimates the storage and computational costs of using DualgridFF. It also provides
useful performance improvement tips and analyzes some interoperability aspects.

5.1 Original Dualgrid drawbacks

Although the original Dualgrid proposal succeeded in providing a finite discrete
representation space that kept the closure properties of discrete vectorial spatial models,
it had some drawbacks that prevented its adoption in real spatial database management
systems. Those drawbacks are related with interoperability and performance, and make

70 Chapter 5. Dualgrid for floats

it clear that if we want to translate the advantages of Dualgrid to commercial spatial
technologies, we have to a solve these two additional problems.

5.1.1 Interoperability
Current spatial interoperability standards [OGC06], SDBMS [Ref10, Mys10, Ora10,
Mic09], technologies [Viv03] and existing spatial datasets are implemented using
double-precision floating-point coordinates. The main reasons for floating-point
coordinates becoming the de-facto standard for coordinate representation are that:

• They have a better hardware support for higher resolutions. Given that double-
precision IEEE754 floating-point numbers have a 52 + 1 + 1 bits mantissa
(implicit and sign bit included), they have resolution enough to represent
any point in the Earth surface (which has a 40.000km equatorial perimeter)
with a precision better than 3nm, a precision that should suffice for any GIS
application1. The other data type well-supported by hardware (32 bits integers)
would only allow a precision of 1cm.

• They are much better suited for automatically adapting the representation scale,
thanks to the mantissa component.

The advantages of floating-point-based vectorial models are relevant enough for current
general-purpose GIS applications, and the current state of the art on GIS relies in
the strong interoperability between spatial technologies and data sources. Therefore,
we should expect that spatial data providers will always use floating-point-based
representations, and that all physical spatial models must be suited for accepting
floating-point-based input data. This means that:

• A physical spatial vectorial model must be able to represent any point having
IEEE754 floating-point coordinates.

• A physical spatial vectorial model must be able to represent any segment having
end points with floating-point coordinates.

Even though one could select an appropriate Dualgrid to support the input of non-
dualgrid fixed-size integer-based datasets, there is not such possibility for non-dualgrid
datasets based on floating-point coordinates. To give support for importing datasets
based on floating-point coordinates, we would have to choose a Dualgrid capable
of representing any segment having end points with floating-point coordinates. The

1As far as we do not intend to map atoms.

5.1. Original Dualgrid drawbacks 71

simplest way to analyze it is to see floating-point numbers as a compact and lossy
representation for large integers (counting very small units). According to the
IEE754-2008 standard [IEEE08], 64 bits floating-point numbers have a 52 + 1 + 1
bits mantissa (implicit and sign bits included) and a 10 bits exponent (ranging from
−1022 to +1023). From a practical (and rough) point of view we can see it as
a 54+ 1.023+ 1.022 = 2.099 bits integer2. Applying Theorem 4.2.1 introduced in
Chapter 4, it turn outs that the Dualgrid required would need rational coordinates with
a 3 ∗ 2.099+ 3 = 6.300 bits numerator and a 2 ∗ 2.099+ 3 = 4.201 bits denominator.
That is, each single point coordinate would require 10.501 bits. The size of rational
numbers required for the coordinates in such a Dualgrid would be unacceptable.

5.1.2 Performance
The original Dualgrid proposal required using fixed precision rational coordinates
which required approx. 5 times the space required by the original data based in integer
coordinates. This imposed a sensible performance and storage toll.

In Section 4.4, we presented a partial adaptation of PostGIS v1.0.2 to Dualgrid
representation that we implemented [Cre06]. Although the Dualgrid-PostGIS
implementation showed that the adoption of Dualgrid allowed PostGIS and GEOS to
get rid of their problems with robustness and consistency among operations, it also
showed that the new implementation was in average 50 times slower than the original
one (see Table 5.13). Even if we consider further optimizations, one should expect at
least a 20 times slowdown. The main reason is that the original Dualgrid proposal
requires for all computations the use of finite precision numbers without hardware
support. Even though the storage space is limited in size, the implementation cannot
take advantage of the processor’s hardware support for integer or IEEE754 floating-
point computation. The Regular Polytope representation was proposed in [Tho07]
using a discrete representation space with the same key logical properties as Dualgrid.
The authors also make a proof of concept implementation where the computational
cost of using fixed-size rational coordinates becomes evident.

2It would not be exactly that, as such an integer would be restricted to being allowed to have bits to 1
within a single consecutive block of 52+1 bits (the only ones stored in the mantissa). But it is a precise
enough model to understand the space requirements for a Dualgrid supporting them as input coordinates.

3Tests with N/A values corresponds with tests for which PostGIS v1.0.2 failed with a topology exception
error, so no execution times were recorded for them. In Table 4.1 (Section 4.4) we repeated the consistency
tests for a newer version of PostGIS, v1.5.11. However, to do any performance test between Dualgrid-
PostGIS (based in PostGIS v1.0.2) and PostGIS v1.5.11 would be useless and unfair, as the differences
would not be only relative to using Dualgrid, but also to all the algorithm changes and optimizations between
PostGIS v1.0.2 and PostGIS v1.5.11.Therefore, we keep here the original performance tests between
PostGIS v1.0.2 and Dualgrid-PostGIS.

72 Chapter 5. Dualgrid for floats

Test Times slower
(Dualgrid-PostGIS
vs PostGIS v1.0.2)

1 (A∩B)−A = /0 N/A

2 (A∩B)−B = /0 N/A

3 (A∩B)⊆ A 36,86

4 (A∩B)⊆ B 42,13

5 A∪ (A∩B) = A N/A

6 B∪ (A∩B) = B N/A

7 (A∩B)⊆ (A∪B) 134,61

8 A⊆ (A∪B) 45,16

9 B⊆ (A∪B) 27,51

10 dis joint((A−B),(A∩B)) 47,29

11 dis joint((B−A),(A∩B)) 40,78

12 dis joint((A−B),B) 57,83

13 dis joint((B−A),A) 51,58

14 (A∪B)−B = (A−B) N/A

15 (A∪B)−A = (B−A) N/A

16 (A−B)⊆ A 42,55

17 B−A⊆ B 25,82

18 (A∪B)− (A∩B) = symdi f f (A,B) 69,03

19 (A−B)∪ (B−A) = symdi f f (A,B) 38

Table 5.1: Original PostGIS vs Dualgrid-PostGIS performance comparative.

5.2 Dualgrid For Floats
To adapt Dualgrid to the additional requirements imposed by the reality of current
commercial spatial technologies, we will take into account the following premises:

1. Thanks to the incorporation of successful research in that area (e.g., [Mil89,
DS90, ABD+97]), currently existing implementations of commercial spatial
technologies already solve the problem of correctly testing (without error) the
basic relations point-segment and segment-segment in IEEE754 floating-point-
based representations, with acceptable performance. They are used to provide
exact and consistent spatial predicates (e.g., intersects, overlaps, etc.), as well as
to ensure that more complex algorithms take correct and consistent decisions on
conditional tests.

5.2. Dualgrid For Floats 73

2. Developers can accept the imposition of some additional restrictions to be
fulfilled when constructing points and segments, as far as implementing and
validating such restrictions become straightforward, intuitive and non-intrusive
(that is, has no big impact on their algorithms).

3. The vast majority of the points that need to be explicitly represented in the result
of a spatial operation are points that were already explicitly represented in the
input arguments. Only a small percentage of them are new points resulting from
boundary intersections between the input spatial objects. An evidence supporting
this premise is provided in Section 5.3.

Taking all these premises into account, we introduce the Dualgrid For Floats
(DualgridFF for short) physical representation model [CL10].

Definition 5.2.1. The set of points GPF is the set of all possible points with floating-
point coordinates.

Definition 5.2.2. The set of segments GSF is the set of all the possible segments
S(PF1,PF2) with end points in GPF (PF1 ∈ GPF , PF2 ∈ GPF).

Definition 5.2.3. A grid of points for floats GPFF is the set of points GPFF = GPF ∪
GPI , where GPI is the set of all the points resulting of the intersection of segments GSF .

Definition 5.2.4. A grid of segments for floats GSFF is the set of segments GSFF =
GSF ∪GSI , where GSI is the set of all possible segments defined over the line of
any segment S ∈ GSF and resulting from shortening it by its intersection with other
segments Si ∈ GSF .

Figure 5.1 shows some examples of elements belonging to the sets above:

• The grid represents the possible X and Y floating-point coordinates, and
therefore all the points falling on the grid are GPF points. The points P11, P12,
P21, P22, P31, P32, P41 and P42, drawn in the figure as black circles, are all GPF
points.

• All possible segments having end points in the grid are GSF segments. The
figure shows some of these possible GSF segments drawn in dotted lines, namely
segments (P11,P12), (P21,P22), (P31,P32) and (P41,P42).

• All possible intersections of GSF segments are GPI points. In the figure, GPI
points PA, PB and PC are drawn as black squares.

• Finally, GSI is the set of all possible segments resulting from shortening a GSF
segment by its intersections with other GSF segments. For example, in Figure 5.1
we can identify the following GSI segments:

74 Chapter 5. Dualgrid for floats

Figure 5.1: Example of points belonging to GPF and GPI and segments belonging to
GSF and GSI .

– The GSI segments (P11,PB), (P11,PC), (PB,P12) and (PC,P12), resulting
from shortening GSF segment (P11,P12) with its intersections with the other
drawn segments.

– The GSI segments (P21,PC) and (PC,P22), obtained from GSF segment
(P21,P22).

– Tthe GSI segments (P31,PB), (P31,PA), (PB,P32) and (PA,P32), obtained
from GSF segment (P31,P32).

– The GSI segments (P41,PA) and (PA,P42), obtained from GSF segment
(P41,P42).

From now on, and when speaking about GSI segments, we will often use the notation
S = (SF1,SFS,SF2) to represent that S is the result of shortening the supporting GSF
segment SFS by its intersections with GSF segments SF1 (their intersection defines the
S start point) and SF2 (their intersection defines the S end point).

Definition 5.2.5. A Dualgrid for floats (DualgridFF) DGFF is defined as a pair of
grids GPFF and GSFF , where GPFF is a grid of points for floats and GSFF is a grid of
segments for floats. Formally speaking, DGFF = GPFF ∪GSFF .

If the input spatial data are represented through vertexes with floating-point
coordinates (points belonging to GPF), their boundary segments will be segments
belonging to GSF . Therefore, the results of typical spatial operations on vectorial

5.2. Dualgrid For Floats 75

models will be representable through those points and segments and points and
segments resulting from the intersection of segments in GSF (that is, points from GPI
and segments from GSI). As a result, the DualgridFF defined above fulfills all the
requirements for a dualgrid to accept input data with floating-point coordinates, and
hence its use as the base for the representation of spatial objects ensures that all set-
theory spatial operations remain closed.

For an efficient implementation of DualgridFF, and taking into account the premises
previously described, we propose the following representation for the DualgridFF
elements:

• Any point P ∈ GPF and any segment S ∈ GSF is represented as usual. For GPF
points that means that they are represented as a pair of floating-point coordinates.
For GSF segments that means representing them as the pair (PF1,PF2) defined
by the segment end points.

• A point P ∈GPI is represented as the pair of GSF segments that define it, that is,
as (SF1,SF2).

• In the representation of polylines and polygons (usually represented as sequences
of points), each vertex in the sequence shares a common segment with the
previous vertex and another common segment with the next vertex. This implies
that for each vertex PI ∈ GPI in the sequence of points (where PI = (SF1,SF2) =
((P11,P12),(P21,P22)), P11 will correspond to the previous vertex in the sequence
of points and P22 will correspond to the next vertex in the sequence of points.
Therefore, to represent PI in the sequence of points we only need to store a pair
with the remaining two points, that is, the pair (P12,P21)

4. As a special case
of polylines, GSI segments are represented as it would correspond to a polyline
with only two vertexes.

The proposed representation can be better understood with the help of Figure 5.2. On
it, we can identify the following examples:

• Points drawn as black circles are GPF points. They would be represented as
usual, as a pair of floating-point coordinates.

• The simple polyline C is just one GPF segment, so it would be represented as
(PC1,PC2).

4Exceptions are first (respectively last) points of the sequence of points. As they do not have a previous
(respectively next) point, an additional point needs to be represented for them (P11 if it is the first point in
the sequence, P22 if it is the last one).

76 Chapter 5. Dualgrid for floats

PA1

PA2 PA3

PA4

PB1

PB2

PB3

PB4

PC1

PC2

PD1

PD2PD3

PD4

PI1

PI2

PI3
PI5

PI6

PI4

PI7

Figure 5.2: Examples of DualgridFF points and polylines.

• Points drawn as black squares are GPI points (generated by the intersection of
two segments). They would be represented as the pair of segments that define it.
For example, PI2 would be represented as ((PA1,PA2),(PC1,PC2)) and PI6 would
be represented as ((PC1,PC2),(PA3,PA4)).

• Polylines A and B have only GPF vertexes. Therefore polyline A would be
represented as (PA1,PA2,PA3,PA4) and polyline B as (PB1,PB2,PB3,PB4).

• Polyline D (the sequence of vertexes (PD1,((PD1,PD2),(PD3,PD4)),PD4)) is a
little bit more complex, as it contains the GPI vertex PI4. It would be represented
as (PD1,(PD2,PD3),PD4).

• The following are a few more complex examples of polylines:

– The polyline A-B-A starts in PA1, continues along A until PI3, then
follows B until PI5 and then continues along A until point PA4. It
corresponds to the sequence of vertexes (PA1,((PA1,PA2),(PB1,PB2)),
PB2,PB3,((PB3,PB4),(PA3,PA4)),PA4) and it would be represented as
(PA1,(PA2,PB1),PB2,PB3,(PB4,PA3),PA4).

– The polyline A-C-A starts in PA1, continues along A until PI2, then
follows C until PI6 and then continues along A until point PA4. It
corresponds to the sequence of vertexes (PA1,((PA1,PA2),(PC1,PC2)),

5.2. Dualgrid For Floats 77

((PC1,PC2),(PA3,PA4)),PA4) and it would be represented as (PA1,
(PA2,PC1),(PC2,PA3),PA4).

– The polyline A-D-A starts in PA1, continues along A until PI1, then
follows D until PI7 and then continues along A until point PA4. It
corresponds to the sequence of vertexes (PA1,((PA1,PA2),(PD1,PD2)),
((PD1,PD2),(PD3,PD4)),((PD3,PD4), (PA3,PA4)),PA4). It would be
represented as (PA1,(PA2,PD1),(PD2,PD3), (PD4,PA3),PA4).

– The subset of polyline A that follows A from point PI1 to point PI6
has the peculiarity that its first and last vertexes are GPI points. It
corresponds to the sequence of vertexes (((PD1,PD2),(PA1,PA2)),PA2,PA3,
((PA3,PA4),(PC1,PC2))) and it would be represented as (((PD1,PD2),PA1),
PA2,PA3,(PA4,(PC1,PC2))).

– A particular case of a polyline with first and last vertexes being GPI
points is the GSI segment (PI2,PI6). It corresponds to the sequence of
vertexes (((PA1,PA2),(PC1,PC2)),((PC1,PC2),(PA3,PA4))) and it would be
represented as (((PA1,PA2),PC1),(PC2,(PA3,PA4)). Another particular case
is the GSI segment (PI2,PC1). It results from shortening segment (PC1,PC2)
only on one of its end points (on its intersection with segment (PA1,PA2)). It
corresponds to the sequence of vertexes (((PA1,PA2),(PC1,PC2)),PC2) and
it would be represented as (((PA1,PA2),PC1),PC2).

With the proposed representation, and with the assumptions stated in Section 5.2,
almost all represented points will belong to GPF and computations involving them will
have no significant storage or performance penalties (evidence of this is provided later
at Section 5.3.1). This will make it worth to have different representations for GPF and
GPI points, as the additional complexity introduced will be compensated by being able
to compute using hardware floating-point arithmetic in almost all cases. As a result,
the average storage requirements and performance will be close to the ones provided
by currently existing implementations.

With regard to the implementation of algorithms and the additional resolution
required for intermediate results, we want to point out that in the end GPIvalues
and GSIvalues are represented by their originating GPF and/or GSF parts, and hence
predicates analyzing their relationships can be computed using the existing algorithms
(described in the first premise presented above) that check whether two segments
intersect or whether a point is on a segment. This is explained in detail later in
Section 5.3.2.

Finally, an additional advantage of the proposed representation is that it intuitively
forces the user to fulfill all the additional restrictions imposed by Dualgrid. For

78 Chapter 5. Dualgrid for floats

example, a GPI point PI should be represented by two intersecting GSF segments.
With other representations, the need to fulfill such requirement could seem arbitrary
and problematic because it could happen that such a point is in fact resulting from the
intersection of two GSI segments GSI1 and GSI2. However, as the representation of a
GSI segment contains its supporting GSF segment, it is straightforward to represent
PI by the supporting segments of GSI1 and GSI2. The same happens when trying
to represent a segment GSI resulting of cutting it at its intersection with another
GSI segment. Hence, the restrictions on the objects that can be represented and the
ways of addressing and fulfilling them become intuitive when using the proposed
representation.

5.3 Implementation issues
In the previous section, we defined DualgridFF and we proposed a representation that
reduces its storage and performance impact. In this section we will explain the factors
that, combined with such a representation, will allow us to keep such a low impact.
Moreover, we will suggest some tips that will help developers to reduce even more the
penalty of using a DualgridFF representation.

5.3.1 Storage and performance cost of DualgridFF
First of all, it is necessary to prove the assumption that, from the collection of points
that need to be explicitly represented when representing spatial objects, only a small
percentage will belong to GPI and therefore will need high resolution non-floating-
point coordinates. For that purpose, we performed the following test. The data
collection used for the tests was the same collection used (and described) in the tests
of Section 4.4.

In this test we measured how many points are used to represent the geometries
resulting of spatial operations and which percentage of them correspond with points
not present in the input geometries (and hence, they are generated by the spatial
operations). With that purpose, we used PostGIS to compute the intersection, union,
difference and symdifference of all overlapping geometries in both tables (comarcas
and municipios).

The results of the test can be seen on Table 5.2. The first column with the number
of points shows the number of that type of points in the original datasets. The second
column shows the number of that type of points in a collection with the original
datasets plus all the possible intersections among objects on those datasets. And finally
the third column shows the number of that type of points in a collection with the

5.3. Implementation issues 79

Collection original datasets
original datasets

+ ∩

original datasets
+ ∩ + ∪ +

difference +
symdifference

Unique points 111.444 113.794 113.794
Unique points not present in

original collection
– 2.350 2.350

% different new points – 2,066% 2,066%
Points stored

(duplicates included)
241.418 1.020.654 14.386.484

Stored points not present
in original collection
(duplicates included)

– 3.379 22.492

% new points stored – 0,331% 0,156%

Table 5.2: Percentage of new points generated by spatial operations.

original datasets plus all the possible intersections, unions, differences and symmetric-
differences among objects on those datasets. The first row shows the number of unique
points (ignoring duplicates). The second row shows how many of those unique points
did not existed in the original datasets (that is, are new points computed during the
spatial operations). The third row shows the percentage of the total points that are
new computed points. Rows fourth to sixth show the same information, but this time
counting the number of points effectively stored, (that is, without removing duplicated
points).

The last row of Table 5.2 evidences the impact of the proposed GPI points (new
points) representation in performance and storage requirements. The test shows that
after inserting the intersection results only 0,331% of the points represented in the
geometries stored are GPI points.

If we extrapolate the numbers to estimate the storage penalty of DualgridFF, the
storage requirements would be 4× 0,00331 + (1− 0,00331) = 100,993% of non-
DualgridFF models. That is, the storage impact would be less than 1%. With regard
to performance penalty, and supposing that computations involving GPI points are 50
times slower than computing with GPF points (a typical penalty when using arbitrary
precision computation), that would mean a computational cost of 50× 0,00331 +
(1−0,00331) = 116,219% over non-DualgridFF models, that is, a 16% performance
penalty. We believe that these storage and performance cost are acceptable in exchange
of consistency in all operations.

80 Chapter 5. Dualgrid for floats

5.3.2 Performance improving tips
With regard to computations related to GPI points and GSPI segments, there are several
tips that would probably further reduce the performance penalty. Most of them are
directly linked to the advantages of adopting the element representation proposed in
Section 5.2.

Point-segment orientation test: One of the more typical operations in geometrical
computation algorithms is the point-segment orientation test, that tests whether
a point P is to the left, to the right or in a segment S. It is used for three main
purposes: 1) Testing if P ∈ S, 2) testing if two segments S1 and S2 intersect
(which is implemented as a set of tests checking the orientation of the end points
of one segment with respect to the other segment) and 3) testing whether a point
is inside a polygon. The possible cases in DualgridFF are:

• P ∈GPF and S ∈GSF : This is the traditional floating-point-based point-segment
orientation test, usually implemented as set of exact 2x2 determinant sign
tests [ABD+97].

• P ∈ GPF and S ∈ GSI : In this case, S = (SF11,SFS,SF22), where SFS is the
supporting segment. For the point-segment orientation test, we should perform
the orientation test between P and SFS using the traditional tests. If the
orientation test returns that P is in the line of the supporting segment SFS, we
need to test P with SF11and SF22 to answer the original test. Therefore, the cost
of this test would be approx. 3 times the cost for GSF segments.

• P ∈ GPI : Given the cases in which a GPI point P = (SF1,SF2) is generated,
almost in all cases when a point P ∈ S it is because it was generated by an
intersection between S and another segment. Therefore, just testing whether
S is one of the originating segments of P will detect (almost) all positive
answers. If S ∈ GSI (S = (SF11,SFS,SF22)) the test should be performed against
its supporting segment SFS. This comparison should be even faster than the
traditional point_in_segment test. If the test fails, most answers can be computed
using the approximated floating-point value of P and performing the point-
segment orientation test if its distance to S is bigger than a error threshold
(which ensures that computing rounding errors cannot lead to a wrong answer).
Only cases not decided by these tests should be computed using either arbitrary
precision computation or a three segments intersection test. A pseudocode is
shown in Algorithm 5.1.

Point comparison: Another of the fundamental tests in geometrical algorithms is
whether two points are equal (P1 = P2). The possible cases are:

5.3. Implementation issues 81

Algorithm 5.1 Point-segment orientation test when P ∈ GPI .

// Notations: Semantics of the results of point_segment_orientation_test:
// 0 -> P in S
// positive number -> P to the left of S
// negative number -> P to the right of S
//
// Remember, P in GP_I implies that P=(S_F1, S_F2)

if (S in GS_F) then
if (S=P.S_F1 or S=P.S_F2) then

// S is an originating segment of P
return 0 // P in S

end
else // S in GS_I, thus S=(S_F11, S_FS, S_F22)

if (S.S_FS=P.S_F1 or S.S_FS=P.S_F2) then
// S.S_FS is an originating segment of P
return 0 // P in S

end
end
// If none of the previous tests resolved
if (distance(approx(P),S) > THRESHOLD) then

// THRESHOLD ensures that approximated computation is correct.
return floatpoint_orientation_test(approx(P),S) // Cases 1 and 2

else
// Test needs to be computed with exact computation
return EXACT_orientation_test(P,S)

end

• P1 and P2 are GPF points. This test is a simple comparison of floating-point
coordinates.

• P1 ∈GPF and P2 ∈GPI . As P2 = (SF1,SF2), this test can be performed with two
point in segment tests, checking whether P1 ∈ SF1 and P1 ∈ SF2.

• P1 and P2 are GPI points. Almost all positive cases (P1 = P2) will be caused by
P1 and P2 being originated from the intersection of the same pair of segments.
Therefore, comparing their representation segments will answer the test. Most
of negative cases (P1 6= P2) can be discarded by computing the approximated
floating-point values of P1and P2 and testing whether their distance to S is bigger
than a error threshold. Only cases not decided by these tests should be computed
using either arbitrary precision computation or two three segments intersection
tests. The pseudocode for this part is shown in Algorithm 5.2.

82 Chapter 5. Dualgrid for floats

Algorithm 5.2 Point_comparison algorithm when P1 and P2 are GPI points.

// Results:
// TRUE -> P1 equalTo P2
// FALSE -> P1 NotEqualTo P2
// Remember, P_1 in GP_I, P_2 in GP_I
// NOTE: Assuming P=(S_F1, S_F2) sets an order between S_F1 and S_F2

if ((P1.S_F1 == P2.S_F1) and (P1.S_F2 == P2.S_F2)) then
return TRUE

else
if distance(approx(P1), approx(P2)) > THRESHOLD then

// THRESHOLD is the biggest possible error due to approximation
return FALSE

else
EXACT_PointComparison(P1, P2)

end
end

As we can see, the proposed representation of the DualgridFF elements has the
additional advantage of allowing us to avoid the use of arbitrary precision computation
in the vast majority of cases. For points not originated from the involved segments, the
distance to segment filter should decide almost all negative answers (and, in fact, in this
case the vast majority of tests will have a negative answer). For points originated from
the involved segments (which should account for the vast majority of positive answers),
the comparison with the originating segments should decide the positive answer. The
use of three segments intersection tests or performing arbitrary precision computations
will only be needed in the remaining cases.

5.3.3 Interoperability

DualgridFF has already been defined in such a way that input interoperability (that
is, the capability to represent data generated by currently existing applications) is
guaranteed (it was in fact one of the driving reasons for its definition). Output
interoperability with external applications (feeding them with data generated from a
DualgridFF-based spatial database) can be achieved in two ways:

• For non-DualgridFF-aware applications or that do not require consistency among
operations (e.g., visualization applications) it will suffice to return approximate
values for the GPI points. Therefore, exchange formats as GML, or WKB and
WKT defined by SFS [OGC06] will be suitable.

5.4. Conclusions 83

• For DualgridFF-aware applications that require to consistently process its data
(and hence need to input or output DualgridFF-based data), the main problem is
that current exchange formats are (obviously) not designed for the DualgridFF
representation. However, the nature of the GML format (XML-based), and the
fact that GML specifically allows its extension with personalized tags could
allow to generate (and accept) GML-compatible files extended with DualgridFF
information, so that non-DualgridFF-aware applications could process them as
traditional GML files, and DualgridFF-aware applications could make use of that
additional DualgridFF information. For example, when a DualgridFF spatial
object (which can have GPI points in its boundary representation) is exported
to a GML-compatible file, it can be represented as a typical GML spatial object
(using the floating-point coordinate approximation for the points that are GPI
points), and extended with an additional attribute that, for each point P ∈ GPI
(with P = (SF1,SF2)) in the vertexes list, indicates the point index in the vertexes
list and its two originating segments SF1 and SF2.

5.4 Conclusions
In this chapter we presented Dualgrid For Floats, a physical spatial data representation
model that is designed to be used with floating-point coordinates, thus satisfying the
requirement of interoperability with existing technology and datasets. Furthermore,
DualgridFF succeeds in keeping the theoretical properties of the abstract spatial data
models (i.e., closure under set-theory operations) while not degrading the performance
and the storage requirements of the implementation. It also keeps all the properties
exhibited by Dualgrid. Hence, any reference to the consistency among operations of
Dualgrid in Table 4.2 can be read as a reference to DualgridFF as well.

Chapter 6

Conclusions and future research
lines

6.1 Summary of contributions
The problem of defining and implementing a physical spatial data model that maintains
the properties defined by an abstract spatial data model is still open. Current
implementations of spatial database technology fail to maintain such properties, and
this generates problems of inconsistencies among operations (Appendix A shows a very
simple example that produces inconsistent answers in three main commercial spatial
DBMS, namely Oracle Spatial, PostgreSQL/PostGIS and Microsoft SQL Server). In
some cases, this problem even causes sporadic unexpected crashes and exceptions
in their geometrical algorithms (as Section 4.4 evidences with tests performed to
PostgreSQL/PostGIS, and as can be read in Section 1.5.5 of Oracle Spatial Developer’s
Guide [Ora10] with respect to the tolerances machinery of Oracle Spatial). As a result,
GIS software developers and GIS users are imposed the burden of dealing with the
consequences of a broken algebra1.

There have been research proposals that solve this problem at the level of the
discrete spatial data model [GS93], but they do not completely solve the problem,
and their drawbacks (as explained in Section 2.4.2) prevent them from being used as
a solution for commercial spatial DBMS. This research work has focused on covering

1We use the term broken algebra to remark that using an implementation that no longer fulfills the
properties of the abstract model undermines all the efforts devoted to its definition because the users can
no longer rely on the mathematical and logical grounds of the abstract model.

86 Chapter 6. Conclusions and future research lines

the existing gap between the research work on discrete spatial data models and the
implementations in commercial spatial database management systems and GIS tools.
Therefore, this thesis makes three major contributions:

• A detailed study of the state of the art and an analysis of the requirements that
a representation space for vectorial models should fulfill to guarantee that it
remains closed under the main spatial operations, specially set-theory operations.

• The proposal of a new representation space (Dualgrid) that fulfills those
requirements, and therefore ensures that the properties of the corresponding
abstract model are kept, allowing the exact implementation of the operations
(instead of approximated implementations of them) whereas using fixed-size
coordinates.

• The proposal of DualgridFF, an evolution of Dualgrid towards a physical spatial
model designed to fulfill the additional requirements in terms of performance
and interoperability of current professional users2.

Regarding the analysis of the problem, Chapter 3 presented a comparison of the
consistency properties of the spatial operations of the more common spatial data
models (with emphasis on vectorial data models and the approaches used on them
to address the discretization problems).

Chapter 4 identifies the properties that a physical spatial data model needs to fulfill
to be able to implement an abstract/discrete spatial data model without breaking its
closure properties. Then, it defines Dualgrid, a new fixed-size discrete representation
space that succeeds in defining a physical spatial data model suitable to be used on
computers and keeping all the key properties of the discrete spatial models, allowing
the exact implementation of their operations, instead of approximations of them. Also,
Section 4.2 analyzes Dualgrid in terms of interoperability, showing what considerations
should be taken into account to guarantee that existing external datasets can be
imported in the system exactly.

We have also shown its capability to be adopted by already implemented spatial
algorithms because it requires no changes to their logic. Sections 4.3 and 4.4 show
its effectiveness and versatility with the adaptation of two different existing spatial
implementations to the use of Dualgrid as its representation space. Sections 4.3 shows
the results of adapting an existing implementation of the ROSE algebra [GS95], using
Dualgrid as the representation space for the underlying Realm [GS93, MPF+96] and
without requiring the modification of any of the ROSE algebra algorithms [GdRS95].
Section 4.4 shows the results of an experimental adaptation of PostGIS-GEOS (the

2We use here the term professional users in contraposition to academic researchers.

6.2. Future work 87

widely used spatial extension of PostgreSQL), proving that the use of Dualgrid as
the underlying representation space not only solves the problems of inconsistencies
among operations that PostGIS-GEOS exhibits, but also all its usual topology exception
problems when combining spatial operations.

Finally, Chapter 5 identifies additional needs of the GIS community that must
be successfully covered in order to provide spatial databases technologies suitable
for commercial use (e.g., accept input data using floating-point coordinates and low
computational and storage overhead). These new requirements are taken into account
in the definition of DualgridFF (Dualgrid For Floats), an evolution of the Dualgrid
discrete space proposal towards a physical spatial data model. DualgridFF represents a
trade-off between the needs of researchers, spatial databases/technologies developers,
application developers and final users. It provides a solid physical representation
model that succeeds in keeping the main properties of the original abstract and discrete
vectorial models, so that spatial databases and technologies implementors can easily
translate them to their implementations, whereas keeping their behaviors intuitive and
well-defined.

Dualgrid and DualgridFF provide a solid basis to solve the robustness and
consistency problems of current spatial vectorial technologies by attacking the roots
of the problems. They provide the tools to keep the closure properties of abstract data
models at the physical data model level. Moreover, DualgridFF goes a step further by
taking into account the needs of all spatial technology stakeholders, so that spatial
databases technology implementations based on it can successfully conciliate their
needs, helping to join efforts in the evolution of geographic information systems.

6.2 Future work

This research work has made a big step forward in providing spatial databases
technologies with the grounds for implementing robust and consistent spatial data
models. As a result of it, the following future research lines can be identified:

• Improvement of spatial data management libraries. The fastest way to translate
the advantages of the proposals of this research work to real world GIS
applications is to improve existing and widely used spatial data management
libraries by making them DualgridFF capable. A clear candidate is the JTS
Topology Suite (http://sourceforge.net/projects/jts-topo-suite/), a
library widely used by GIS frameworks, tools and applications to provide
some spatial analysis capabilities. Making JTS DualgridFF capable (adding
a DualgridFF precision layer to the ones already existing) would allow GIS

http://sourceforge.net/projects/jts-topo-suite/

88 Chapter 6. Conclusions and future research lines

application developers to simplify their spatial analysis implementations and
to evolve them to more advanced analysis levels, as the DualgridFF physical
data model will guarantee them that their spatial analysis algorithms can rely
on consistent and robust spatial operations. Moreover, such an adaptation of
JTS would allow to do an experimental validation of the estimated performance
and storage costs of using DualgridFF and the optimization techniques proposed
in [CL10]. It would also let us verify its effectiveness and ease of use for adapting
existing implementations.

• Improvement of spatial databases extensions. A second (but not less relevant)
path would be to evolve existing spatial database extensions to adapt them
to the DualgridFF physical data model. It would allow them to provide
consistent operations, as well as (not less important) to free them from all the
algorithmic complexities they currently implement to try to (just) minimize the
robustness problems that their current non-closed discrete space generate. As a
result, robustness should improve and internal implementations should simplify,
making the future implementation of more powerful spatial operations easier.
Additionally, it would allow us to further analyze implementation strategies
in order to optimize performance and storage requirements, and reduce the
impact on incorporating DualgridFF to existing implementations. A candidate
for such an evolution is PostGIS/GEOS [Ref10], the open source spatial database
extension used by PostgreSQL.

• Optimization of arbitrary precision libraries to DualgridFF specific requi-
rements. Another future research line would be to analyze algorithms for
improving arbitrary precision computations in the specific cases that they are
required in DualgridFF. Given that such arbitrary precision computations would
be performed in very specific scenarios, it is very likely that an specifically
designed library would exhibit a much better performance for a DualgridFF
implementation.

• Development of more advanced spatial analysis support in existing GIS
frameworks. Our research group has a large experience on the development
of advanced GIS tools. Development of spatial analysis support on them has
been always difficult, due to the limitations imposed by the inconsistency among
operations of current spatial technologies. The availability of DualgridFF based
libraries would solve those limitations, opening the opportunity of an evolution
on the quality and power of the spatial analysis support provided within GIS
applications.

6.2. Future work 89

• Extension to spatiotemporal models. This thesis has been focused in non-
temporal spatial models. A lot of research has been devoted in the last decade to
the development of spatiotemporal data models and algorithms [CFG+03], where
the temporal domain of spatial information is also taken into account. Depending
on the model, the temporal evolution of spatial data can be either discrete
(the spatial value changes at specific time instants) or continuous (where the
spatial values evolve continuously over the time, usually called in the literature
moving objects). The use of Dualgrid and DualgridFF for the implementation of
discrete spatiotemporal models should be relatively straightforward. The partial
implementation in [CFG+03] was already prepared to be used with spatial data
following the Dualgrid restrictions, and when static slices were used (when
the spatial value represented by the slice was static in all the time interval)
and Dualgrid restrictions were fulfilled, the implementation was already able
to provide consistency among spatial and spatiotemporal operations.

The application of Dualgrid and DualgridFF to fully moving objects, however,
needs a deeper study. It should be possible to extend the Dualgrid approach to
3D geometries (where the third dimension would be used for the time axis), and
to represent the spatial evolution of an object for each time slice as one such a 3D
geometry. In fact, in [Tho07] they already define a 3D representation (being the
height the third dimension) based on the lessons from Dualgrid. This would help
to keep consistency among spatiotemporal operations on continuously moving
objects. However, the difficult part would be to provide consistency among
spatial and spatiotemporal operations. The reason is that spatiotemporal models
need to provide support to projections on the time dimension (e.g., to retrieve the
time when a spatiotemporal object occupied a given position, or computing the
time span covered by the spatiotemporal object) and on the space dimensions
(e.g., to retrieve the spatial value of a spatiotemporal object at a given time
instant, or the projection of the trajectory of the entire spatiotemporal object
onto the space). Hence, an evolution of Dualgrid to the spatiotemporal domain
(let us call it here DualgridST) would at least have to define a representation
space such that projections onto the space of spatiotemporal values would still
be closed under the representation space. Additionally, it should ideally be able
to handle the combination of projections onto the space with projections onto the
time. If these combinations were not handled appropriately, sequences of these
operations would very likely generate spatial values that would not conform to
the DualgridST. For example, suppose that we have the fully moving objects ST1,
ST2 and ST3 and the spatial value S1. If we query the time instant T1 at which
S1 = ST1, and then we ask the spatial value that ST2 takes at time T1 we get S2.

90 Chapter 6. Conclusions and future research lines

S2 will very likely require for its representation higher precision than S1. If we
now ask for the time instant T2 at which S2 = ST2, it will very likely require
more precision than the one required by T1. If we now ask the spatial value
S3 that ST3 takes at time T2, it will very likely require even higher precision
than S2. This is, the successive combination of time and spatial projections can
escalate the precision required for representing temporal and spatial values. This
is a problem that should be carefully analyzed and addressed when extending
Dualgrid to spatiotemporal models.

Appendix A

Spatial inconsistencies example

This appendix shows a simple example that highlights how easy is to get
inconsistent spatial answers from current commercial spatial DBMS (Oracle Spatial,
PostgreSQL/PostGIS and Microsoft SQL Server).

The example to test the behavior of those DBMS is shown in Figure A.1. On it,
two simple overlapping geometries (a rectangle region1 and a triangle region2) are
shown. Both of them are represented through their vertex, all of them having small
integer coordinates. However, their boundaries intersect at some points, (2, 7/3) and
(6, 11/3), having coordinates not exactly representable with finite-size floating-point
numbers. The test is simple: to compute the intersection between both geometries, and
query the DBMS whether their intersection (named 1intersection2) is contained in each
of the originating geometries. According to the set-theory properties of intersection,
the resulting geometry 1intersection2 should be contained in both region1 and region2.

The following sections show that all of them (Oracle Spatial in Section A.1,
PostgreSQL/PostGIS in Section A.2 and SQL Server in Section A.3) fail to pass such
a simple test.

A.1 Intersection test in Oracle Spatial
Section A.1.1 shows the SQL sentences used to test the example under Oracle Spatial
11g. Once both geometries and their intersection are inserted in the table, the table
content is the one shown in Table A.1. Table A.2 shows the result of the test for each
combination of the geometries. Note that in this case the test has been implemented
returning TRUE if either SDO_EQUAL(), SDO_COVERS() or SDO_CONTAINS()

92 Appendix A. Spatial inconsistencies example

(1,2)

(2,1) (6,1)

(7,2)

(7,4)

(6,5)(2,5)

(2, 7/3)

(2,2)

(6,11/3)

(6,2)

y

x

Figure A.1: Simple set-theory test.

returns TRUE. The reason for it is that Oracle implements such operations in a strictly
disjoint semantic, so that only the one of them that better fits to the relationship returns
true. For example, if two geometries are equal, SDO_EQUAL() will return true, and
hence SDO_COVERS() and SDO_CONTAINS() will return false.

MY_ID MY_NAME SDO_UTIL.TO_WKTGEOMETRY(MY_SHAPE)

1 region1 POLYGON ((2.0 1.0, 6.0 1.0, 6.0 5.0, 2.0 5.0, 2.0 1.0))

2 region2 POLYGON ((1.0 2.0, 7.0 2.0, 7.0 4.0, 1.0 2.0))

12 1intersection2
POLYGON ((2.0 2.33333333333333, 2.0 2.0, 6.0 2.0, 6.0
3.66666666666667, 2.0 2.33333333))

Table A.1: Table test_regions in Oracle after inserting both geometries and their
intersection.

A.1.1 Oracle commands

−− 1 − Tab le c r e a t i o n :
−− −−−−−−−−−−−−−−−−−−−
CREATE TABLE t e s t _ r e g i o n s (

my_id i n t e g e r PRIMARY KEY,
my_name VARCHAR(6 4) ,
my_shape SDO_GEOMETRY) ;

−− 2 − G e o m e t r i e s i n s e r t i o n :
−− −−−−−−−−−−−−−−−−−−−−−−−−−
−− 2 . a) A r e c t a n g l e :
INSERT INTO t e s t _ r e g i o n s VALUES(

1 ,

A.1. Intersection test in Oracle Spatial 93

A_NAME B_NAME EQUALS or COVERS or CONTAINS

region1 region1 TRUE

region1 region2 FALSE

region1 1intersection2 TRUE

region2 region1 FALSE

region2 region2 TRUE

region2 1intersection2 FALSE * (Should have returned TRUE)

1intersection2 region1 FALSE

1intersection2 region2 FALSE

1intersection2 1intersection2 TRUE

Table A.2: Oracle answers to the contains test.

’ r e g i o n 1 ’ ,
SDO_GEOMETRY(

2003 , −− two−d i m e n s i o n a l po l ygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1 , 1 0 0 3 , 3) , −− one r e c t a n g l e (1003 = e x t e r i o r)
−− o n l y 2 p o i n t s needed t o d e f i n e a r e c t a n g l e (lower l e f t and
−− upper r i g h t) w i t h C a r t e s i a n−c o o r d i n a t e da ta

SDO_ORDINATE_ARRAY(2 , 1 , 6 , 5)
)

) ;

−− 2 . b) A t r i a n g l e :
INSERT INTO t e s t _ r e g i o n s VALUES(

2 ,
’ r e g i o n 2 ’ ,
SDO_GEOMETRY(

2003 , −− 2D po lygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1 , 1 0 0 3 , 1) , −− one po lygon (e x t e r i o r r i n g)
SDO_ORDINATE_ARRAY(1 , 2 , 7 , 2 , 7 , 4 , 1 , 2)

)
) ;

−− 3 − Adding me tada ta and i n d e x (r e q u i r e d by Orac le S p a t i a l) :
−− −−−
−− 3 . a) Metadata i n s e r t i o n
INSERT INTO use r_sdo_geom_metada t a (TABLE_NAME, COLUMN_NAME, DIMINFO , SRID)

VALUES (
’TEST_REGIONS ’ ,
’MY_SHAPE’ ,
SDO_DIM_ARRAY(−− 20X20 g r i d

SDO_DIM_ELEMENT(’X’ , 0 , 20 , 0 .0000000000000000001) ,
SDO_DIM_ELEMENT(’Y’ , 0 , 20 , 0 .0000000000000000001)

) ,
NULL −− SRID

94 Appendix A. Spatial inconsistencies example

) ;

−− 3 . b) I n d e x c r e a t i o n (R−t r e e)
CREATE INDEX i n d i c e _ s p a t i a l _ i d x ON t e s t _ r e g i o n s (my_shape)

INDEXTYPE IS MDSYS. SPATIAL_INDEX ;

−− 4 − I n t e r s e c t i o n c o m p u t a t i o n :
−− −−−−−−−−−−−−−−−−−−−−−−−−−−
−− NOTE: B o u n d a r i e s i n t e r s e c t a t p o i n t s (2 , 2) , (6 , 2) , (6 , 1 1 / 3) and (2 , 7 / 3) .
INSERT INTO t e s t _ r e g i o n s

SELECT
’ 12 ’ ,
’ 1 i n t e r s e c t i o n 2 ’ ,
SDO_GEOM. SDO_INTERSECTION (a . my_shape , b . my_shape , 0 .0000000000000000001)

FROM t e s t _ r e g i o n s a , t e s t _ r e g i o n s b
WHERE a . my_name = ’ r e g i o n 1 ’ AND b . my_name = ’ r e g i o n 2 ’ ;

−− 5 RESULTS :
−− −−−−−−−−−−
−− 5 . a) Tab le c o n t e n t
SELECT my_id , my_name , SDO_UTIL .TO_WKTGEOMETRY(my_shape)
FROM t e s t _ r e g i o n s ;

−− MY_ID MY_NAME SDO_UTIL . TO_WKTGEOMETRY(MY_SHAPE)
−− −−−−− −−−−−−−−−−−−−− −−−
−− 1 r e g i o n 1 POLYGON ((2 . 0 1 . 0 , 6 . 0 1 . 0 , 6 . 0 5 . 0 , 2 . 0 5 . 0 , 2 . 0 1 . 0))
−− 2 r e g i o n 2 POLYGON ((1 . 0 2 . 0 , 7 . 0 2 . 0 , 7 . 0 4 . 0 , 1 . 0 2 . 0))
−− 12 1 i n t e r s e c t i o n 2 POLYGON ((2 . 0 2 .33333333333333 , 2 . 0 2 . 0 , 6 . 0 2 . 0 ,
−− 6 . 0 3 .66666666666667 , 2 . 0 2 . 3 3 3 3 3 3 3 3))

−− 5 . b − Conta inmen t t e s t s :
−− NOTE: In Orac le C o n t a i n s / Covers / Equa l s are s t r i c t l y d e f i n e d (o n l y one i s ho ld) ,
−− i n c o n t r a s t t o PostGIS or SLQLServer .
SELECT a . my_name AS a_name , b . my_name AS b_name ,

CASE WHEN (
SDO_COVERS(a . my_shape , b . my_shape) = ’TRUE ’ OR
SDO_CONTAINS(a . my_shape , b . my_shape) = ’TRUE ’ OR
SDO_EQUAL(a . my_shape , b . my_shape) = ’TRUE ’

) THEN ’TRUE ’ ELSE ’FALSE ’ END AS C o n t a i n s
FROM t e s t _ r e g i o n s a , t e s t _ r e g i o n s b ;

−− A_NAME B_NAME CONTAINS
−− −−−−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−−−−
−− r e g i o n 1 r e g i o n 1 TRUE
−− r e g i o n 1 r e g i o n 2 FALSE
−− r e g i o n 1 1 i n t e r s e c t i o n 2 TRUE
−− r e g i o n 2 r e g i o n 1 FALSE
−− r e g i o n 2 r e g i o n 2 TRUE
−− r e g i o n 2 1 i n t e r s e c t i o n 2 FALSE * (* Shou ld have r e t u r n e d TRUE)
−− 1 i n t e r s e c t i o n 2 r e g i o n 1 FALSE
−− 1 i n t e r s e c t i o n 2 r e g i o n 2 FALSE
−− 1 i n t e r s e c t i o n 2 1 i n t e r s e c t i o n 2 TRUE

A.2. Intersection test in PostgreSQL/PostGIS 95

A.2 Intersection test in PostgreSQL/PostGIS
Section A.2.1 shows the SQL sentences used to test the example under PostgreSQL 9.1
with PostGIS 1.5. Table A.3 shows the content of the test table once both geometries
and their intersection are inserted. Table A.4 shows the result of testing, for each
combination of the geometries, whether the first contains the second. In this case,
PostGIS spatial predicate ST_COVERS() is used, as its semantic is (slightly) more
appropriate for our test than the one provided by ST_CONTAINS().1

MY_ID MY_NAME ST_ASText(MY_SHAPE)

1 region1 POLYGON((2 1, 6 1, 6 5, 2 5, 2 1))

2 region2 POLYGON((1 2, 7 2, 7 4, 1 2))

12 1intersection2
POLYGON((6 3.66666666666667, 6 2, 2 2, 2 2.33333333333333, 6
3.66666666666667))

Table A.3: Table test_regions in PostgreSQL/PostGIS after inserting both geometries
and their intersection.

A_NAME B_NAME A_COVERS_B

region1 region1 TRUE

region1 region2 FALSE

region1 1intersection2 TRUE

region2 region1 FALSE

region2 region2 TRUE

region2 1intersection2 FALSE * (Should return TRUE)

1intersection2 region1 FALSE

1intersection2 region2 FALSE

1intersection2 1intersection2 TRUE

Table A.4: PostgreSQL/PostGIS answers to the contains test.

A.2.1 PostgreSQL/PostGIS commands

0 − D a t a b a s e c r e a t i o n :
−−−−−−−−−−−−−−−−−−−−−−
−− I n h e r i t s from t e m p l a t e " p o s t g i s " t o be a b l e t o use PostGIS s u p p o r t

1Anyway, and for this specific example, both of them would return exactly the same answers.

96 Appendix A. Spatial inconsistencies example

CREATE DATABASE " t e s t −p o s t g i s "
WITH ENCODING= ’UTF8 ’

TEMPLATE= t e m p l a t e _ p o s t g i s
CONNECTION LIMIT=−1;

−− NOTE: Remember t o s w i t c h t o t h e newly c r e a t e d d a t a b a s e from t h i s p o i n t on

−− 1 − Tab le c r e a t i o n :
−− −−−−−−−−−−−−−−−−−−−
−− 1 . a) C r e a t i n g a normal (non s p a t i a l) t a b l e :
CREATE TABLE t e s t _ r e g i o n s (

my_id i n t e g e r PRIMARY KEY,
my_name VARCHAR(6 4)
) ;

−− 1 . b) Adding a geomet ry column :
SELECT AddGeometryColumn (

’ t e s t _ r e g i o n s ’ ,
’ my_shape ’ ,
−1,
’GEOMETRY’ ,
2
) ;

−− 2 − G e o m e t r i e s i n s e r t i o n :
−− −−−−−−−−−−−−−−−−−−−−−−−−−
−− 2 . a) A r e c t a n g l e :
INSERT INTO t e s t _ r e g i o n s (my_id , my_name , my_shape) VALUES (

1 ,
’ r e g i o n 1 ’ ,
ST_GeomFromText (’POLYGON((2 1 , 6 1 , 6 5 , 2 5 , 2 1)) ’ ,−1)) ;

−− 2 . b) A t r i a n g l e :
INSERT INTO t e s t _ r e g i o n s (my_id , my_name , my_shape) VALUES (

2 ,
’ r e g i o n 2 ’ ,
ST_GeomFromText (’POLYGON((1 2 , 7 2 , 7 4 , 1 2)) ’ ,−1)) ;

−− 3 − I n t e r s e c t i o n c o m p u t a t i o n :
−− −−−−−−−−−−−−−−−−−−−−−−−−−−
−− NOTE: B o u n d a r i e s i n t e r s e c t a t p o i n t s (2 , 2) , (6 , 2) , (6 , 1 1 / 3) and (2 , 7 / 3) .
INSERT INTO t e s t _ r e g i o n s

SELECT ’ 12 ’ , ’ 1 i n t e r s e c t i o n 2 ’ , ST_INTERSECTION (a . my_shape , b . my_shape)
FROM t e s t _ r e g i o n s a , t e s t _ r e g i o n s b
WHERE a . my_name = ’ r e g i o n 1 ’ AND b . my_name = ’ r e g i o n 2 ’ ;

−− 4 RESULTS :
−− −−−−−−−−−−
−− 4 . a) Tab le c o n t e n t
SELECT my_id , my_name , ST_ASText (my_shape) FROM t e s t _ r e g i o n s ;

−− MY_ID MY_NAME ST_ASText (MY_SHAPE)
−− −−−−− −−−−−−−−−−−−−−−− −−
−− 1 " r e g i o n 1 " "POLYGON((2 1 , 6 1 , 6 5 , 2 5 , 2 1)) "
−− 2 " r e g i o n 2 " "POLYGON((1 2 , 7 2 , 7 4 , 1 2)) "
−− 12 "1 i n t e r s e c t i o n 2 " "POLYGON((6 3 .66666666666667 , 6 2 , 2 2 ,
−− 2 2 .33333333333333 , 6 3 .66666666666667)) "

A.3. Intersection test in SQL Server 97

−− 4 . b − Conta inmen t t e s t s :
SELECT a . my_name AS a_name , b . my_name AS b_name ,

ST_COVERS(a . my_shape , b . my_shape) AS a _ c o v e r s _ b
FROM t e s t _ r e g i o n s a , t e s t _ r e g i o n s b ;

−− A_NAME B_NAME A_COVERS_B
−− −−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−− −−−−−−−−−−
−− " r e g i o n 1 " " r e g i o n 1 " t
−− " r e g i o n 1 " " r e g i o n 2 " f
−− " r e g i o n 1 " "1 i n t e r s e c t i o n 2 " t
−− " r e g i o n 2 " " r e g i o n 1 " f
−− " r e g i o n 2 " " r e g i o n 2 " t
−− " r e g i o n 2 " "1 i n t e r s e c t i o n 2 " f * (* Shou ld r e t u r n TRUE)
−− "1 i n t e r s e c t i o n 2 " " r e g i o n 1 " f
−− "1 i n t e r s e c t i o n 2 " " r e g i o n 2 " f
−− "1 i n t e r s e c t i o n 2 " "1 i n t e r s e c t i o n 2 " t

A.3 Intersection test in SQL Server

Section A.3.1 shows the command used to test the example under Microsoft SQL
Server 2012 RC0. Table A.5 shows the test table content after inserting both geometries
and their intersection. Table A.6 shows the result of the test for each combination of
the geometries, whether the first contains the second. In this case, SQL Server spatial
predicate STContains() is used.

Note that in this case weird effects appear in the coordinates of the computed
intersection. Some vertex whose X coordinates would have been expected to be
directly copied from those in the input coordinates (as region1 is a rectangle with
boundaries perpendicular to the axis), have been somehow slightly moved. This could
have increased the inconsistencies of the test results, if the X coordinate movement had
resulted to move the affected points outside of region1 instead of keeping them inside.

MY_ID MY_NAME ST_ASText(MY_SHAPE)

1 region1 POLYGON ((2 1, 6 1, 6 5, 2 5, 2 1))

2 region2 POLYGON ((1 2, 7 2, 7 4, 1 2))

12 1intersection2
POLYGON ((2.0000000000000142 2.0000000000000142, 6
2.0000000000000142, 6 3.6666666666666652, 2.0000000000000142
2.333333333333341, 2.0000000000000142 2.0000000000000142))

Table A.5: Table test_regions in Microsoft SQL Server after inserting both geometries
and their intersection.

98 Appendix A. Spatial inconsistencies example

A_NAME B_NAME A_CONTAINS_B

region1 region1 TRUE

region1 region2 FALSE

region1 1intersection2 TRUE * (Right answer, but just by chance)

region2 region1 FALSE

region2 region2 TRUE

region2 1intersection2 FALSE * (Should have returned TRUE)

1intersection2 region1 FALSE

1intersection2 region2 FALSE

1intersection2 1intersection2 TRUE

Table A.6: Microsoft SQL Server answers to the contains test.

A.3.1 SQL Server commands

−− 1 − Tab le c r e a t i o n :
−− −−−−−−−−−−−−−−−−−−−
CREATE TABLE t e s t _ r e g i o n s (

my_id i n t e g e r PRIMARY KEY,
my_name VARCHAR(6 4) ,
my_shape GEOMETRY
) ;

−− 2 − G e o m e t r i e s i n s e r t i o n :
−− −−−−−−−−−−−−−−−−−−−−−−−−−
−− 2 . a) A r e c t a n g l e :
INSERT INTO t e s t _ r e g i o n s (my_id , my_name , my_shape) VALUES (

1 ,
’ r e g i o n 1 ’ ,

GEOMETRY : : STGeomFromText (’POLYGON((2 1 , 6 1 , 6 5 , 2 5 , 2 1)) ’ , 0)) ;

−− 2 . b) A t r i a n g l e :
INSERT INTO t e s t _ r e g i o n s (my_id , my_name , my_shape) VALUES (

2 ,
’ r e g i o n 2 ’ ,

GEOMETRY : : STGeomFromText (’POLYGON((1 2 , 7 2 , 7 4 , 1 2)) ’ , 0)) ;

−− 3 − I n t e r s e c t i o n c o m p u t a t i o n :
−− −−−−−−−−−−−−−−−−−−−−−−−−−−
−− NOTE: B o u n d a r i e s i n t e r s e c t a t p o i n t s (2 , 2) , (6 , 2) , (6 , 1 1 / 3) and (2 , 7 / 3) .
INSERT INTO t e s t _ r e g i o n s

SELECT ’ 12 ’ , ’ 1 i n t e r s e c t i o n 2 ’ , a . my_shape . S T I n t e r s e c t i o n (b . my_shape)
FROM t e s t _ r e g i o n s a , t e s t _ r e g i o n s b
WHERE a . my_name = ’ r e g i o n 1 ’ AND b . my_name = ’ r e g i o n 2 ’ ;

−− 4 RESULTS :
−− −−−−−−−−−−
−− 4 . a) Tab le c o n t e n t
SELECT my_id , my_name , ST_ASText (my_shape) FROM t e s t _ r e g i o n s ;

A.3. Intersection test in SQL Server 99

−− MY_ID MY_NAME ST_ASText (MY_SHAPE)
−− −−−−− −−−−−−−−−−−−−− −−
−− 1 r e g i o n 1 POLYGON ((2 1 , 6 1 , 6 5 , 2 5 , 2 1))
−− 2 r e g i o n 2 POLYGON ((1 2 , 7 2 , 7 4 , 1 2))
−− 12 1 i n t e r s e c t i o n 2 POLYGON ((2 .0000000000000142 2 .0000000000000142 ,
−− 6 2 .0000000000000142 ,
−− 6 3 .6666666666666652 ,
−− 2.0000000000000142 2 .333333333333341 ,
−− 2.0000000000000142 2 .0000000000000142))

−− 4 . b − Conta inmen t t e s t s :
SELECT a . my_name AS a_name , b . my_name AS b_name ,

a . my_shape . STConta ins (b . my_shape) AS a _ c o n t a i n s _ b
FROM t e s t _ r e g i o n s a , t e s t _ r e g i o n s b
ORDER BY a . my_id , b . my_id ;

−− A_NAME B_NAME A_CONTAINS_B
−− −−−−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−−−−−−−−−
−− r e g i o n 1 r e g i o n 1 1
−− r e g i o n 1 r e g i o n 2 0
−− r e g i o n 1 1 i n t e r s e c t i o n 2 1 * (R i g h t answer , j u s t by chance)
−− r e g i o n 2 r e g i o n 1 0
−− r e g i o n 2 r e g i o n 2 1
−− r e g i o n 2 1 i n t e r s e c t i o n 2 0 * (* Shou ld have r e t u r n e d 1)
−− 1 i n t e r s e c t i o n 2 r e g i o n 1 0
−− 1 i n t e r s e c t i o n 2 r e g i o n 2 0
−− 1 i n t e r s e c t i o n 2 1 i n t e r s e c t i o n 2 1

Appendix B

Publications and other research
achievements

This appendix summarizes the publications and other research achievements of the
author of this thesis. For some of the publication, we include references to relevant
works in which they have been cited (these citations were updated in February 2012).

Research achievements directly related with this thesis

Publications in international journals
• J. A. Cotelo-Lema, L. Forlizzi, R H. Güting, E. Nardelli and M. Schneider.

Algorithms for Moving Objects Databases. The Computer Journal, 46(6), June
2003, pages 680-712.

According to Google Scholar this paper has been cited by 79 articles. Some of
the most relevant ones are the following:

– Victor Teixeira de Almeida, Ralf Hartmut Guting, and Thomas Behr.
Querying Moving Objects in SECONDO. In Proceedings of the 7th
International Conference on Mobile Data Management (MDM ’06), Nara,
Japan. IEEE Computer Society, Washington, DC, USA, pages 47-51.
http://dx.doi.org/10.1109/MDM.2006.133

– Nikos Pelekis, Babis Theodoulidis, Ioannis Kopanakis, and Yannis
Theodoridis. 2004. Literature review of spatio-temporal database models.

http://dx.doi.org/10.1109/MDM.2006.133

102 Appendix B. Publications and other research achievements

The Knowledge Engineering Review (2004), 19, 3 (September 2004),
pages 235-274. http://dx.doi.org/10.1017/S026988890400013X

– Glenn S. Iwerks, Hanan Samet, and Kenneth P. Smith. 2006. Maintenance
of K-nn and spatial join queries on continuously moving points. ACM
Trans. Database Syst. 31, 2 (June 2006), pages 485-536. http://doi.
acm.org/10.1145/1138394.1138396

– Nikos Pelekis and Yannis Theodoridis. 2006. Boosting location-based
services with a moving object database engine. In Proceedings of the
5th ACM international workshop on Data engineering for wireless and
mobile access (MobiDE ’06). ACM, New York, NY, USA, pages 3-10.
http://doi.acm.org/10.1145/1140104.1140108

– N. Pelekis, Y. Theodoridis, S. Vosinakis, and T. Panayiotopoulos. Hermes
– a framework for location-based data management. In 11th International
Conference on Extending Database Technology (EDBT’06), pages 1130-
1134, 2006.

– Jeong, S.-H., Paton, N. W., Fernandes, A. A. A. and Griffiths, T. (2005), An
Experimental Performance Evaluation of Spatio-Temporal Join Strategies.
Transactions in GIS, 9: pages 129-156. http://dx.doi.org/10.1111/
j.1467-9671.2005.00210.x

– Hui Ding, Goce Trajcevski and Peter Scheuermann. Efficient Maintenance
of Continuous Queries for Trajectories. GeoInformatica Journal, Volume
12, Number 3, pages 255-288. http://www.springerlink.com/
content/tv24k2041255p932/.

– Jose Macedo, Christelle Vangenot, Walied Othman, Nikos Pelekis, Elias
Frentzos, Bart Kuijpers, Irene Ntoutsi, Stefano Spaccapietra, and Yannis
Theodoridis, Trajectory Data Models. Book chapter in Mobility, data
mining, and Privacy – Geographic Discovery, Fosca Giannoti, Dino
Pedreschi (Eds), Springer 2008.

– Riccardo Ortale, Ettore Ritacco, Nikos Pelekis, Roberto Trasarti, G. Costa,
F. Giannotti, G. Manco, C. Renso, and Y. Theodoridis. 2008. The
DAEDALUS framework: progressive querying and mining of movement
data. In Proceedings of the 16th ACM SIGSPATIAL international
conference on Advances in geographic information systems (GIS ’08).
ACM, New York, NY, USA, pages 411-415. http://doi.acm.org/10.
1145/1463434.1463497

http://dx.doi.org/10.1017/S026988890400013X
http://doi.acm.org/10.1145/1138394.1138396
http://doi.acm.org/10.1145/1138394.1138396
http://doi.acm.org/10.1145/1140104.1140108
http://dx.doi.org/10.1111/j.1467-9671.2005.00210.x
http://dx.doi.org/10.1111/j.1467-9671.2005.00210.x
http://www.springerlink.com/content/tv24k2041255p932/
http://www.springerlink.com/content/tv24k2041255p932/
http://doi.acm.org/10.1145/1463434.1463497
http://doi.acm.org/10.1145/1463434.1463497

103

• J. A. Cotelo-Lema, R. H. Güting. Dual Grid: A New Approach for Robust Spatial
Algebra Implementation. Geoinformatica Journal. Volume 6, Number 1, March
2002, pages 57-76.

According to Google Scholar this paper has been cited by 15 articles. Some of
the most relevant ones are the following:

– Anthony J. Roy and John G. Stell. 2002. A Qualitative Account of
Discrete Space. In Proceedings of the Second International Conference on
Geographic Information Science (GIScience ’02), September 25-28, 2002
. Max J. Egenhofer and David M. Mark (Eds.). Springer-Verlag, London,
UK, pages 276-290.

– Brian E. Weinrich and Markus Schneider. 2005. Use of rational numbers
in the design of robust geometric primitives for three-dimensional spatial
database systems. In Proceedings of the 13th annual ACM international
workshop on Geographic information systems (GIS ’05), November 04-
05, 2005, Bremen, Germany. ACM, New York, NY, USA, pages 163-172.
http://doi.acm.org/10.1145/1097064.1097088

– Rod Thompson. Towards a Rigorous Logic for Spatial Data
Representation. PhD Thesis, 2007, Publications on Geodesie 65 (ISSN
0165-1706) Delft: NCG Nederlandse Commissie voor Geodesie ISBN 978
90 6132 303 7.

– Rodney James Thompson and Peter Oosterom. 2011. Connectivity in the
regular polytope representation. Geoinformatica 15, 2 (April 2011), pages
223-246. http://dx.doi.org/10.1007/s10707-009-0094-3

Publications in international conferences
• [CL10] J. A. Cotelo-Lema, M. R. Luaces. DualgridFF: a Robust, Consistent and

Efficient Physical Data Model for Spatial Databases. In Proceedings of the 18th
SIGSPATIAL International Conference on Advances in Geographic Information
Systems (GIS ’10), San José, California (Estados Unidos), 2010. ACM,
New York, NY, USA, 422-425. http://doi.acm.org/10.1145/1869790.
1869852.

• [Cot01] J. A. Cotelo-Lema. An Analysis of Consistency Properties in
Existing Spatial and Spatiotemporal Data Models. Advances in Databases
and Information Systems, 5th East - European Conference ADBIS’ 2001,
Vilnius (Lituania), 25th-28th September, 2001. Research Communications, A.
Caplinskas, J. Eder (Eds.): Vol. 1(2001), pages 55-66.

http://doi.acm.org/10.1145/1097064.1097088
http://dx.doi.org/10.1007/s10707-009-0094-3
http://doi.acm.org/10.1145/1869790.1869852
http://doi.acm.org/10.1145/1869790.1869852

104 Appendix B. Publications and other research achievements

Publications in national conferences
• J. A. Cotelo Lema. Representación y Consulta Consistente de Información

Espacial y Espaciotemporal. In I Jornada de Sistemas de Información
Geográfica (JSIG), Almagro (Ciudad Real), España. 19th November, 2001.

Awards
• The paper [CFG+03] was runner-up paper for the 2003 The Computer Journal

Wilkes Award.

• The paper [Cot01] was awarded the Best Student Paper Award at the Fifth
East-European Conference on Advances in Databases and Information Systems
(ADBIS’01).

Research stays
• August 1st, 1998 - July 31st, 2000. Hired as research employee

(Wissenschaftlicher Angestellter) at the FernUniversität Hagen (Germany),
under the supervision of Prof. Ralf Hartmut Güting. Hired under the EU funded
project CHOROCHRONOS (a research network for Spatiotemporal Database
Systems), involving 11 research groups from 8 different European countries.

During the stay the Dualgrid approach was first conceptualized and the
paper [CG02] was written and submitted. Also, preliminary works on
paper [CFG+03] were done.

• September 3rd, 2001 - September 21st, 2001. Research stay at FernUniversität
Hagen (Germany), under the supervision of Prof. Ralf Hartmut Güting.

The stay was devoted to the final works on paper [CFG+03].

Other research achievements

Book chapters
• L. Montserrat, J. A. Cotelo, M. R. Luaces, D. Seco. Collecting, Analyzing,

and Publishing Massive Data about the Hypertrophic Cardiomyopathy.
Communications in Computer and Information Science - Biomedical
Engineering Systems and Technologies, 52, Springer, Alemania, 2010, pp. 301-
313. http://dx.doi.org/10.1007/978-3-642-11721-3_23

http://dx.doi.org/10.1007/978-3-642-11721-3_23

105

• N.R. Brisaboa, J.A. Cotelo Lema, M.R. Luaces, and J.R. Viqueira. Sistemas
de Información Geográfica: Revisión de su Estado Actual. N.R. Brisaboa, ed.,
Ingeniería del Software en la Década del 2000, pp. 77-94. A Coruña, Spain,
2003.

Publications in International Journals
• N.R. Brisaboa, J. A. Cotelo, A. Fariña, M.R. Luaces, J.R. Paramá, J.R. Viqueira

Collecting and publishing massive geographic data. Software - Practice and
Experience 37(12), pp. 1319-1348, John Wiley & Sons 2007.

Publications in international conferences
• Montserrat, L.; Cotelo, J. A. ; Luaces, M. R.; Seco, A Document Management

System and Workflow to help at the Diagnosis of Hypertrophic Cardiomyopathy.
2nd International Conference on Health Informatics (HEALTHINF 2009).
INSTICC, Porto (Portugal), 2009.

• N.R. Brisaboa, J.A. Cotelo Lema, A. Fariñaa Martínez, M.R. Luaces, and J.R.
Viqueira. The E.I.E.L. Project: An Experience of GIS Development. 9th EC-GI
&GIS Workshop (ECGIS), A Coruña, Spain, 2003.

Publications in national and Ibero-American conferences
• C. Amil, N.R. Brisaboa, Cotelo Lema J.A, A. Fariña Martínez, M.R. Luaces,

M.R. Penabad, A.S. Places, J.R. Viqueira. Una Interfaz Web para un Sistema
Geográfico de Información Turística. II Jornada de Sistemas de Información
Geográfica (JSIG). El Escorial, Spain, 2002.

• N.R. Brisaboa, J.A. Cotelo Lema, A. Fariña Martinez, M.R. Luaces, J.R.
Viqueira. S.I.T.P.A.C.: A Territorial Information System for A Coruña Province.
8th International Congress on Computer Science Research (CIICC). Colima,
Mexico, 2001.

• N.R. Brisaboa, J.A. Cotelo Lema, M.R. Luaces, J.R. Viqueira. State of the Art
and Requirements in GIS. 3rd Mexican International Conference on Computer
Science (ENC). Aguascalientes, Mexico, 2001.

• N.R. Brisaboa, J.A. Cotelo Lema, A. Fariña Martinez, M.R. Luaces, J.R.
Viqueira. E.I.E.L.: Una Experiencia de un Desarrollo SIG. I Jornada de

106 Appendix B. Publications and other research achievements

Sistemas de Información Geográfica (JSIG). Almagro (Ciudad Real), Spain, 19th
November 2001.

Apéndice C

Descripción del trabajo
presentado

C.1 Introducción

En las últimas décadas se ha dedicado un significativo esfuerzo a la integración
de las tecnologías de Sistemas de Información Geográfica (SIG) con sistemas de
información más tradicionales. Para dar soporte a esa integración, la tecnología de
representación de datos espaciales ha sido mejorada en múltiples aspectos, desde los
modelos (conceptuales y discretos) de representación de datos y lenguajes de consulta
a las tecnologías de indexación y visualización y a los estándares de interoperabilidad.
Como resultado de estos esfuerzos, las tecnologías SIG son ampliamente utilizadas en
la actualidad en todo tipo de aplicaciones.

Las tecnologías y modelos espaciales utilizados por los sistemas SIG son clave
para su evolución e implantación, razón por la cual la comunidad científica les
ha dedicado importantes esfuerzos. Las tecnologías de bases de datos espaciales
actuales ofrecen modelos de datos y operaciones estandarizados [OGC06], inspirados
en álgebras espaciales con unas bases conceptuales sólidas. Para el estudio
e implementación de modelos espaciales se distinguen típicamente tres niveles
de abstracción: modelos espaciales abstractos (también denominados modelos
conceptuales), modelos espaciales conceptuales (también denominados modelos
lógicos), y modelos espaciales físicos.

Un modelo espacial abstracto se centra en describir los tipos de objetos geográficos
del mundo real, las relaciones entre los diferentes tipos y las operaciones que

108 Apéndice C. Descripción del trabajo presentado

pueden ser realizadas sobre ellos usando conceptos formales definidos sin tener en
cuenta aspectos de implementación. Un ejemplo de modelo espacial abstracto es el
estándar internacional ISO 19107:2003 [ISO03], el cual define tipos conceptuales para
representar objetos geográficos (como curve o surface) y operaciones sobre ellos (como
overlaps o touches).

Un modelo espacial discreto, en cambio, tiene en cuenta las limitaciones de
los sistemas informáticos (como son memoria física limitada o el rendimiento
computacional) y define tipos de datos y algoritmos que pueden ser usados para
implementar los conceptos de un modelo espacial abstracto. El estándar del Open
Geospatial Consortium para Simple Features in SQL [OGC06] es un ejemplo típico
de un modelo espacial discreto para el modelo abstracto definido por el estándar ISO
19107:2003. Este modelo define tipos de datos como linestring y polygon, teniendo en
cuenta la necesidad de que la representación propuesta permita la implementación de
algoritmos eficientes (con una adecuada complejidad algorítmica) para las operaciones
que define.

Finalmente, un modelo espacial físico es una particular implementación de
un modelo discreto en un determinado entorno informático. Por ejemplo, la
implementación de OGC SFS en PostGIS [Ref10] para PostgreSQL usando GEOS
define un modelo físico. Un modelo físico también define algunos aspectos dejados sin
definir (abiertos) por el modelo discreto, como por ejemplo el espacio de representación
de coordenadas a usar y la precisión usada en el mismo.

Los modelos espaciales abstractos definen un álgebra de tipos de datos espaciales
y operaciones con propiedades teóricas sólidas. Por un lado, garantizan que
estas operaciones son cerradas, es decir, que los tipos de datos propuestos son
suficientemente potentes como para representar el resultado de cualquiera de las
operaciones espaciales propuestas por el modelo (por ejemplo, un modelo espacial
abstracto debe garantizar que el resultado de la operación intersection aplicada sobre
dos valores cualesquiera del tipo surface puede ser representado usando un valor del
tipo surface). Por otro lado, garantizan que el conjunto de operaciones propuestas
cumple con unas ciertas propiedades lógicas (por ejemplo, que A∩B⊆ A).

Durante las últimas décadas se ha dedicado un gran esfuerzo a la definición de
modelos espaciales abstractos, los cuales han alcanzado un grado de madurez suficiente
para que incluso se hayan podido llegar a definir y aprobar estándares internacionales
como el anteriormente mencionado ISO 19107:2003. Por contra, la definición de
modelos espaciales discretos y físicos capaces de mantener las propiedades del modelo
espacial abstracto ha demostrado ser un problema mucho más difícil de abordar.

Los modelos espaciales discretos han de definir tipos de datos usando un número
finito de componentes. Por ejemplo, un modelo de datos discreto puede representar los
objetos del tipo abstracto curve usando un conjunto de segmentos lineales, los objetos

C.2. Metodología utilizada 109

del tipo abstracto surface usando un conjunto de segmentos lineales representando su
contorno, y los objetos del tipo abstracto point con un par de coordenadas numéricas. Si
el modelo espacial discreto continúa asumiendo el uso de un espacio de representación
continuo, podrá probablemente afirmar que mantiene las propiedades del modelo
abstracto, pero la resolución del problema de representar las coordenadas espaciales
en un ordenador (la discretización del espacio geográfico) es postergada y trasladada
a quien se encargue de la definición del modelo espacial físico. Si por el contrario se
opta por afrontar el problema en el modelo espacial discreto, por ejemplo mediante el
uso de un espacio finito para la representación de coordenadas (por ejemplo, enteros
de 64 bits o números en coma flotante de doble precisión conforme al estándar
IEEE754), entonces se vuelve realmente difícil lograr mantener las propiedades lógicas
del modelo abstracto.

A pesar de los esfuerzos dedicados por la comunidad científica, las soluciones
propuestas para abordar la discretización del espacio de representación distan de
ser satisfactorias. En consecuencia, las implementaciones existentes en la actualidad
de librerías y extensiones de bases de datos espaciales sufren severamente estas
limitaciones. Aparentan cumplir con las álgebra conceptuales originales, pero en
realidad incumplen la mayor parte de las propiedades en que están basadas esas
álgebras. Más específicamente, los modelos físicos no mantienen sus propiedades de
cierre bajo el conjunto de tipos de datos y operaciones implementados, y las soluciones
aplicadas para solventarlo, normalmente algún tipo de resultado aproximado, no
cumplen con las propiedades lógicas esperadas de las operaciones en cuestión. En
consecuencia, el modelo físico resultante no es capaz de ofrecer una implementación
consistente de las operaciones espaciales ofrecidas a los usuarios. Como resultado
de todo esto, el desarrollo de aplicaciones basadas en las propiedades del modelo
conceptual (por ejemplo, aplicaciones de análisis espacial) se vuelve mucho más difícil,
si no imposible. De hecho, incluso la implementación del propio modelo físico se
vuelve mucho más compleja, al no poder apoyarse ni siquiera en las bases teóricas
del modelo conceptual que se supone se está implementando.

C.2 Metodología utilizada
El objetivo principal de esta tesis es sentar las bases para el desarrollo de extensiones
de bases de datos espaciales capaces de cumplir las propiedades clave del álgebra
espacial conceptual en la que se basan, teniendo en cuenta además las restricciones
impuestas por la realidad de las aplicaciones GIS actuales en términos de rendimiento,
de consumo de recursos y de interoperabilidad con las aplicaciones y estándares
existentes.

110 Apéndice C. Descripción del trabajo presentado

La estrategia seguida para alcanzar este objetivo ha sido la siguiente:

• En primer lugar, analizamos el estado del arte actual en representación de
información espacial, prestando especial atención a las limitaciones impuestas
por los ordenadores y los efectos que esas soluciones tienen en el cumplimiento
o incumplimiento de las propiedades del modelo conceptual. Igualmente
estudiamos la capacidad de los modelos espaciales discretos y físicos existentes
para trasladar a las aplicaciones del mundo real y a las extensiones de bases
de datos espaciales toda la semántica y propiedades lógicas de los modelos
conceptuales espaciales en los que se basan.

• En segundo lugar, identificamos cuales son los aspectos principales que el
modelo espacial físico debe solucionar para garantizar que es capaz de mantener
las propiedades clave de los modelos discreto y abstracto en los que se basa.

• En tercer lugar, proponemos un marco teórico para el diseño de modelos
físicos (Dualgrid) que garantiza que las implementaciones de álgebras
espaciales basadas en él mantienen las propiedades clave desde el punto
de vista de las aplicaciones de usuario. Como pruebas de concepto, se
adaptaron dos implementaciones existentes al uso de Dualgrid, basadas
originalmente en planteamientos distintos a la hora de mitigar los problemas de
discretización y siendo una de ellas una extensión de bases de datos espaciales
ampliamente usada (PostgreSQL/PostGIS). Los resultados experimentales de
dichas adaptaciones evidencian cómo el uso de Dualgrid soluciona los problemas
de consistencia y (incluso) de implementación en ambas soluciones.

• Por último y en cuarto lugar, estudiamos de nuevo la propuesta de Dualgrid
y la redefinimos para extender sus propiedades (DualgridFF) con el fin de
hacer posible el cumplimento de las restricciones adicionales (en términos de
rendimiento, espacio de almacenamiento e interoperabilidad) impuestas por
las aplicaciones, tecnologías GIS y estándares de interoperabilidad (OGC)
existentes.

Los resultados del análisis realizado en el primer y segundo paso han permitido
establecer una estrategia novedosa en el planteamiento seguido para la resolución
de los problemas de discretización del espacio de representación. Como resultado,
las soluciones propuestas en el tercer y cuarto paso se caracterizan por el énfasis
en mantener el cierre del espacio de representación usado, en vez de empeñarse en
emular las propiedades que un espacio de representación pierde como resultado de su
discretización. Gracias a este enfoque, Dualgrid y DualgridFF logran garantizar que el

C.3. Conclusiones y contribuciones 111

modelo espacial físico resultante permanezca cerrado para las operaciones espaciales
típicas, y muy especialmente para las relacionadas con teoría de conjuntos.

C.3 Conclusiones y contribuciones

Las tecnologías de bases de datos han alcanzado un elevado nivel de madurez
en las últimas décadas. Actualmente, todos los sistemas gestores de bases de
datos comerciales relevantes (PostgreSQL, MySQL, Oracle, DB2, Microsoft SQL
Server, Informix, etc.) ofrecen tipos de datos y operaciones espaciales, normalmente
implementando estándares ampliamente aceptados (SFS, ISO SQL/MM, etc.). Sin
embargo, todas las implementaciones existentes sufren un problema fundamental: no
son robustas/consistentes, en el sentido de que son incapaces de cumplir ni siquiera
con las propiedades teóricas más básicas de los modelos abstractos que se supone
implementan.

El problema de definir e implementar un modelo espacial físico que mantenga
las propiedades definidas por un modelo espacial abstracto es un problema todavía
no resuelto. El Apéndice A muestra un ejemplo muy sencillo que produce respuestas
inconsistentes en tres de los principales SGBD espaciales comerciales, concretamente
Oracle Spatial, PostgreSQL/PostGIS y Microsoft SQL Server. En algunos casos,
estos problemas logran incluso causar errores fatales (crashes) y excepciones en sus
algoritmos geométricos (como se pone en evidencia en la Sección 4.4 de esta tesis, con
tests realizados sobre PostgreSQL/PostGIS, y como puede verse en la Sección 1.5.5
de la Oracle Spatial Developer’s Guide [Ora10] con respecto al uso de tolerancias
en Oracle Spatial). Como resultado, los desarrolladores de aplicaciones SIG y los
usuarios de las mismas se ven obligados a soportar el inconveniente de gestionar las
consecuencias de usar un álgebra espacial rota1.

Aunque en la literatura científica hay propuestas que solucionan este problema
al nivel del modelo espacial discreto [GS93], éstas no solucionan completamente el
problema, y sus inconvenientes (tal y como se explica en la Sección 2.4.2) imposibilitan
su uso como una solución para el desarrollo de tecnologías de bases de datos espaciales
comerciales.

Este trabajo de investigación se ha centrado en cubrir el hueco existente entre
las propuestas existentes en modelos espaciales discretos y la implementación de los

1Usamos aquí el término álgebra rota con el fin de remarcar el hecho de que el uso de una implementación
que ha dejado de cumplir las propiedades del modelo abstracto arruina todos los esfuerzos dedicados en su
momento a la cuidadosa definición del mismo, porque los usuarios ya no pueden apoyarse en las propiedades
lógicas y matematicas que dicho modelo abstracto ofrecía.

112 Apéndice C. Descripción del trabajo presentado

mismos en SGBD espaciales y herramientas GIS. Como resultado, esta tesis aporta tres
contribuciones principales:

• Realiza un estudio detallado del estado del arte y un análisis de los requisitos
clave que un modelos espacial físico debería cumplir para garantizar que
se mantiene cerrado ante las principales operaciones espaciales del modelo
abstracto (en especial las correspondientes a la teoría de conjuntos), manteniendo
así sus propiedades teóricas.

• La propuesta de un nuevo espacio de representación (Dualgrid) que cumple
los requisitos mencionados y, en consecuencia, garantiza que se mantienen
las propiedades del correspondiente modelo espacial abstracto, permitiendo la
implementación exacta de sus operaciones (en lugar de aproximaciones de
las mismas) y al mismo tiempo usar representaciones basadas en coordenadas
de tamaño fijo. El uso de Dualgrid ha permitido reincorporar a dos
implementaciones existentes (una implementación del álgebra ROSE y una
versión de PostGIS/GEOS) aquellas propiedades de robustez y consistencia
originalmente perdidas durante la implementación del modelo discreto.

• La propuesta del modelo espacial físico DualgridFF, una evolución de Dualgrid
diseñada para cumplir los requisitos adicionales en términos de rendimiento
e interoperabilidad de los usuarios profesionales2, y orientada a su uso en
nuevas implementaciones. DualgridFF ofrece todas las ventajas ya aportadas por
Dualgrid, mejorando éste al permitir la implementación de modelos espaciales
de calidad comercial, entendiendo ésta no sólo en términos de robustez y
consistencia, sino también en términos de rendimiento, coste de almacenamiento
e interoperabilidad.

Dualgrid y DualgridFF proveen una base sólida para resolver los problemas de robustez
y consistencia de las tecnologías espaciales vectoriales actuales, atacando directamente
a la raíz de dichos problemas. Ambos sirven de herramienta para permitir que los
modelos espaciales físicos puedan mantenerse cerrados bajo las operaciones definidas
por los modelos abstractos. Además, DualgridFF va un paso más allá, teniendo en
cuenta las necesidades de todas las partes involucradas en el desarrollo y uso de
tecnologías espaciales, de modo que las implementaciones de tecnologías de bases
de datos espaciales basadas en él puedan conciliar con éxito las necesidades de las
diferentes partes involucradas, ayudando a aunar esfuerzos en la evolución de los
sistemas de información geográfica.

2Usamos aquí el término usuarios profesionales en contraposicion a los investigadores académicos.

C.4. Trabajo futuro 113

Como resultado, las contribuciones de esta tesis permiten una mejora cualitativa de
las tecnologías (y extensiones de bases de datos) espaciales existentes, lo que permitirá
dotar a éstas de las sólidas bases formales que los desarrolladores necesitan para poder
desarrollar aplicaciones SIG avanzadas.

C.4 Trabajo futuro
En este trabajo de investigación se ha dado un gran paso adelante para aportar
al desarrollo de tecnologías de bases de datos espaciales las bases necesarias para
implementar modelos de datos espaciales robustos y consistentes. A raíz de los
resultados obtenidos, se identifican las siguientes posibles líneas de investigación
futuras:

• Mejora de librerías de gestión de información espacial existentes. La manera
más rápida y directa de trasladar las ventajas de las propuestas de este trabajo
de investigación al mundo real de las aplicaciones SIG consiste en adaptar las
librerías de gestión de información espacial existentes más ampliamente usadas,
de modo que hagan uso de DualgridFF. Un claro candidato es la librería JTS
Topology Suite (http://sourceforge.net/projects/jts-topo-suite/),
una librería ampliamente utilizada por los entornos de desarrollo SIG,
herramientas y aplicaciones para ofrecer capacidades de análisis espacial.
Ofrecer una versión de JTS sobre DualgridFF (añadiendo una capa de precisión
DualgridFF a las capas de precisión actualmente disponibles en JTS) permitiría
a los desarrolladores de aplicaciones SIG simplificar sus implementaciones de
análisis espacial y evolucionarlas a niveles de análisis más elevados, dado que el
uso del modelo físico de DualgridFF permitiría que sus algoritmos de análisis
espacial pudiesen contar con operaciones espaciales robustas y consistentes.
Además, esa adaptación de JTS permitiría realizar una validación experimental
de las estimaciones de rendimiento y necesidades de almacenamiento asociadas
al uso de DualgridFF y de las técnicas de optimización propuestas en [CL10].
Al mismo tiempo, permitiría verificar la efectividad y facilidad de uso de
DualgridFF para la adaptación de implementaciones existentes.

• Mejora de extensiones de bases de datos espaciales. Un segundo (pero
no menos relevante) camino sería la mejora de extensiones de bases de
datos espaciales existentes para adaptarlas al uso del modelo físico de
DualgridFF. Esto permitiría a dichas extensiones espaciales ofrecer operaciones
consistentes y, no menos importante, liberar a las mismas de las complejidades
algorítmicas que habitualmente necesitan implementar para (intentar) minimizar

http://sourceforge.net/projects/jts-topo-suite/

114 Apéndice C. Descripción del trabajo presentado

los problemas de robustez que sus (actuales) modelos discretos no cerrados
generan. Como resultado, su robustez mejoraría y la complejidad interna de sus
implementaciones se simplificaría, haciendo más fácil la incorporación futura
de operaciones espaciales más potentes. Adicionalmente, esto nos permitiría
analizar en más profundidad posibles estrategias de implementación para
optimizar los requisitos de rendimiento y de espacio de almacenamiento, con
el fin de reducir el impacto de incorporar DualgridFF a implementaciones
existentes. Un candidato a dicha evolución es PostGIS/GEOS, la extensión de
bases de datos espaciales de código abierto usada por PostgreSQL.

• Optimización de librerías de precisión arbitraria a los requisitos específicos
de DualgridFF. Otra posible línea de investigación futura consiste en el
análisis de algoritmos para la mejora del rendimiento de computaciones en
precisión arbitraria en los casos específicos requeridos en DualgridFF. Dado
que dichas computaciones en precisión arbitraria son requeridas en escenarios
muy específicos, es muy probable que una librería específicamente diseñada
pudiese exhibir un rendimiento mucho mejor que librerías estándar al ser usada
en implementaciones de DualgridFF.

• Desarrollo de funcionalidades de análisis espacial más avanzadas en entornos
de desarrollo SIG existentes. Nuestro grupo de investigación tiene una amplia
experiencia en el desarrollo de herramientas SIG avanzadas. El desarrollo de
soporte de análisis espacial en ellas se ha visto siempre dificultado por las
limitaciones impuestas por las tecnologías espaciales actualmente disponibles,
caracterizadas por su inconsistencia entre operaciones. La disponibilidad de
librerías espaciales basadas en DualgridFF solventaría dichas limitaciones,
abriendo la oportunidad de una evolución en la calidad y potencia del soporte
de análisis espacial ofrecido por las aplicaciones SIG.

• Extensión a modelos espaciotemporales. Esta tesis ha estado centrada en
modelos espaciales no temporales. Sin embargo, la última década se ha
caracterizado por un importante esfuerzo investigador orientado al desarrollo
de modelos de datos espaciotemporales y sus algoritmos [CFG+03], donde
la dimensión temporal de la información espacial es tenida en consideración.
Dependiendo del modelo, la evolución temporal de los datos espaciales puede ser
discreta (el valor espacial cambia en instantes temporales específicos) o continua
(donde los valores espaciales evolucionan de un modo continuo a lo largo del
tiempo, habitualmente denominados en la literatura moving objects).

El uso de Dualgrid y DualgridFF para la implementación de modelos
espaciotemporales discretos debería ser relativamente sencillo. La implemen-

C.4. Trabajo futuro 115

tación parcial realizada en [CFG+03] estaba preparada para el uso de datos
espaciales siguiendo las restricciones de Dualgrid. Usando static slices (donde
el valor espacial representado por el slice es estático durante todo el intervalo
temporal) y cumpliendo las restricciones de Dualgrid, la implementación
realizada era capaz de ofrecer respuestas consistentes entre operaciones
espaciales y espaciotemporales.

La aplicación de Dualgrid y DualgridFF a moving objects, sin embargo, requiere
un estudio más profundo. Debería ser posible extender Dualgrid a geometrías
3D (donde la tercera dimensión sería usada para el eje temporal), y representar
la evolución de un objeto para cada time slice como una de esas geometrías 3D.
De hecho, en [Tho07] los autores definen una representación 3D (en este caso
usada realmente como 3D, con la altura como la tercera dimensión) basada en
las lecciones aprendidas de Dualgrid. Esto ayudaría a mantener la consistencia
entre operaciones espaciotemporales en moving objects. Sin embargo, la parte
difícil estaría en lograr ofrecer consistencia entre operaciones espaciales y
espaciotemporales. La razón es que los modelos espaciotemporales necesitan
ofrecer soporte para la realización de proyecciones en la dimensión temporal
(para, por ejemplo, poder obtener el instante en el cual un objeto espaciotemporal
ocupó una determinada posición, o el intervalo de tiempo durante el cual el
objeto ha existido) y en la dimensión espacial (para, por ejemplo, recuperar
el valor espacial de un objeto espaciotemporal en un determinado instante,
o la proyección de la trayectoria de todo el objeto espaciotemporal en el
espacio). Por tanto, cualquier evolución de Dualgrid al dominio espaciotemporal
(llamémosle DualgridST) tendría que definir como mínimo un espacio de
representación tal que las proyección en el espacio de valores espaciotemporales
fuese una operación cerrada. Adicionalmente, idealmente debería de ser capaz
de soportar la combinación de proyecciones en el espacio con proyecciones en el
tiempo. Si estas combinaciones no son gestionadas adecuadamente, secuencias
de estas operaciones generarían muy probablemente valores espaciales que no
serían representables en DualgridST. Esto es debido a que la combinación de
proyecciones en el espacio y en el tiempo puede aumentar con cada proyección
la precisión requerida para representar los valores temporales y espaciales. Este
es un problema que debería ser cuidadosamente analizado y gestionado si se
quiere extender Dualgrid a modelos espaciotemporales.

Bibliografía

[ABD+97] F. Avnaim, J-D. Boissonnat, O. Devillers, F. Preparata and M. Yvinec.
Evaluating signs of determinants using single-precision arithmetic. In
Algorithmica, Vol. 17, pages 111-132, 1997.

[BF09] R. Bulbul and A. U. Frank. Big Integers for GIS: Testing the Viability
of Arbitrary Precision Arithmetic for GIS Geometry. Poster presented in
12th AGILE International Conference on Geographic Information Science
Hannover, Germany, June 2-5, 2009.

[BM98] P. Burrough y R. McDonnell. Principles of Geographical Information
Systems. Oxford University Press, 1998. ISBN: 0-19-823365-5.

[BO79] J. Bentley, T. Ottmann. Algorithms for Reporting and Counting Geometric
Intersections. IEEE Transactions on Computers, C-28:643– 647, 1979.

[CG02] J. A. Cotelo-Lema, R. H. Güting. Dual Grid: A New Approach for
Robust Spatial Algebra Implementation. Geoinformatica Journal. Volume
6, Number 1, March 2002, pages 57-76.

[Cha94] E. Chan, R. Zhu. QL/G - A Query Language for Geometric Databases. TR
CS-94-25, Univ. of Waterloo, 1994.

[CFG+03] J. A. Cotelo-Lema, L. Forlizzi, R H. Güting, E. Nardelli and M. Schneider.
Algorithms for Moving Objects Databases. The Computer Journal, 46(6),
June 2003, pages 680-712.

[CL10] J. A. Cotelo-Lema, M. R. Luaces. DualgridFF: a Robust, Consistent and
Efficient Physical Data Model for Spatial Databases. In Proceedings of the
18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems (GIS ’10), San José, CA (Estados Unidos), 2010.

118 Bibliografía

ACM, New York, NY, USA, 422-425. http://doi.acm.org/10.1145/
1869790.1869852.

[Cot01] J. A. Cotelo-Lema. An Analysis of Consistency Properties in Existing
Spatial and Spatiotemporal Data Models. Advances in Databases and
Information Systems, 5th East - European Conference ADBIS’ 2001,
Vilnius (Lituania), 25th-28th September 2001. Research Communications,
A. Caplinskas, J. Eder (Eds.): Vol. 1(2001), pages 55-66.

[Cre06] R. Creo-Hombre. Adaptación de GEOS y PostGIS a la tecnología Dualgrid.
TI 455, Universidade da Coruña (Spain), 2006.

[Dav98] J. Davis. IBM’s DB2 Spatial Extender: Managing Geo-Spatial Information
Within The DBMS. Technical report, IBM Corporation, 1998.

[DS90] D. Dobkin, D. Silver. Applied Computational Geometry: Towards Robust
Solutions of Basic Problems. Journal of Computer and System Sciences,
40:70–87, 1990.

[Ege94] M. Egenhofer. Spatial SQL: a Query and Presentation Language. In IEE
Transactions on Knowledge and Data Engineering. Vol 6, Nº1, 1994, 86-95.

[FDP+99] A. Fernandes, A. Dinn, N. Paton, M. Williams, O. Liew. Extending a
Deductive Object-Oriented Database System with Spatial Data Handling
Facilities. Information and Software Technology, 41(1):483–497, 1999.

[For85] A. Forrest. Computational Geometry in Practice. En Fundamental
Algorithms for Computer Graphics, pp. 707–723. Springer-Verlag, 1985.

[GdRS95] R. H. Güting, T. de Ridder, M. Schneider. Implementation of the ROSE
Algebra: Efficient Algorithms for Realm-Based Spatial Data Types. En
Proc. of the 4th Intl. Symposium on Large Spatial Databases, pp. 216–239,
Portland, Maine, 1995.

[GK97] S. Grumbach, G. Kuper. Tractable Recursion over Geometric Data. In
International Conference on Constraint Programming, 1997.

[GM95] L. Guibas, D. Marimont. Rounding Arrangements Dynamically. En 11th
Annual Symposium on Computational Geometry, pp. 190–199, 1995.

[GRS98] S. Grumbach, P. Rigaux, L. Segoufin. The Dedale System for Complex
Spatial Queries. En Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 213–224, 1998.

http://doi.acm.org/10.1145/1869790.1869852
http://doi.acm.org/10.1145/1869790.1869852

Bibliografía 119

[GRSS97] S. Grumbach, P. Rigaux, M. Sholl, L. Segoufin. Dedale: A spatial
constraint database. In Intl. Workshop in Database Programming
Languages (DBPL’97), 1997.

[GS93] R. H. Güting, M. Schneider. Realms: A Foundation for Spatial Data Types
in Database Systems. In Proc. of the 3rd. Intl. Symposium on Large Spatial
Databases, pages 14-35. Singapore, June 93.

[GS95] R. H. Güting, M. Schneider. Realm-Based Spatial Data Types: The ROSE
Algebra. In VLDB Journal. Vol. 4(2), pages 100-143, 1995.

[Gun88] O. Günter. Efficient Structures for Geometric Data Management. In Lecture
Notes in Computer Sciences LNCS 377, Springer-Verlag. 1988.

[Güt88] R. H. Güting. Geo-Relational Algebra: A Model and Query Language for
Geometric Database Systems. En Proc. of the Intl. Conf. on Extending
Database Technology, pp. 506–527, Venice, Italy, 1988.

[Güt89] R. H. Güting. Gral: An Extensible Relational Database System for
Geometric Aplications. En In Proceedings of the Fifteenth International
Conference on Very Large Data Bases, pp. 33–44, Amsterdam, 1989.

[Güt94a] R. H. Güting. GraphDB: A Data Model and Query Language for Graphs
in Databases. Proc. of the 20th Intl. Conference on Very Large Databases,
Santiago, 1994, 297 - 308.

[Güt94b] R. H. Güting. Special Issue on Spatial Database Systems: An Introduction
to Spatial Database Systems. VLDB Journal: Very Large Data Bases, 3(4)
(1994) 357-399.

[GY86] D. Greene, F. Yao. Finite-Resolution Computational Geometry. En Proc.
27th IEEE Symposium on Foundations of Computer Science, pp. 143–152,
1986.

[IEEE08] Institute of Electrical and Electronics Engineers (IEEE). IEEE 754-2008
Standard for Floating-Point Arithmetic. 2008.

[Ill94] Illustra 2D Spatial Datablade (Release 1.3) Guide, 1994.

[ISO03] ISO/IEC. Geographic Information - Spatial Schema. International standard
ISO 19107:2003, 2003.

120 Bibliografía

[ISO05a] ISO/IEC. Geographic information - Rules for application schema.
International standard ISO 19109:2005, 2005.

[ISO05b] ISO/IEC. Geographic information - Schema for coverage geometry and
functions. International standard ISO 19123:2005, 2005.

[ISO07] ISO/IEC. Geographic information - Core profile of the spatial schema.
International Standard ISO 19137:2007, 2007.

[ISO07b] ISO/IEC. Geographic information - Geography Markup Language (GML).
International Standard ISO 19136:2007, 2007.

[ISO10] ISO/IEC. Geographic information - Web Feature Service. International
Standard ISO ISO 19142:2010, 2010.

[LT92] R. Laurini, D. Thompson. Fundamentals of Spatial Information Systems.
In Academic Press. APIC Series 37, 1992.

[LTR99] Lorentzos, N. A., Tryfona, N., Rios Viqueira, J. R. Relational Algebra for
Spatial Data Management. ISD’99. LNCS 1737, (1999) 192-208.

[KM83] P. Kornerup, D. Matula. Finite Precision Rational Arithmetic: An
Arithmetic Unit. IEEE Transactions on Computers, C-28:378–388, 1983.

[KPV95] B. Kuijpers, J. Paredaens, J. Van den Bussche. Lossless Representation of
Topological Spatial Data. In M. J. Egenhofer and J. R. Herring, editors,
Advances in Spatial Databases, 4th. Int. Symp., SSD’95, pages 1-13,
Springer, 1995.

[Mic09] SQL Server Database Engine. In SQL Server 2008 Books Online
(November 2009). See Types of Spatial Data Section. Retrieved in April
2010 from http://msdn.microsoft.com/en-us/library/bb964711.
aspx.

[Mil89] V. Milenkovic. Double Precision Geometry: A General Technique for
Calculating Line and Segment Intersections Using Rounded Arithmetic. En
30th Annual Symposium on Foundations of Computer Science, pp. 500–
505, 1989.

[MPF+96] V. Muller, N. Paton, A. Fernandes, A. Dinn, M. Williams. Virtual Realms:
An Efficient Implementation Strategy for Finite Resolution Spatial Data
Types. En Proc. of the 7th Intl. Symposium on Spatial Data Handling -
SDH’96, volume 2, pp. 11B.1–11B.13, Delft, The Netherlands, 1996. 1991.

http://msdn.microsoft.com/en-us/library/bb964711.aspx
http://msdn.microsoft.com/en-us/library/bb964711.aspx

Bibliografía 121

[Mys10] MySQL 5.5 Reference Manual, Chapter 11.17 (Spatial Extensions).
Revision 21559, July 2010. Retrieved in July 2010 from http://
downloads.mysql.com/docs/refman-5.5-en.a4.pdf.

[OGC05] Open Geospatial Consortium Inc. OpenGIS Web Processing Service
(WPS) 1.0.0 Interface Standard, 2005. http://www.opengeospatial.
org/standards/wps.

[OGC06] Open Geospatial Consortium Inc. OpenGIS Implementation Specification
for Geographic information - Simple feature access - Part 2: SQL option.
OpenGIS project document OGC 06-104r4, August 2006. http://www.
opengeospatial.org/standards/sfs.

[OGC06b] Open Geospatial Consortium Inc. OpenGIS Web Map Service (WMS) 1.3.0
Implementation Specification, 2006. http://www.opengeospatial.org/
standards/wms.

[OGC07] Open Geospatial Consortium Inc. OpenGIS Geography Markup Language
(GML) 3.2.1 Encoding Standard, 2007. http://www.opengeospatial.
org/standards/gml.

[OGC07b] Open Geospatial Consortium Inc. OpenGIS Catalogue Service (CSW) 2.0.2
Implementation Specification, 2007. http://www.opengeospatial.org/
standards/cat.

[OGC09] Open Geospatial Consortium Inc. OpenGIS Web Feature Service
(WFS) 2.0 Interface Standard (also ISO 19142), 2009. http://www.
opengeospatial.org/standards/wfs.

[OGC09b] Open Geospatial Consortium Inc. Web Coverage Service (WCS) 2.0
Implementation Standard, 2009. http://www.opengeospatial.org/
standards/wcs.

[Ora10] Oracle. Oracle Spatial Developer’s Guide 11g Release 2 (11.2). Reference
E11830-06, March 2010. Retrieved in April 2010 from http://www.
oracle.com/pls/db112/to_pdf?pathname=appdev.112/e11830.pdf.

[Ora97] Oracle8i Spatial Cartridge, 1997.

[Ora99] Oracle8i Spatial: Features Overview, 1999.

http://downloads.mysql.com/docs/refman-5.5-en.a4.pdf
http://downloads.mysql.com/docs/refman-5.5-en.a4.pdf
http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wcs
http://www.oracle.com/pls/db112/to_pdf?pathname=appdev.112/e11830.pdf
http://www.oracle.com/pls/db112/to_pdf?pathname=appdev.112/e11830.pdf

122 Bibliografía

[OTU87] T. Ottmann, G. Thiemt, C. Ullrich. Numerical Stability of Geometric
Algorithms. En 3rd ACM Symposium on Computational Geometry, pp.
119–125, 1987.

[Par95] J. Paredaens. Spatial Databases, the Final Frontier. In G. Gottlob and M. Y.
Vardi, editors, Proceedings of the 5th International Conference on Database
Theory - ICDT’95. Lecture Notes in Computer Science LNCS 893, pages
14-32. Springer-Verlag, 1995.

[PS85] F. Preparata, M. Shamos. Computational Geometry. Springer-Verlag,
Berlin, Heidelberg, New York, 1985.

[PVV94] J. Paredaens, J. Van den Bussche, D. Van Gucht. Towards a Theory of
Spatial Database Queries. In Proc. 13th. ACM Symp. on Principles of
Database Systems, pages 279-288, 1994.

[Ref10] Refractions Research. PostGIS 1.5.1 Manual. March 2010. Retrieved
in April 2010 from http://postgis.refractions.net/download/
postgis-1.5.1.pdf.

[Rig94] Ph. Rigaux, M. Scholl. Multiple Representation Modelling and Querying.
In IGIS94, 1994.

[RSV01] P. Rigaux, M. Scholl, y A. Voisard. Spatial Databases With Application To
GIS. Academic Press, 2001. ISBN: 1-55680-588-6.

[Sam90] H. Samet. The Design and Analysis of Spatial Data Structures. In Addison-
Wesley, 1990.

[Sch94] P. Schorn. Degeneracy in Geometric Computation and the Perturbation
Approach. The Computer Journal, 37(1), 1994.

[SH91] P. Svensson, Z. Huang. Geo-Sal: A Query Language for Spatial Data
Analysis. En Proceedings of the 2nd Intl. Symposium on Large Spatial
Databases, pp. 119–140, Zürich, Switzerland.

[Tho07] Rod Thompson. Towards a Rigorous Logic for
Spatial Data Representation. PhD Thesis, 2007, Publications on Geodesie
65 (ISSN 0165-1706) Delft: NCG Nederlandse Commissie voor Geodesie
ISBN 978 90 6132 303 7.

http://postgis.refractions.net/download/postgis-1.5.1.pdf
http://postgis.refractions.net/download/postgis-1.5.1.pdf

[Viv03] Vivid Solutions. JTS Topology Suite Technical Specifications, Version
1.4. October 2003. Retrieved in April 2010 from http://www.
vividsolutions.com/jts/bin/JTS%20Technical%20Specs.pdf .

[Wor04] M.F. Worboys. GIS: A Computing Perspective. CRC, 2004. ISBN:
0415283752.

[WS05] B. E. Weinrich, M. Schneider . Use of rational numbers in the design of
robust geometric primitives for three-dimensional spatial database systems.
13th ACM Int. Symp. on Advances in Geographic Information Systems
(ACM GIS), 163-172, 2005.

[ZZC+02] Y. Zhang, L. Zhou, J. Chen and R. Zhao. K-Order Neighbor: the Efficient
Implementation Strategy for Restricting Cascaded Update in Realm.
Computational Science (ICCS 2002), Lecture Notes in Computer Science,
2002, Volume 2331/2002, 994-1003.

http://www.vividsolutions.com/jts/bin/JTS%20Technical%20Specs.pdf
http://www.vividsolutions.com/jts/bin/JTS%20Technical%20Specs.pdf

	Contents
	List Of Figures
	List Of Tables
	List Of Algorithms
	1 Introduction
	1.1 Background and motivation
	1.2 Goals
	1.3 Scope and relevance
	1.4 Thesis outline

	2 State of the art
	2.1 Geographic Information Systems and Spatial Information Modeling
	2.2 Abstract spatial models
	2.3 Discrete spatial models
	2.4 Physical spatial models
	2.4.1 Commercial approaches
	2.4.1.1 PostGIS
	2.4.1.2 Oracle Spatial
	2.4.1.3 Microsoft SQL Server

	2.4.2 The ROSE Algebra: Realms

	2.5 Analysis and conclusions

	3 Consistency of spatial operations
	3.1 Understanding the relevance of consistency in the development of applications
	3.2 Approaches to deal with inconsistency in vectorial spatial data models
	3.2.1 Restriction of operations
	3.2.2 Restriction to orthogonal boundaries
	3.2.3 Approximated operations
	3.2.4 Exact representation
	3.2.5 Realms approach

	3.3 Comparison of consistency support in the spatial dimension
	3.3.1 Operations classification
	3.3.2 Consistency analysis

	3.4 Conclusions

	4 Dualgrid
	4.1 Definition of Dualgrid
	4.2 Data importation and exportation
	4.3 Realms and the ROSE Algebra over Dualgrid
	4.4 PostGIS-GEOS over Dualgrid
	4.5 Rigorous spatial logics over Dualgrid
	4.6 Conclusions

	5 Dualgrid for floats
	5.1 Original Dualgrid drawbacks
	5.1.1 Interoperability
	5.1.2 Performance

	5.2 Dualgrid For Floats
	5.3 Implementation issues
	5.3.1 Storage and performance cost of DualgridFF
	5.3.2 Performance improving tips
	5.3.3 Interoperability

	5.4 Conclusions

	6 Conclusions and future research lines
	6.1 Summary of contributions
	6.2 Future work

	A Spatial inconsistencies example
	A.1 Intersection test in Oracle Spatial
	A.1.1 Oracle commands

	A.2 Intersection test in PostgreSQL/PostGIS
	A.2.1 PostgreSQL/PostGIS commands

	A.3 Intersection test in SQL Server
	A.3.1 SQL Server commands

	B Publications and other research achievements
	C Descripción del trabajo presentado
	C.1 Introducción
	C.2 Metodología utilizada
	C.3 Conclusiones y contribuciones
	C.4 Trabajo futuro

