
Succinct and Self-Indexed Data
Structures for the Exploitation and
Representation of Moving Objects

Autor: Adrián Gómez Brandón
Tesis doctoral UDC / 2020

Directores:
Gonzalo Navarro
Nieves Rodríguez Brisaboa

Succinct and Self-Indexed Data
Structures for the Exploitation and
Representation of Moving Objects

Autor: Adrián Gómez Brandón
Tesis doctoral UDC / 2020

Directores:
Gonzalo Navarro
Nieves Rodríguez Brisaboa

Programa Oficial de Doutoramento en Computación

PhD thesis supervised by
Tesis doctoral dirigida por

Gonzalo Navarro
Departamento de Ciencias de la Computación
Facultad de Ciencias Físicas y Matemáticas
Universidad de Chile
851 Santiago (Chile)
Tel: +56 2 29784952
Fax: +56 2 26895531
gnavarro@dcc.uchile.cl

Nieves Rodríguez Brisaboa
Departamento de Computación y Tecnologías de la Información
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 1243
Fax: +34 981 167160
brisaboa@udc.es

Gonzalo Navarro y Nieves Rodríguez Brisaboa, como directores, acreditamos
que esta tesis cumple los requisitos para optar al título de doctor internacional y
autorizamos su depósito y defensa por parte de Adrián Gómez Brandón cuya firma
también se incluye.

iii

iv

Á miña familia

v

vi

Acknowledgements

Finally! This stage as Ph.D. student comes to an end. A stage full of lessons,
deadlines, travels, ups and downs. I must start thanking my advisors, without them
this thesis will not be possible: Nieves and Gonzalo. Nieves supported me from the
beginning to the end of this long way. Thanks for the help, confidence, advice, and
making everything easier. I have to thank Gonzalo for all his confidence, ability
to work and patience, but especially, his great humility, despite being the Messi of
Compact Data Structures.

I must also thank Jose and Fari for so much help, collaboration, and motivational
talks. Thank you to Ana and Mon for their help in teaching and carrying out this
thesis. Thanks to Carmen for all the help with the forms, boarding passes etc.
Thanks to all the members of the Database Lab, especially to my fellow adventurers:
Alex, Daniil, Fernando and Tirso.

Thank you to all those people I have met throughout my travels abroad, who
have made me feel at home: Ariel, Bonney, Diego Díaz, Diego Seco, Dominik, Giulio,
Joanna and Pepe. Thanks to Travis Gagie and Nicola Prezza for everything I learned
during the Summer School.

Many thanks to my friends, especially the old ones: Christian, Juan, Julio,
Noelia, Rebeca and Tania; all the parties, games and walks, were essential for the
development of this thesis.

Finally, fundamental was my family, especially my parents, my grandmother
and my sister, who are the ones who see my bitterest face. Thank you for all the
teachings, efforts, advice and laughter. I will never have enough time to thank you
for everything you do for me.

vii

viii

Agradecimientos

¡Finalmente! Esta etapa de doctorado está llegando a su fin. Una etapa llena de
lecciones, plazos, viajes, altibajos. Tengo que comenzar agradeciendo a mis directores
de tesis, sin los cuales esto no hubiera sido posible: Nieves y Gonzalo. Nieves me
apoyó desde el principio hasta el final de este largo viaje. Muchas gracias por toda
la ayuda, confianza, consejos y por hacerme todo más fácil. Tengo que agradecer a
Gonzalo por toda su confianza, capacidad de trabajo y paciencia, pero sobre todo,
su gran humildad, a pesar de ser el Messi de las Compact Data Structures.

También debo agradecer a José y Fari por tanta ayuda, colaboración y charlas
motivadoras. Gracias a Ana y Mon por su ayuda en la enseñanza y realización de
esta tesis. Gracias a Carmen por toda la ayuda con los formularios, tarjetas de
embarque, etc. Gracias a todos los miembros del Database Lab, especialmente a mis
compañeros de aventuras: Alex, Daniil, Fernando y Tirso.

Gracias a todas aquellas personas que he conocido durante mis viajes al extranjero,
que me han hecho sentir como en casa: Ariel, Bonney, Diego Díaz, Diego Seco,
Dominik, Giulio, Joanna y Pepe. Gracias a Travis Gagie y Nicola Prezza por todo
lo que aprendido durante la Summer School.

Muchas gracias a mis amigos, especialmente a los de siempre: Christian, Juan,
Julio, Noelia, Rebeca y Tania; todas las fiestas, partidas y paseos fueron esenciales
para el desarrollo de esta tesis.

Finalmente, fundamental fue mi familia, especialmente mis padres, mi abuela
y mi hermana, quienes son los que ven mi cara más amarga. Gracias por todas
las enseñanzas, esfuerzos, consejos y risas. Nunca tendré tiempo suficiente para
agradeceros por todo lo que haceis por mí.

ix

x

Agradecementos

Por fin! Esta etapa de doutorando chega ao seu fin. Unha etapa chea de leccións,
prazos, viaxes, subidas e baixadas. Teño que comezar dándolle grazas aos meus
directores de tese, sen os cales isto non sería posible: Nieves e Gonzalo. Nieves
apoioume dende o principio até a fin deste longo camiño. Moitas grazas por toda
a axuda, confianza, consellos e facerme todo máis fácil. A Gonzalo téñolle que
agradecer toda a súa confianza, capacidade de traballo e paciencia, pero sobre todo,
a súa gran humildade, a pesar de ser o Messi das Compact Data Structures.

Tamén debo darlle as grazas a Jose e Fari por tanta axuda, colaboración e charlas
motivacionais. Agradecerlle a Ana e Mon a axuda prestada na docencia e realización
desta tese. Grazas a Carmen por toda a axuda cos formularios, tarxetas de embarque
etc. Grazas a todos os membros do Laboratorio de Bases de Datos, especialmente
aos meus compañeiros de aventuras: Alex, Daniil, Fernando e Tirso.

Agradecerlle a toda aquela xente que me fun atopando ao longo das miñas viaxes
no estranxeiro, os cales me fixeron sentir como na casa: Ariel, Bonney, Diego Díaz,
Diego Seco, Dominik, Giulio, Joanna e Pepe. Agradecer a Travis Gagie e a Nicola
Prezza todo o aprendido durante a Summer School.

Moitas grazas aos meus amigos, en especial, aos de sempre: Christian, Juan, Julio,
Noelia, Rebeca e Tania; todas as festas, partidas e paseos, foron imprescindibles
para o desenvolvemento desta tese.

Finalmente, fundamental foi a miña familia, especialmente meus pais, miña
avoa e miña irmá, que son os que ven a miña cara máis amarga. Grazas por
todas as ensinanzas, esforzos, consellos e risas. Nunca terei o suficiente tempo para
agradecervos todo o que facedes por min.

xi

xii

Abstract

This thesis deals with the efficient representation and exploitation of trajectories of
objects that move in space without any type of restriction (airplanes, birds, boats,
etc.). Currently, this is a very relevant problem due to the proliferation of GPS
devices, which makes it possible to collect a large number of trajectories. However,
until now there is no efficient way to properly store and exploit them.

In this thesis, we propose eight structures that meet two fundamental objectives.
First, they are capable of storing space-time data, describing the trajectories, in a
reduced space, so that their exploitation takes advantage of the memory hierarchy.

Second, those structures allow exploiting the information by object queries, given
an object, they retrieve the position or trajectory of that object along that time; or
space-time range queries, given a region of space and a time interval, the objects
that are within the region at that time are obtained. It should be noted that
state-of-the-art solutions are only capable of efficiently answering one of the two
types of queries.

All of these data structures have a common nexus, they all use two elements:
snapshots and logs. Each snapshot works as a spatial index that periodically indexes
the absolute position of each object or the Minimum Bounding Rectangle (MBR) of
its trajectory. They serve to speed up the spatio-temporal range queries. We have
implemented two types of snapshots: based on k2-trees or R-trees.

With respect to the log, it represents the trajectory (sequence of movements) of
each object. It is the main element of the structures, and facilitates the resolution
of object and spatio-temporal range queries. Four strategies have been implemented
to represent the log in a compressed form: ScdcCT, GraCT, ContaCT and RCT.

With the combination of these two elements we build eight different structures for
the representation of trajectories. All of them have been implemented and evaluated
experimentally, showing that they reduce the space required by traditional methods
by up to two orders of magnitude. Furthermore, they are all competitive in solving
object queries as well as spatial-temporal ones.

xiii

xiv

Resumen

Esta tesis aborda la representación y explotación eficiente de trayectorias de objetos
que se mueven en el espacio sin ningún tipo de restricción (aviones, pájaros, barcos,
etc.). En la actualidad, este es un problema muy relevante debido a la proliferación
de dispositivos GPS, lo que permite coleccionar una gran cantidad de trayectorias.
Sin embargo, hasta ahora no existe un modo eficiente para almacenarlas y explotarlas
adecuadamente.

Esta tesis propone ocho estructuras que cumplen con dos objetivos fundamentales.
En primer lugar, son capaces de almacenar en espacio reducido los datos espacio-
temporales, que describen las trayectorias, de modo que su explotación saque partido
a la jerarquía de memoria.

En segundo lugar, las estructuras permiten explotar la información realizando
consultas sobre objetos, dado el objeto se calcula su posición o trayectoria durante
un intervalo de tiempo; o consultas de rango espacio-temporal, dada una región del
espacio y un intervalo de tiempo se obtienen los objetos que estaban dentro de la
región en ese tiempo. Hay que destacar que las soluciones del estado del arte solo
son capaces de responder eficientemente uno de los dos tipos de consultas.

Todas estas estructuras de datos tienen un nexo común, todas ellas usan dos
elementos: snapshots y logs. Cada snapshot funciona como un índice espacial que
periódicamente indexa la posición absoluta de cada objeto o el Minimum Bounding
Rectangle (MBR) de su trayectoria. Sirven para agilizar las consultas de rango
espacio-temporal. Hemos implementado dos tipos de snapshot: basadas en k2-trees
o en R-trees.

Con respecto al log, éste representa la trayectoria (secuencia de movimientos) de
cada objeto. Es el principal elemento de nuestras estructuras, y facilita la resolución
de consultas de objeto y de rango espacio-temporal. Se han implementado cuatro
estrategias para representar el log de forma comprimida: ScdcCT, GraCT, ContaCT
y RCT.

Con la combinación de estos dos elementos construimos ocho estructuras diferentes
para la representación de trayectorias. Todas ellas han sido implementadas y
evaluadas experimentalmente, donde reducen hasta dos órdenes de magnitud el
espacio que requieren los métodos tradicionales. Además, todas ellas son competitivas

xv

xvi

resolviendo tanto consultas de objeto como de rango espacio-temporal.

Resumo

Esta tese trata sobre a representación e explotación eficiente de traxectorias de
obxectos que se moven no espazo sen ningún tipo de restrición (avións, paxaros,
buques, etc.). Na actualidade, este é un problema moi relevante debido á proliferación
de dispositivos GPS, o que fai posible a recollida dun gran número de traxectorias.
Non obstante, ata o de agora non existe un xeito eficiente de almacenalos e explotalos.

Esta tese propón oito estruturas que cumpren dous obxectivos fundamentais. En
primeiro lugar, son capaces de almacenar datos espazo-temporais, que describen
as traxectorias, nun espazo reducido, de xeito que a súa explotación aproveita a
xerarquía da memoria.

En segundo lugar, as estruturas permiten explotar a información realizando
consultas de obxectos, dado o obxecto calcúlase a súa posición ou traxectoria nun
período de tempo; ou consultas de rango espazo-temporal, dada unha rexión de
espazo e un intervalo de tempo, obtéñense os obxectos que estaban dentro da rexión
nese momento. Cómpre salientar que as solucións do estado do arte só son capaces
de responder eficientemente a un dos dous tipos de consultas.

Todas estas estruturas de datos teñen unha ligazón común, empregan dous
elementos: snapshots e logs. Cada snapshot funciona como un índice espacial que
indexa periodicamente a posición absoluta de cada obxecto ou o Minimum Bounding
Rectangle (MBR) da súa traxectoria. Serven para acelerar as consultas de rango
espazo-temporal. Implementamos dous tipos de snapshot: baseadas en k2-trees ou
en R-trees.

Con respecto ao log, este representa a traxectoria (secuencia de movementos) de
cada obxecto. É o principal elemento das nosas estruturas, e facilita a resolución
de consultas sobre obxectos e de rango espacio-temporal. Implementáronse catro
estratexias para representar o log nunha forma comprimida: ScdcCT, GraCT,
ContaCT e RCT.

Coa combinación destes dous elementos construímos oito estruturas diferentes
para a representación de traxectorias. Todas elas foron implementadas e avaliadas
experimentalmente, onde reducen ata dúas ordes de magnitude o espazo requirido
polos métodos tradicionais. Ademais, todas elas son competitivas para resolver tanto
consultas de obxectos como espazo-temporais.

xvii

xviii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3

1.2.1 Compact representation of trajectories 3
1.2.2 Solving queries efficiently . 4

1.2.2.1 Object queries . 5
1.2.2.2 Spatio-temporal range queries 5

1.3 Structure of the Thesis . 5

2 Basic Concepts 7
2.1 Information Theory and Data Compression 7

2.1.1 Basic concepts on Information Theory 7
2.1.2 Data Compression: basic concepts 9

2.1.2.1 Classification of compression techniques 9
2.1.3 Encoding Integer Numbers 10
2.1.4 Statistical compressors . 11

2.1.4.1 Huffman codes . 11
2.1.4.2 Canonical Huffman 12
2.1.4.3 Plain Huffman and Tagged Huffman Codes 13
2.1.4.4 End-Tagged Dense Code and (s,c)-Dense Code . . . 15

2.1.5 Dictionary-based compressors 16
2.1.5.1 Lempel-Ziv family 16
2.1.5.2 Grammar Compression: Re-Pair 19

2.2 Compact data structures . 20
2.2.1 Rank and select over bit-vectors 20
2.2.2 Compressed bit-vector representation 22
2.2.3 Partial sums . 22
2.2.4 Compressed tree representations 23

2.2.4.1 Fully Functional Succinct Tree 25
2.2.5 Permutations . 29
2.2.6 Range Minimum Queries . 30

xix

xx Contents

2.2.7 k2-tree . 32
2.2.8 Direct Addressable Codes . 34

3 Previous work 37
3.1 Indexing trajectories . 37

3.1.1 Spatio-temporal indexes based on R-trees 37
3.1.1.1 Multi-version R-tree 39

3.1.2 Grid-based indexes . 41
3.1.3 Other spatio-temporal indexes 41

3.2 Compression of trajectories . 42
3.3 Trajectory compression and indexing 43
3.4 Conclusions . 43

4 Basic structure 45
4.1 Introduction . 45
4.2 Snapshots . 47

4.2.1 Snapshots based on k2-trees 47
4.2.2 Snapshots based on R-trees 48

4.3 Logs . 48
4.3.1 Spiral encoding representation 49
4.3.2 Coordinates representation 50

5 Queries 53
5.1 Types of queries . 53

5.1.1 Object queries . 53
5.1.2 Spatio-temporal range queries 54

5.2 Solving object queries . 55
5.2.1 Object Position . 55
5.2.2 Object Trajectory . 55
5.2.3 Minimum Bounding Rectangle 56

5.3 Solving spatio-temporal range queries 57
5.3.1 Time Slice . 57
5.3.2 Time Interval . 59
5.3.3 K-Nearest Neighbor . 61

6 Snapshots 67
6.1 Snapshot based on k2-tree . 67

6.1.1 Data structure . 67
6.1.2 Queries . 69

6.1.2.1 Object queries: obtaining the absolute position . . . 69
6.1.2.2 Time Slice and Time Interval: choosing the candidates 70
6.1.2.3 K-Nearest Neighbor: prioritizing the objects 71

6.2 Snapshot based on R-tree . 72

Contents xxi

6.2.1 Data structure . 72
6.2.2 Queries . 73

6.2.2.1 Object queries: obtaining the absolute position . . . 73
6.2.2.2 Time Slice and Time Interval: choosing the candidates 74
6.2.2.3 K-Nearest Neighbors: prioritizing the objects 74

7 Logs 77
7.1 ScdcCT . 77

7.1.1 Data structure . 78
7.1.2 Object queries . 78

7.1.2.1 Object Position . 78
7.1.2.2 Object Trajectory 79
7.1.2.3 Minimum Bounding Rectangle 79

7.1.3 Spatio-temporal range queries 80
7.1.3.1 Time Slice . 80
7.1.3.2 Time Interval . 81
7.1.3.3 K-Nearest Neighbors 81

7.2 GraCT . 82
7.2.1 Data structure . 82
7.2.2 Object queries . 84

7.2.2.1 Object Position . 84
7.2.2.2 Object trajectory 85
7.2.2.3 Minimum Bounding Rectangle 86

7.2.3 Spatio-temporal range queries 87
7.2.3.1 Time Slice . 87
7.2.3.2 Time Interval . 87
7.2.3.3 K-Nearest Neighbors 88

7.3 ContaCT . 88
7.3.1 Data structure . 88
7.3.2 Object queries . 90

7.3.2.1 Object Position . 90
7.3.2.2 Object Trajectory 90
7.3.2.3 Minimum Bounding Rectangle 91

7.3.3 Spatio-temporal range queries 93
7.3.3.1 Time Slice . 93
7.3.3.2 Time Interval . 93
7.3.3.3 K-Nearest Neighbors 94

7.4 RCT . 94
7.4.1 Data Structure . 94
7.4.2 Object queries . 95

7.4.2.1 Object Position . 95
7.4.2.2 Object Trajectory 96
7.4.2.3 Minimum Bounding Rectangle 97

xxii Contents

7.4.3 Spatio-temporal range queries 99
7.4.3.1 Time Slice . 99
7.4.3.2 Time Interval . 99
7.4.3.3 K-Nearest Neighbors 99

8 Using real data 101
8.1 Data preprocessing . 101
8.2 Missed data . 102

8.2.1 Events of missed data . 102
8.2.2 Setting marks of missed data 105
8.2.3 The effect of missed data on selecting the candidates 106

9 Experimental evaluation 107
9.1 Datasets . 107
9.2 Compression . 109
9.3 Query times . 112

9.3.1 ObjectPosition . 118
9.3.2 ObjectTrajectory . 118
9.3.3 Minimum Bounding Rectangle 119
9.3.4 TimeSlice S and TimeSlice L 119
9.3.5 TimeInterval S and TimeInterval L 126
9.3.6 K-Nearest Neighbor . 126

9.4 Scalability . 133
9.5 Comparison with a spatio-temporal index 135
9.6 Conclusions . 137

10 Summary of contributions 139
10.1 Moving objects . 139

10.1.1 Motivation . 139
10.1.2 Description . 140
10.1.3 Conclusions . 141
10.1.4 Future work . 142

10.2 Two-Dimensional Block Trees . 142
10.2.1 Motivation . 142
10.2.2 Description . 143
10.2.3 Conclusions . 144
10.2.4 Future work . 144

10.3 Successor and predecessor problem 144
10.3.1 Motivation . 144
10.3.2 Description . 145
10.3.3 Conclusions . 146
10.3.4 Future work . 146

Contents xxiii

A Publications and other research results 147

B Resumen del trabajo realizado 149
B.1 Introducción . 149

B.1.1 Motivación . 150
B.2 Contribuciones . 152
B.3 Conclusiones . 155
B.4 Trabajo futuro . 155

Bibliography 157

xxiv Contents

List of Figures

2.1 Example of Huffman code. 12
2.2 Example of Canonical Huffman. 13
2.3 Comparison of Plain and Tagged Huffman Codes. For legibility we

assume each byte is composed by two bits. 14
2.4 Distribution of (s,c)-Dense Code words. 16
2.5 Example of LZ77. 17
2.6 Example of LZ78. 18
2.7 Example of Re-Pair over a sequence of integers. The most frequent

pairs in each step are colored in gray and the rules created in each
step are stored in R. 19

2.8 Examples of rank and select. 21
2.9 Examples of compressed tree representations. 24
2.10 Example of fwd_search. 27
2.11 Looking for the minimum value between [7, 18]. 28
2.12 Example of Permutation. 30
2.13 Example of Range Minimum Queries. 31
2.14 Example of k2-tree. 33
2.15 Example of Direct Addressable Codes. 35

3.1 Example of R-tree . 38
3.2 Example of MVR-tree . 40

4.1 Example of basic structure and its elements 46
4.2 Example of spiral encoding representation. 49
4.3 Example of log using coordinates representation. 51

5.1 Two examples of expanded region, with distinct differences between
the snapshot and the queried time instant. 58

5.2 Example of the algorithm to solve time interval queries: retrieving
the trajectory (top) and binary search through the MBRs (bottom). 60

xxv

xxvi List of Figures

5.3 Example of minimum and maximum reachable distance on snapshots
based on k2-trees. 63

5.4 Example of KNN query with K=1 and the followed steps. 64

6.1 Example of snapshot and the different operations that supports. The
indexes marked as T : L denote the indexes of concatenating the
bitmaps T and L. 68

6.2 Example of snapshot based on R-tree at time instant th. 73

7.1 Example of a log compressed with ScdcCT 80
7.2 Example of a log compressed with GraCT 83
7.3 Example of a log compressed with ContaCT 89
7.4 Example of a log compressed with ContaCT 92
7.5 Example of a log compressed with RCT 95
7.6 Example of computing the MBR with RCT. 97

8.1 Different approaches to represent the lack of information. 105

9.1 Space requirements of each structure when representing the datasets
of Ships and Planes. 110

9.2 Space requirements of each structure when representing the datasets
of Taxis and Ciconia. 111

9.3 Time performance for ObjectPosition on Ships and Planes in
microseconds. 114

9.4 Time performance for ObjectPosition on Taxis and Ciconia in
microseconds. 115

9.5 Time performance for ObjectTrajectory on Ships and Planes in
microseconds. 116

9.6 Time performance for ObjectTrajectory on Taxis and Ciconia in
microseconds. 117

9.7 Time performance for MBR on Ships and Planes in microseconds.
Notice the log scale in the vertical axis. 120

9.8 Time performance for MBR on Taxis and Ciconia in microseconds.
Notice the log scale in the vertical axis. 121

9.9 Time performance for TimeSlice S on Ships and Planes in microsec-
onds. Notice the log scale in the vertical axis. 122

9.10 Time performance for TimeSlice S on Taxis and Ciconia in
microseconds. Notice the log scale in the vertical axis. 123

9.11 Time performance for TimeSlice L on Ships and Planes in microsec-
onds. Notice the log scale in the vertical axis. 124

9.12 Time performance for TimeSlice L on Taxis and Ciconia in
microseconds. Notice the log scale in the vertical axis. 125

List of Figures xxvii

9.13 Time performance for TimeInterval S on Ships and Planes in
microseconds. Notice the log scale in the vertical axis. 127

9.14 Time performance for TimeInterval S on Taxis and Ciconia in
microseconds. Notice the log scale in the vertical axis. 128

9.15 Time performance for TimeInterval L on Ships and Planes in
microseconds. Notice the log scale in the vertical axis. 129

9.16 Time performance for TimeInterval L on Taxis and Ciconia in
microseconds. Notice the log scale in the vertical axis. 130

9.17 Time performance for Knn on Ships and Planes in microseconds.
Notice the log scale in the vertical axis. 131

9.18 Time performance for Knn on Taxis and Ciconia in microseconds.
Notice the log scale in the vertical axis. 132

9.19 Evolution of query times and compression ratios as the dataset grows.134
9.20 Query time comparison of ContaCT and GraCT that use snapshots

based on R-tree with the MVR-tree, running in main memory. . . . 136
9.21 Growing TimeInterval queries on Ships where GraCT and ContaCT

use snapshots based on k2-tree. 137

xxviii List of Figures

List of Tables

9.1 Datasets and their dimensions. 108

xxix

xxx List of Tables

Chapter 1

Introduction

This chapter summarizes the contents of this thesis, and we introduce the motivation
of the structures designed for representing moving object trajectories. Section 1.1
gives the motivation and a brief introduction to state of the art. Section 1.2
introduces our method to represent trajectories and the common elements between
our structures. Besides, it briefly explains the queries that we are interested in solving
and their classification in two types. Finally, Section 1.3 presents the organization
of this thesis in the different chapters.

1.1 Motivation
More than two decades after it emerged, the field of moving object databases is
still an active area of research. During the last years, the number of devices that
track information about the position of different kinds of objects has increased
considerably. For example, nowadays, we can collect a large amount of data from
the GPS positions of large sets of cars, ships, planes, smartphones, and wearable
devices. Consequently, in the last years, the size of the datasets of moving object
trajectories has sharply increased.

Those datasets open up a wealth of new possibilities to obtain knowledge from
moving object trajectories, which can be useful in different types of applications
like traffic management, analyzing human movement, tracking animal behavior,
security and surveillance, military battlefield, and others [GLW08]. Due to the
sharply increasing sizes of these datasets, the treatment and storing of moving object
data becomes a challenge.

A trajectory, which does not consider a road network, is a path followed by a
moving object through space as a function of time. Due to storage requirements and
the limitations of the devices used to acquire the object positions, the continuous
movement of an object is usually approximated with discrete samples of spatio-

1

2 Chapter 1. Introduction

temporal location points: the more samples taken, the more accurate the trajectory.
However, high sampling rates result in large amounts of data, which increases storage,
transmission, and processing needs. Even when storage, network, and processing
capacity grows rapidly, the collected data grows even faster, and thus it is necessary
to aim for reduced trajectory representations [ZZ11].

One traditional way to store trajectories is to use some disk storage, such as
conventional record-based files. However, accessing to disk is a costly operation that
difficulties querying and handling the data in an efficient way. The performance of
accessing the data can be improved with one or more indexes to speed up queries
over the stored data. This approach holds the bulk of the data on disk, while the
index structures reside in main memory, at least partially. Other methods combine
the data and the index in a single structure, though part still resides on disk. Even
then, the handling and querying the data is not efficient. Thus new techniques for
storage and efficient processing are necessary [ZZ11]. For this reason this thesis
proposes new data structures that compress the trajectory representation and avoids
access to disk.

With the increasing gap in the access time of main memory versus disk,
compressing the trajectories in order to query them in main memory is an attractive
option. Traditional methods for compressing trajectories include line generalization
(or simplification) techniques, keeping only some of the trajectory points, and
discarding the rest. This approach results in some loss of information on the real
trajectory. A lossless strategy to obtain compression is the use of delta compression,
where each new position is stored as the difference with the previous one. This
idea exploits the fact that consecutive positions are expected to be closer to each
other, and that smaller numbers can be stored using fewer bits. Extracting a whole
trajectory with this arrangement is easy. Efficiently accessing the position of an
object at a given time, instead, requires sampling some absolute positions at regular
time intervals, which introduces a space/time tradeoff. Some recent proposals
following this trend [CMWM10, WZX+14] build on delta compression, coupled with
an encoding that favors small numbers. The optimal codes for delta compression
can be obtained with a statistical encoder that exploits frequency bias (typically,
smaller numbers are more frequent).

Therefore, the underlying queries that a system managing collections of
trajectories should answer are: recovering the position of an object at a specific
time instant and recovering information about a part of its path during some time
(object queries). They are useful to obtain the trajectory of a taxi along the time or
its position at a desired time instant. However, some applications need to support
other kind of queries. The most classical queries are range spatio-temporal queries,
which return those objects that hold some spatio-temporal constraints (e.g., objects
within a region during a period o time, objects closest to a point at a specific time
instant). Following with the example of taxis, they are useful to locate the closest
taxi to a position or identify the taxis within a spatial area.

1.2. Contributions 3

Consequently, another issue is how to index the trajectory data to answer range
spatio-temporal queries, which are not just retrieving a whole trajectory or finding
the position of an object at a given time instant. Many indexes have been proposed
since the 90’s to handle a rich set of queries on trajectory data. Most indexes were
modifications of the R-tree [Gut84], which augmented another dimension to deal
with the time. None of those works, however, compresses the data. Instead, they
are designed to work on disk, which is much slower than the main memory.

A new family of data structures called compact data structures combines, in a
single representation, a compressed representation of the data with the mechanisms
that provide direct access to any given datum, or even complex queries [Nav16].
These structures keep the data compressed all the time, without ever needing to
decompress it. In addition to the obvious space savings, compact data structures
allow more massive datasets to be managed in main memory, much faster processing
of datasets that can fit entirely in main memory thanks to compression, and improved
performance of distributed deployments.

In many cases, the compact data structure is coupled with indexes that speed
up the retrieval of information, enabling query times comparable to, and often
better than, traditional setups. The mechanism by which data is simultaneously
compressed and indexed is commonly known as self-indexing and is particularly
useful in situations where storage space is a problem.

For this reasons, this thesis aims to study and design new compact data structures
and algorithms to represent collections of trajectories of objects that are moving
in the space without any constraint and without assuming the existence of an
underlying network. Our methods show excellent performance in space/time in
comparison with classical spatio-temporal indexes.

1.2 Contributions

1.2.1 Compact representation of trajectories
This thesis focuses on a central problem, storing trajectories of objects moving freely
in the space in a compact representation, and efficiently retrieving and querying their
data. Therefore, our contribution consists of the design, analysis, implementation,
and experimental evaluation of different compact data structures. All of them have
particular properties, thus it makes necessary to design different algorithms to solve
the proposed query types (object and range).

All of our structures are composed of two elements: snapshots and logs. The
snapshots store spatial information of the objects at regular time instants and, the
log stores the relative movements of each object, where each relative movement
corresponds with the displacement of the object from one time instant to the next
one.

We propose different data structures for snapshots and logs. For each combination

4 Chapter 1. Introduction

of those elements, we implement the corresponding algorithms. In the case of the
snapshots we propose two structures:

• Snapshots based on k2-trees, which represents the areas where there are objects
by using a k2-tree. With the help of an additional array, we can discern the
objects within each area. The compression of that kind of snapshot exploits
the clustering and empty areas of objects.

• Snapshots based on R-trees, each snapshot uses a compressed version of an
R-tree, a classical spatial index. It stores, for each individual object, the
rectangular area that contains the trajectory of the object along a specific
interval of time.

Concerning the log, we design four different techniques:

• ScdcCT exploits the fact that short movements are more frequent than large
displacements by compressing the log with (s, c)-Dense Codes [BFNP07], that
has low redundancy over the zero-order empirical entropy of the sequence.

• GraCT considers the log as a sequence of integers, and it is compressed
with a grammar-based compressor called Re-Pair [LM00] that exploits the
repetitiveness of patterns between all the objects.

• ContaCT is based on a structure for partial-sums, and its primary goal is to
compute the position at a time instant in constant time at the cost of using
additional space with respect to the previous log structures.

• RCT was designed for the compression of highly repetitive trajectories and tries
to represent all of them with relative compression, that is, all the trajectories
are composed of parts from an artificial trajectory, which contains the most
common movements of the objects.

As we developed two data structures for snapshots and four for logs, we finally
have eight different techniques. For each of them, we evaluate its compression
effectiveness. All our structures obtain a compression ratio of around 5%–25%,
with respect to to the minimum binary representation of the trajectory data, as we
describe in Chapter 9.

1.2.2 Solving queries efficiently
The eight structures presented in this thesis can solve different queries efficiently.
As we explain above, we can distinguish two kinds of queries: object queries and
spatio-temporal range queries. The first type of queries is focused on retrieving
information about the location or trajectory of a specific object. Instead, the second
type of queries compute the objects within a region during an interval of time. Below,
we present more details about the implemented queries.

1.3. Structure of the Thesis 5

1.2.2.1 Object queries

There are three different ways to obtain information about the location or trajectory
of an object:

• Search Object: given an object identifier id and a time instant tq, this query
computes the position of that object at the queried time instant tq.

• Search Trajectory: like the previous query, it calculates the consecutive
positions of an object during an interval of time [ts, te]. That is, it produces
the sequence of positions traversed by the object during the queried interval
of time.

• Minimum Bounding Rectangle (MBR): given a range of time [ts, te] and
an object, it computes the smallest rectangle that contains the trajectory of
the object from ts to te.

1.2.2.2 Spatio-temporal range queries

The result of this type of queries is a list of objects. Unlike in object queries, where
the object is always a parameter of the query. The first two spatio-temporal range
queries obtain the objects within a region, and the last one identifies those that are
the closest ones with respect to a point.

• Time Slice: this query returns those objects within a given region rq at a
given time instant tq.

• Time Interval: it is an extension of time slice that expands tq to an interval
of time [ts, te]. Hence, it returns those objects within rq in any time instant
belonging to [ts, te].

• K-Nearest Neighbors: given a point pq in the space and a time instant tq,
it returns the k closest objects to pq at tq.

1.3 Structure of the Thesis
The structure of the thesis is as follows. First, in Chapter 2, we present some basic
concepts about data compression and compact data structures. In Chapter 3, we
show the previous work in the field of moving objects. After that we explain our
contributions with the following chapters:

• Chapter 4 introduces the general idea of our contributions, that is, the method
common to all of our structures and its elements: snapshots and logs.

6 Chapter 1. Introduction

• Chapter 5 defines the components of our structures: snapshots and logs; and a
set of operations that can be solved in each one of those components. Several
algorithms to solve queries about trajectories, spatio-temporal queries, and
retrieving the closest objects to a point are described.

• Chapter 6 presents the two different kinds of snapshots and the algorithms to
retrieve the information stored within them, which are the basis to solve some
queries.

• Chapter 7 describes the four different structures for the representation. This
chapter also presents the algorithms that the logs need to support the queries.

• Chapter 8 explains how to represent real trajectories by using our structures.
It also describes the necessary modifications of our structures in order to
represent the missed information that suffer real datasets.

• Chapter 9 presents the experimental evaluation of our eight structures over
different datasets, varying different parameters. Besides, their scalability is
studied, and they are compared with a classical spatio-temporal index.

• Chapter 10 discusses the conclusions and some future works for our
contribution.

Chapter 2

Basic Concepts

This thesis proposes new compact data structures for the representation of extensive
collections of trajectories of objects that are moving freely in the space. In this
chapter, we introduce concepts of different fields for a better understanding of our
contributions. In Section 2.1, we present several basic notions of information theory
and data compression. Section 2.2 introduces several compact data structures used
in this thesis.

2.1 Information Theory and Data Compression

2.1.1 Basic concepts on Information Theory
Information Theory is a field of Computer Science that focuses on studying the
quantification of information to transmit messages through communication channels
efficiently. The bases of Information Theory were proposed by Shannon [Sha48],
providing many useful concepts. In that work, one of the most relevant ideas for
this thesis is how to compute the minimum amount of space required to encode a
message. This allows us to determine the repetitiveness of the message and discern
which techniques can be applied over these data.

Assume that we have an infinite source of information that emits symbols x ∈ X
with a probability p(x). This can be mathematically modeled as a discrete random
variable X that takes values in X with probability mass function p(x) = Pr{X = x}.
The amount of information associated with an outcome x ∈ X is defined by the
formula IX(x) = lg 1

p(x) .1 In other words, an outcome offers more information than
one with a higher probability. For example, whether p(x) = 1 there is no information,
because the source is emitting x continuously as it is expected by its probability.

1Note that we denote log2 as lg

7

8 Chapter 2. Basic Concepts

Related to this concept of information is the entropy. Shannon[Sha48] defined it
as a function H(X) or H that measures the amount of information or uncertainty
that is expected from a random variable X, and can be computed as:

H(X) =
∑
x∈X

p(x) lg 1
p(x) (2.1)

Whether the information is not proportioned by an infinite source, Shannon
defines a notion of entropy for finite sequences called zero-order empirical entropy.
Let us define a sequence S[1, n] over an alphabet Σ = [1 . . . σ], where each symbol s
appears ns times in S. The zero-order empirical entropy of S is computed as:

H0(S) =
∑

1≤s≤σ

ns
n

lg n

ns
. (2.2)

It measures the uncertainty about S by considering only the probability of
occurrence of each symbol. In most of the cases, encoding S with H0 bits per symbol
is good enough.

An encoding function C for a random variable X maps every symbol in X to D∗,
where D is an alphabet of cardinality D and D∗ is the set of finite-length strings
composed by symbols from D. Therefore, any symbol x ∈ X can be encoded by
the encoding or code C and the result codeword is C(x), which is composed by
target symbols from the target alphabet D. We can distinguish two types of encoding
depending on the lengths of the codewords: fixed-length and variable-length. In the
first case, every codeword has the same length: |C(x)| = |C(y)| ∀ x, y ∈ X, where
|x| denotes the length of x. Instead, in variable-length codes, each symbol can be
encoded with different lengths. Notice that two different symbols x 6= y x, y ∈ X
are univocally decodable when C(x) 6= C(y), otherwise decoding a codeword could
be ambiguous.

A direct extension of C is C∗, which transforms a finite string of symbols
message into a finite string of target symbols. The encoded string can be computed
by appending the individual codewords of each source symbol: C∗(x1, x2, . . . , xn) =
C(x1)C(x2) . . . C(xn). The original message can be recovered by decoding each
codeword. However, for some encoding schemes, detecting each codeword’s end can
be difficult and need to read a large portion of the message. Those encodings which
allow decoding a codeword C(x) after reading its last bit are known as instantaneous
or prefix-free encodings. Formally, an encoding scheme is prefix-free if there is no
code C(x) that is a prefix of other code C(y). It is important to notice that if
C is prefix-free, C∗(x1, x2, . . . , xn) is univocally decodable. Also, for all univocally
decodable encoding, we can find a prefix-free code with the same average length,
hence both occupies the same but the prefix-free is easier to decode. Those codes
which are prefix-free and get the minimum average length are known as optimal
codes. A lower bound on average length can be computed by the entropy, given the
source symbols and their probabilities.

2.1. Information Theory and Data Compression 9

High-order models take into account a context of a fixed-size k, which is the k
preceding values of a symbol x. Those models are known as k-order models, and
they measure the information of a symbol by considering the k preceding symbols.
For example, in natural language, if one knows the previous words, it is easier to
guess the next word. Based on this idea, Shannon proposes the k-order empirical
entropy, as:

Hk(S) =
∑

C=s1...sk

|Sc|
n
H0(Sc). (2.3)

being SC a string composed by joining the symbols that follows each occurrence
of the context C = s1 . . . sk in S.

2.1.2 Data Compression: basic concepts
Facing the necessity to represent large datasets in less space, emerges the data
compression, which tries to improve their manipulation, storage, and transmission.

2.1.2.1 Classification of compression techniques

Compression techniques transform an input message into a compressed version by a
phase of encoding. The original message can be recovered from the encoded version
by a stage of decoding. Depending on the result of decoding the encoded message,
we can classify compression techniques into two categories.

• Lossy compression techniques, after performing the encoding process, the
encoded message is not able to retrieve the original message. In that phase,
some information of the input message is lost, which implies that the decoded
result will be very similar to the original message but not the same. Lossy
compression is advantageous in areas where an approximate version of the
original message is enough. For example, there are widely used to compress
video or images, where human eyes cannot detect those small differences.

• Lossless compression techniques, from the encoded message, we can
retrieve the original one. Some fields that do not allow the loss of any
information. Hence lossy compression techniques cannot be used. For example,
in text compression, these techniques are largely used, because if the message
undergoes any modification may become meaningless. In this thesis, we focus
only on this kind of techniques.

Another way of categorizing the compression techniques is according to how the
encoding process is realized. We can distinguish two families:

• Statistical techniques assign codewords to the source symbols according
to their frequency. Shorter codewords will correspond to the more frequent

10 Chapter 2. Basic Concepts

source symbols. Some well-known statistical techniques are Huffman codes
[Huf52], arithmetics codes [Abr63, WNC87, MNW95], or the family of Dense
Codes [dMNZBY00, BFNP05, BFNP10].

• Dictionary techniques, by considering the input as a string of source
symbols, these techniques create a dictionary of substrings and replace their
appearances in the source file with pointers to their corresponding entry in
the dictionary. Those techniques reduce the space by representing several
symbols by one codeword. The Lempel-Ziv family[ZL77, ZL78, KPZ10] are
the most famous dictionary techniques. By using a sliding window of fixed-
size, they replace substrings by pointers to previous occurrences of identical
substrings. Also, there is a more structured way of compression based on
dictionaries, namely grammar compression, which is more suitable for random
access, pattern matching, etc. Those techniques compress a sequence S into a
single sequence C and a context-free grammar G. With C and G, the original
sequence S can be obtained without losing information. One of the most
well-known grammar-based compressors is Re-Pair [LM00].

2.1.3 Encoding Integer Numbers
We can classify the different methods for encoding integer numbers into two groups:
small and large integers. The most well-known techniques for representing small
integers are unary-codes, λ-codes, and δ-codes:

• Unary codes are a variable-length encoding for extremely small integers.
Basically, the encoding represents an integer x as 0-bits repeated x− 1 times
followed by a 1-bit, that is, unary(x) = 0x−11. Therefore, |unary(x)| = x,
and as a consequence the number 0 cannot be represented.

• Gamma codes (γ) are only convenient when x is small. γ-code encodes
the length of x in unary code followed by the number x without its most
significant bit. That is, γ(x) = unary(|x|)[x]|x|−1, where [x]|x|−1 is the binary
representation without the highest bit.

• Delta-codes (δ) are useful when x is too large for being represented with
γ-codes. It is very similar to γ-codes, and it is defined as: δ(x) = γ(|x|)[x]|x|−1.
That is, the length of x is encoded with γ-codes instead of unary codes.

On the other hand, when the integer is too large, there are some more efficient
techniques than δ-codes. These techniques aim to improve space efficiency and fast
decoding. An example of these techniques is VByte-codes [WZ99].

The aim of VByte-codes is not only to be space-efficient but also to obtain fast
decoding. In this case, it speeds up the decoding phase by obtaining a byte-aligned
variable-length solution. It means that each value x is split into byte-length chunks.
Therefore, VByte-codes divide x into chunks of 7 bits. Each value is stored in the

2.1. Information Theory and Data Compression 11

lowest bits of a chunk. The highest bit of the byte specifies with 1-bit or 0-bit, when
the byte stores the binary representation of the last chunk or does not, respectively.
That is, V Byte(x) = b1b2 . . . bk where k = d|x|/7e and bi stores the bits of x at
positions [7× i, . . . 7× (i+ 1)− 1] padding to the left with 0-bit or 1-bit if i < k or
i = k, respectively. This code can be extended to a string of integers X = x1x2 . . . xn
as V Byte∗(X) = V Byte(x1)V Byte(x2) . . . V Byte(xn).

2.1.4 Statistical compressors
2.1.4.1 Huffman codes

Huffman proposed an algorithm [Huf52] that builds a prefix-free code of minimum
average length. These codes are known as Huffman codes. Its main idea is to assign
codewords whose length is proportional to each symbol’s frequency by associating
short codewords to symbols with high probability and large codewords to those with
less probability. With this approach, the length of the output stream of bits for a
random variable X is between nH(S) and nH(S) + 1, that is, it requires at most
one extra bit per symbol with respect to the entropy.

To obtain the Huffman codes, during the encoding, the algorithm builds a tree
that contains prefix-free codes for each symbol. Classical Huffman tree is a full
binary tree, where each node can contain zero or two child nodes, and each leaf
corresponds to a codeword. Every node is labeled with a weight that represents the
sum of the probabilities of its children leaves. Their position in the tree depends on
that label; a higher level node is heavier than one node at a lower level.

The Huffman algorithm starts with a list containing n leaf nodes, one per source
symbol, whose labels correspond to the probability of the symbol. That list is sorted
by probability. The algorithm takes the two nodes with the smallest probability
and creates their parent node. The parent stores the sum of the probabilities of its
children. Then, the two smallest nodes are removed from the list, and their parent
is added. The process is repeated until there is just one node in the list. This last
node is the root of the Huffman tree, and thus, its label is 1. Whether the nodes
are sorted by probability, building a Huffman tree takes O(n) time [MNW95]. After
building the tree, each codeword is obtained with a top down traversal from the
root until the leaf that contains the encoded symbol. The binary representation of
the codeword depends on the path from the root to the leaf. Each branch on the
left corresponds with a 0-bit, otherwise adds a 1-bit.

For example, in Figure 2.1, the left half shows the construction of the Classical
Huffman tree for an alphabet {a, b, c, d, e}, and the right half illustrates the labeling
and assignment of the codewords for each symbol. During the construction of the
tree, the list of symbols is kept sorted by their probabilities. In Step 3, we could
choose to join a and b in a subtree with frequency 0.65. However, we have chosen
b and its right subtree. Notice that, depending on the selected alternative, the
Huffman code changes, which is not a rare case. Usually, several Huffman trees can

12 Chapter 2. Basic Concepts

a
0.35

b
0.30

c
0.15

d
0.10

e
0.10

a
0.35

b
0.30

c
0.15

e
0.10

d
0.10

0.20

a
0.35

b
0.30

e
0.10

d
0.10

0.20

0.35

c
0.15

a
0.35

b
0.30

e
0.10

d
0.10

0.20

0.35

0.65

c
0.15

a
0.35

1

b
0.30

e
0.10

d
0.10

0.20

0.35

0.65

c
0.15

a
0.35

1

b
0.30

e
0.10

d
0.10

0.20

0.35

0.65

c
0.15

0 1

0

0

1

1

0 1

Step 1

Step 2

Step 3

Step 4

Step 5

Input symbol Codeword

a 0

b 10

c 111

d 1100

e 1101

Labels

Codewords

Building the Huffman tree

Figure 2.1: Example of Huffman code.

be built over the same sequence. Consequently, to the codewords of a message, the
compressed file needs to include information about the alphabet and the shape of
the Huffman tree; otherwise, the message could not be decompressed. During the
decompression stage, the algorithm reads each bit and traverses the Huffman tree
until reaching a leaf. Whether the algorithm is in an internal node and the read bit
is a 0-bit, the algorithm follows the left branch, otherwise, the right branch. When
the traversal reaches a leaf, a source symbol is obtained, and it is output. Then, the
traversal starts again from the root.

2.1.4.2 Canonical Huffman

Given a set of source symbols and their probabilities, different Huffman trees can
be built, and thus different codes can be generated. Although Huffman’s algorithm
computes the codewords for each source symbol, only their lengths are relevant.
This means that once those lengths are known, codewords can be assigned in several
ways. Among all of them, the canonical Huffman code [SK64] is the most used since
its shape requires less space to be stored.

The canonical Huffman tree is built from left to right in increasing order. There

2.1. Information Theory and Data Compression 13

a
0.35

1

b
0.30

e
0.10

d
0.10

0.20

0.35

0.65

c
0.15

0 1

0

0

1

1

0 1

Input symbol Codeword

a 0

b 10

c 110

d 1110

e 1111

Labels

Codewords

Figure 2.2: Example of Canonical Huffman.

is at least one leaf per level, and they are placed in the first position available from
left to right. The following properties hold:

• Codewords are assigned in increasing length order with the lengths of Huffman’s
algorithm.

• Codewords of a given length are consecutive binary numbers.

• The first codeword cl of length l is related to the last codeword of length l − 1
by cl = 2(cl − 1 + 1).

The information about the shape of the canonical Huffman tree can be compactly
represented by storing only the lengths of the codewords. Therefore, the compressed
file requires O(h) integers, where h is the height, to represent the shape of the
tree. Additional space is necessary to store the source alphabet, sorted by frequency.
Figure 2.2 shows the Canonical Huffman codes for the example of Figure 2.1.

2.1.4.3 Plain Huffman and Tagged Huffman Codes

When using Huffman, if the source alphabet is composed of characters and the target
alphabet are bits, the compression ratio and the compression/decompression speed

14 Chapter 2. Basic Concepts

Input: to love and to be loved

word codeword

to 00

love 01

and 10

be 11 00

loved 11 01

word codeword

to 10

love 11 00

and 11 01 00

be 11 01 01 00

loved 11 01 01 01

00 01 10
to love and

00
to

1100
be

1101
loved

10 1100 110100
to love and

10
to

11010100
be

11010101
loved

Search: “to”

False matching

Figure 2.3: Comparison of Plain and Tagged Huffman Codes. For legibility
we assume each byte is composed by two bits.

are poor. Plain Huffman and Tagged Huffman are the word-based byte-oriented
variants of the Huffman code [dMNZBY00]. By using bytes instead of bits as
target alphabet, since it avoids bit manipulations, the algorithm provides faster
decompression but pays more space with respect to a bit-oriented approach. Another
feature of these variants is that they allow searching for a pattern directly in the
compressed text faster than searching the uncompressed text. Plain Huffman Code
obtains better compression ratios than Tagged Huffman, but the Plain approach does
not provide random access, that is, Tagged Huffman can decompress any portion of
the text and start a search at any position [BM77, NR02]. If we use Plain Huffman
and start a search in a position different from the beginning of the text, a false
match can occur, as shown in Figure 2.3. However, Tagged Huffman Codes avoid
that problem by marking the first byte of a codeword: the first bit of each byte is a
flag, set to 1 when it corresponds with the first bit of the codeword. The remaining
7 bits are used for the Huffman code. Since only 7 bits are dedicated to coding,
Tagged Huffman needs more space than Plain Huffman to encode a given message.
However searches are faster, and it also allows random decompression.

2.1. Information Theory and Data Compression 15

2.1.4.4 End-Tagged Dense Code and (s,c)-Dense Code

In state of the art, some proposals improve the performance of Tagged Huffman. The
first work proposed was End-Tagged Dense Code [BINP03, BFNP07] that achieves
similar compression ratios to Plain Huffman but keeps the performance capabilities
of Tagged Huffman.

The main difference between ETDC and Tagged Huffman is that, instead of
marking the first byte of the codeword, it marks the codeword’s last byte. Hence,
ETDC reserves the first bit of each byte as a flag that indicates whether the byte
is the last one of its codeword. Although the difference is quite simple, there is a
positive implication: the code is a prefix code regardless of the content of the other
7 bits. Since it does not need to use Huffman code for the remaining bits, ETDC
can code all possible combinations of those 7 bits, thus producing a dense encoding.
That is the key to obtain compression ratios close to Plain Huffman and improve
those obtained by Tagged Huffman.

Assuming our target symbols require b bits (b = 8 in the byte-oriented version)
and given source symbols sorted by decreasing frequencies, each codeword is a
sequence of target symbols representing digits in the range [0, 2b−1 − 1] except the
last symbol whose value is in the range [2b−1, 2b − 1]. The process of assigning these
codewords can be run sequentially, making the computation of the codewords simpler
and faster than Huffman. It is important to notice that the codewords are assigned
depending on the rank in the sorted vocabulary. Therefore, the decompressor only
needs the non-decreasingly sorted vocabulary to obtain the original message.

(s,c)-Dense Code is a generalization of ETDC. By using codewords with b = 8,
ETDC uses the values in the range [0, 127] for those bytes that are not the end of
a codeword, called continuers (c), and the values in [128, 255] for the last symbol
of the codewords, called stoppers (s). Notice that the number of stoppers and
continuers are identical, this proportion could not be optimal for a given word
frequency distribution. In (s,c)-Dense Code, any s + c = 2b can be used. Thus
the values in [0, s − 1] are the stoppers and those bytes in [s, 2b − 1] are used as
continuers. The assignment of the codewords and their distribution in bytes are
shown in Figure 2.4. For a given word frequency distribution, the optimal s and c
values can be computed [BFNP07] to maximize compression ratios. Given a sorted
word vocabulary in decreasing frequency, we can describe the encoding process as
follows:

• One-byte codewords [0, s− 1] are given to the first s words in the vocabulary.

• Two-byte codewords are assigned to the words in the sorted vocabulary in the
range [s, s+ sc− 1]. The first byte has a continuer value [s, s+ c− 1] and the
last a stopper value in the range [0, s− 1].

• By the function F(i) =
∑i
j=0 sc

j−1 for any i > 0 and assuming F(0) = 0. Any
k-byte codeword is assigned to the range of the vocabulary [F(k−1),F(k)−1],

16 Chapter 2. Basic Concepts

Word rank Codeword bytes words

0

1

2

…

s - 1

 [0]

 [1]

 [2]

 …

 [s-1]

1

1

1

…

 1

s

s

s + 1

s + 2

…

s + s - 1

s + s

s + s + 1

…

s + sc - 1

 [s][0]

 [s][1]

 [s][2]

 …

 [s][s-1]

 [s+1][0]

 [s+1][1]

 …

 [s+c-1][s-1]

2

2

2

…

 2

2

2

…

2

sc

s + sc

s + sc + 1

…

s + sc + sc - 1

s + sc + sc

…

s + sc + sc2 -1

 [s][s][0]

 [s][s][1]

 …

 [s][s+c-1][s-1]

 [s+1][s][0]

 …

 [s+c-1][s+c-1][s-1]

3

3

…

3

3

…

3

sc2

… … … …

Figure 2.4: Distribution of (s,c)-Dense Code words.

by using k − 1 continuers and one stopper.

In that work, the authors propose an algorithm to encode and decode a word,
given its position in the sorted vocabulary. For instance, given the i-th ranked word
x = i − sck−1−s

c−1 , the first k − 1 values of the codeword are the representation of
number bx/sc in base c, adding then s to each digit, and the last digit is x mod s.

2.1.5 Dictionary-based compressors
2.1.5.1 Lempel-Ziv family

The Lempel-Ziv family includes the most well-known dictionary-based techniques.
Compressors as p7zip, gzip and compressor are implementations based on variants of
this family. All of them are derived from the first basic methods: LZ77 and LZ78.

LZ77. LZ77 [ZL77] was the first proposed method in the Lempel-Ziv family. The
main idea of LZ77 is to build a dictionary on a sequence S of an alphabet σ from the
previously processed substring. For this purpose, the LZ77 has a fixed-size sliding
window holding the m last processed symbols. The algorithm traverses the sequence

2.1. Information Theory and Data Compression 17

a a b a b b a b a a b b

a a b a b b a b a a b b

a a b a b b a b a a b b

a a b a b b a b a a b b

a a b a b b a b a a b b

Step 1

Step 2

Step 3

Step 4

Step 5

<0, 0, a>

<1, 1, b>

<2, 2, b>

<3, 3, a>

<3, 2, b>

a a b a b b a b a a b b
sliding window triplet next character

current positionoffset

<3, 2, b>
|triplet|offset next character

Step 5 in detail

Output

Figure 2.5: Example of LZ77.

and starts with an empty window. In each step, the algorithm looks for the maximal
subsequence contained in the window that matches with the next input symbols.
Note that the next symbol starts one position after the end of the window. Assuming
that the matched subsequence is s = s1s2 . . . sl and the following symbol is c, LZ77
encodes that substring as a triple 〈p, l, c〉, where the p value denotes the position
of the occurrence of s in the window as a backward offset, and l is the length of s.
Once the triplet is computed, the window moves l + 1 positions forward. Whether
there is no match, that is the subsequence is empty s = E , the encoded triplet is
〈0, 0, c〉 and the sliding window moves one position forward. Figure 2.5 shows an
example of LZ77 compression for aababbabaabb. Notice that the fixed-size sliding
window is colored in gray.

During the decompression, the window keeps the last decoded symbols. Hence
for a given triplet 〈p, l, c〉, the decoder only needs to copy the l symbols starting at
position p before the last decoded symbol, and append to that sequence the symbol
c. As a consequence, decompression turns out very fast.

The compression of LZ77 depends on the size of the window. The greater is
that window, the higher the probability to encode larger substrings. Since the
bits needed to represent p grows as the size of the window increases, in most of
the implementations the window size is set to 4, 096 bytes. Usually, a triplet for
compressing text can be encoded in 8 bytes: 12 bits for p, 4 bits for l, and 8 bits for
the character c. Furthermore, the minimum size of the window must be considered,
in order to avoid cases where the triplet occupies more that the substring.

There are other variants of this family based on LZ77, for instance, LZMA
(Lempel-Ziv-Markov Chain Algorithm) is one of them. Usually, it builds a dictionary
of size 1GB, although it can be limited up to 4GB. As a consequence of this huge
dictionary, implementations of LZMA like p7zip can obtain better compression
ratios than those based on LZ77 like gzip. Instead, compression and decompression
require more memory and time.

18 Chapter 2. Basic Concepts

Step Input Output Dictionary

1 a (0, a) e1=“a”

2 ab (1, b) e2=“ab”

3 abb (2, b) e3=“abb”

4 aba (2, a) e4=“aba”

5 abb (3, 𝜀)

1

2

3 4

a

a

b

b

Trie structure

aababbabaabbInput:

Figure 2.6: Example of LZ78.

LZ78. The LZ78 [ZL78] compressor replaces the sliding window by a dictionary
that stores all the processed subsequences. The algorithm reads one symbol at
a time and locates it in the dictionary. If the symbol is stored in the dictionary,
the algorithm reads the next symbol and concatenates it with the previous one,
creating a subsequence of size two. Again, the algorithm continues appending the
read symbols until the subsequence is not in the dictionary. In that case, we have
found the longest matching entry (ek). The subsequence is encoded as the pair
〈k, c〉, where k is the index of the dictionary entry, and c is the symbol that follows
ek in the input. A new entry that corresponds with ek · c is added to the dictionary.
Those steps are repeated until processing the whole sequence.

To locate the dictionary’s entries efficiently, the algorithm builds a trie on the
dictionary. That is, there is a tree where each node points to a dictionary entry ei,
representing the subsequence obtained by appending the symbols in the path from
the root to its corresponding node ni. Processing the text, for each read symbol, we
traverse the tree downwards. We found the longest match (ek), when no edge allows
moving to the next symbol of the sequence. After finding ek, the dictionary adds a
new entry and updates the trie. An example of LZ78 and its trie, with the previous
string used in LZ77 (aababbabaabb), is shown in Figure 2.6.

Although LZ78 compression is faster than LZ77, its decompression speed is slower
than LZ77. A variant of LZ78 is LZZW [Wel84], which the base of GIF image format
and the Unix compress program. The main difference is that LZW only points to
entries in the dictionary, it does not add the extra symbol. For that, LZW initializes
the dictionary and trie with the alphabet symbols. As a consequence, LZW gets
better compression ratios than LZ78.
RLZ. Known as Relative Lempel-Ziv [KPZ10], this technique is largely used for
compression of highly-repetitive sequences. The main difference with the previous
approaches is that it builds a reference, in other words, it creates a static window

2.1. Information Theory and Data Compression 19

1 2 1 2 3 4 1 2 3 4 2 3

A A 3 4 A 3 4 2 3

A A B A B 2 3

A 1,2

B 3,4

D A,B A D D 2 3

R

C:

I:

I:

I:

Step 1

Step 2

Step 3 1 2

A

3 4

B

D

Grammar parse tree

Figure 2.7: Example of Re-Pair over a sequence of integers. The most
frequent pairs in each step are colored in gray and the rules created in each
step are stored in R.

whose information is highly representative of the sequence to compress. Considering
that the sequence S can be composed of several sub-sequences, that reference can
be real or artificial. Whether one of those sub-sequences is chosen as reference, the
reference is real. On the other hand, when the reference is built by joining parts
of those sub-sequences, it is called artificial. One of the most powerful methods in
DNA for building an artificial reference is based on taking uniform samples of the
sub-sequences and join them in the reference [LPMW16].

After choosing a representative reference, the sequence is compressed as a list of
pairs 〈p, l〉 computed with the LZ77 parse, but instead of making reference to the
sliding-window, they point to the reference. Notice that, RLZ uses pairs instead of
triples, because it does not store the symbol that mismatches the sequence. Unlike
the previous techniques, RLZ allows random access to any part of the data, without
decompressing the whole previous information.

2.1.5.2 Grammar Compression: Re-Pair

Along the time, several techniques [NMW97a, LM00, KYNC00, YK00, KY00, NM96,
NMW97b, Bry86] propose a hierarchical way for compressing text, well known as
grammar compression. This kind of compression gives a more structured way of
compression, which is more suitable for random access, pattern matching, etc. Those
techniques compress the sequence S into a single sequence C and a context-free
grammar G. With C and G, the original sequence S can be obtained without losing
information. Re-Pair [LM00] is one of the most powerful grammar-based compression
techniques since it was used during the development of this thesis, we explain it in
more detail.

Re-Pair. Re-Pair [LM00] is a grammar-based compression method. Given a
sequence of source symbols I (called terminals), the method proceeds as follows: (1)
it obtains the most frequent pair of source symbols ab in I; (2) it adds rule s→ ab

20 Chapter 2. Basic Concepts

to a dictionary R, where s is a new symbol not present in I (called a nonterminal);
(3) every non-overlapping occurrence of ab in I is replaced by s, and (4) steps 1-3
are repeated until all pairs in I appear only once (see Figure 2.7). The resulting
sequence after compressing I is called C. Every symbol in C represents a phrase (a
sequence of one or more of the source symbols in I).

Figure 2.7 shows an example where Re-Pair is applied over a sequence of integers.
After detecting that the most frequent pair of I is 〈1, 2〉, a new nonterminal is
created (A→ 1, 2). The nonterminal A replaces every pair 〈1, 2〉. As a consequence,
I is updated to the sequence of Step 1. This process is recursively repeated. The
next step finds the most frequent pair 〈3, 4〉, and replaces it by the nonterminal B.
After replacing the pair 〈A,B〉 with D, there is no repeated pair in I. Hence, the
algorithm stops, and I turns into the final sequence of Re-Pair, renamed as C. The
result of Re-Pair is composed of C and the dictionary R.

If the length of the represented phrase is 1, then the phrase consists of an original
(terminal) symbol; otherwise, the phrase is represented by a new (nonterminal)
symbol. We consider that each nonterminal of C contains a grammar parse tree,
that is, a tree whose root corresponds with the nonterminal symbol and its children
are the right part of its rule. When those nodes are nonterminals, their subtrees
are recursively obtained. For example, in the right part of Figure 2.7, we show the
grammar parse tree of D. Re-Pair can be implemented in linear time [LM00], and a
phrase may be recursively expanded in optimal time (i.e., proportional to its length).

2.2 Compact data structures
The objective of compact data structures is to represent data in a compact way,
where the space for representing those data is the minimum possible but keeping the
capacity to access any datum in an efficient way. That is, represent the data (text,
sequences, trees, etc.) in such a way that the space of storing that representation is
smaller than the size of the original data, and decompressing the whole representation
is not necessary to access the data. Since those structures are compact and fit in
main memory, they take advantage of memory hierarchies where accessing the data
is faster in higher levels (e.g., main memory) than in lower levels (e.g., disk). In
many cases, they also provide indexes that allow us to answer queries even faster
than performing those queries over the uncompressed representation.

2.2.1 Rank and select over bit-vectors
Most compact data structures use bit-vectors supporting rank/select operations.
Given a bit-vector B of size |B| = n we can define three operations:

• access(B, i), returns the bit value at a given position i of a bit-vector B.

2.2. Compact data structures 21

1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B:

rank1(B,8)=4

select1(B,7)=13

Figure 2.8: Examples of rank and select.

• rankb(B, i) counts the number of times the b bit appears from start to the
given position i.

• selectb(B, j) returns the position of B where is located the j-th occurrence of
the b bit.

These operations are illustrated in Figure 2.8, and they are the basis of most
of the compact data structures. Jacobson, whose Ph.D. thesis can be taken as the
starting point of the study of compact data structures [Jac89], showed that the rank
operation can be answered in constant time over plain bit-vectors.

Given a bit-vector B of size |B| = n, in order to solve the previous operation
Jacobson [Jac89] proposes a structure of two levels. The first level is composed
of superblocks of size s = blognc blogn/2c. Each superblock stores the result of
rank1(B, i) for each i multiple of s. In the second level, there are blocks of size
b = blogn/2c, where each block stores the relative rank within the superblock until
the beginning of that block. We can compute rank1(B, i) using those two directories.
From the first level, we obtain the rank value until the previous multiple of s, while
the second level returns the rank value until the previous multiple of b. By the
addition of s and b we can know the result until the last position to the block that
contains j. Finally, the algorithm counts how many 1-bits there are between the
beginning of the block and j, and that value will be added to the final result. This
last step can be solved in constant time by using a lookup table storing the result of
rank for all possible subsequences of size b. Notice that numbers in polylog(n) can
be encoded in O(log logn). That means that rank can be solved in O(1) time using
an additional space of o(n) bits. However, solving select requires binary searches
in both levels. Hence this operation takes O(log logn) time. Clark and Munro
[Cla96, Mun96] proposed a new solution that solves both operations in constant
time by using additional structures for computing rank and select. Those structures
add an extra-space of o(n) bits to the original bit-vector, thus the total required
space is n+ o(n) bits.

Another operation that can be implemented using rank and select
is selectnext(B, j). This operation returns the position of the next
bit set to 1 after position j (included) in the bit-vector B, that is,

22 Chapter 2. Basic Concepts

selectnext(B, j) = select1(B, rank1(B, j − 1) + 1). Though rank and select
are O(1) time operations, there is a more practical structure for selectnext [Nav16],
which keeps the o(n) extra-space and O(1) time. In practice, it achieves less space
and better response times than using rank, and then select. That structure is similar
to the classical rank structure [Jac89], but instead of storing the number of ones
preceding a position, it stores the location of the next 1-bit.

2.2.2 Compressed bit-vector representation
There exist other solutions that provide the operations access, rank, and select, but
storing the bit-vector in a compressed way.

Pagh [Pag99] compressed the bit-vector by splitting it into equal-sized blocks. For
each block, the number of 1-bits that contains is explicitly stored. Those blocks are
compressed with a schema that clusters consecutive blocks into intervals of varying
length. An additional two-level structure and lookup table allow us to extract the
rank information.

A proposal that obtains a space result close to nH0, where H0 is the zero-entropy,
was proposed by Raman et al. [RRR02]. They propose a technique that can solve
rank and select in O(1) time. The sequence is split into different blocks, and they
are classified into classes. Each class gathers all blocks with the same number of 1s.
Each block has associated a pair (ci, oi), where ci identifies the class of the block;
and oi is the offset of that block inside the class, which identifies how the 1-bits are
distributed inside the associated class. Let b be the size of each block, the cost of
representing ci is dlog(b+ 1)e bits and oi uses dlog(

(
b
ci

)
)e bits.

Other strategies were focused on sparse bit-vectors, those where the number
of 1-bits m � n. Okanahora and Sadakane [OS07] presented several solutions:
esp, recrank, vcode, and sdarray. All of them assume that the input bit-vector is
sparse and has different advantages and disadvantages in terms of speed, size, and
simplicity. Also, based on those sparse bit-vectors Navarro [Nav16] proposes a way
to compress and support efficient rank and select operations over bit-vectors with
runs, a sequence of identical consecutive symbols, in this case, bits.

2.2.3 Partial sums
Partial sums is a well-known problem. Given an array A[1, n] of small numbers,
this problem tries to answer two types of queries: sum(A, i), which computes the
sum of the numbers A[1], A[2] . . . A[i]; and search(A, j), which looks for the smallest
index i in A whose sum(A, i) is greater than or equal to j. The simplest way of
solving it is to store an array S where S[i] = sum(A, i). Consequently, we can solve
sum(A, i) = S[i] in constant time, and we can solve search(A, j) with a binary
search on S in O(logn) time.

By using bit-vectors with rank and select auxiliary structures, it is possible to
compute both operations in constant time. An Elias-Fano representation [Fan71,

2.2. Compact data structures 23

Eli75] of the partial sums considers the previous array S, and builds a bit-vector B of
size S[n] where B[S[i]] = 1, where i ∈ [1, n], and the remaining positions are set to 0.
It can be understood as the list of the values of S represented in unary. Therefore we
can compute sum(A, i) as select1(B, i), that can be computed in constant time, and
search(A, j) as select1(rank1(B, j)). The space representation is log(n/m) +O(m)
bits, close to a differential representation of the S values.

2.2.4 Compressed tree representations
Trees are a largely used structure in many algorithms. For a general tree of n
nodes, its classical representation uses O(n) words. Each node requires w ≥ logn
bits, thus the space turns out O(nw) bits. The constant of this bound is at least
2, which allows to solve basic operations like visiting the first child or the next
sibling. By increasing this factor, we can solve more operations (e.g. obtaining
the depth, moving to the parent, obtaining the lowest common ancestor, etc.).
Different works which require 2n+ o(n) bits and can solve most of the operations in
O(1) time were proposed [CLL05, Jac89, MRR01, MR01, MR04, GRRR04, GRR04,
GRRR06, GMR06, GGG+07, DRR06, HMR07, Sad07, JSS07, LY08, BHMR07,
BDM+05, FM08, FLMM05]. The main difference between them resides in the kind
of operations they can solve, and the nature of o(n) space, which can fluctuate from
O(n/(log logn)2) to O(n/polylog(n)). Those representations can be divided into
three categories:

• BP: An ordinal tree can be represented as a balanced sequence of parentheses
(BP), that is, a sequence of opening and closing parentheses identified by
1-bits and 0-bits, respectively. By following a depth-first order traversal, when
the algorithm reaches a node for the first time, it adds to the sequence an
opening parenthesis “(”. The position of every opening parenthesis identifies
the corresponding node. When the subtree of a node is completely processed,
it appends a closing parenthesis “)”. Assuming that the number of nodes in
the tree is n, this representation requires 2n bits, one for the opening and
another for the closing parentheses. The main property of this representation
is that any subtree is contiguously stored in the bit-vector. We can compute
three different core operations on a sequence of parentheses B:

– close(B, i): returns the position of the closing parenthesis corresponding
to the opening parenthesis “(” at position i.

– open(B, j): with respect to a closing parenthesis “)” at position j, it
returns the position of its corresponding opening parenthesis.

– enclose(B, i): returns the smallest segment of opening and closing
parentheses that contains i. That is, the position k < i such that
[k, close(B, k)] is the minimum interval containing i.

24 Chapter 2. Basic Concepts

1

2 3

4 5 6 7 8

1

((() () ()) (() ()))BP:
4 5 6 7 8

2 3

((() ((()))) (()))DFUDS:
1 2 4 5 6 3 7 8

1 1 0 1 1 1 0 1 1 0 0 0 0 0 0LOUDS:
1 2 3 4 5 6 7 8

Figure 2.9: Examples of compressed tree representations.

Jacobson made the first studies in this topic [Jac89] that were later improved
by Munro and Raman [MR01] that presented a solution that requires
asymptotically optimal space, and every core operation takes constant time.
However, the most used implementation is based on range min-max trees
[SN10], making it possible to resolve these queries in O(logn) time by using
o(n) additional space.

• DFUDS: Depth First Unary Degree Sequence [BDM+05, JSS07] is built by
traversing the tree in a depth-first order traversal. When the traversal reaches
a node, the number of children is appended to the final sequence in unary.
For example, if a node contains 3 children, it adds to the sequence the value
1110. By adding an artificial root, the resulting sequence can turn out to be
a balanced sequence of 2n parentheses. Therefore the core operations of BP
can be used by DFUDS in order to solve basic operations in constant time.
More sophisticated operations can be solved in constant time, but adding some
additional space.

• LOUDS: Level-Ordered Unary Degree Sequence [Jac89] is a tree represen-
tation for ordered trees. For each node, from left to right, in a level order
traversal, the representation appends to a binary sequence the unary code
1d0, where d is the degree of the current node, that is, the number of children.

2.2. Compact data structures 25

Therefore, the sequence of a tree of n nodes has 2n − 1 bits. Specifically, n
bits correspond with the last 0-bit of each node, and n − 1 bits are set to
1-bit, because each node is a child of another node, except the root. Adding
an artificial root node super-root, every node of the tree is a child of another
node. Thus we can maintain the property that all the nodes correspond to
one 1-bit. As a consequence, the length of the final sequence increases by 2
bits. The navigation of the tree is supported by rank and select operations.
Among different operations, LOUDS supports access to children, retrieving
the position of the parent or counting the number of children. For example,
given a node x and the position i of its 1-bit in S, its first child is located
as select0(rank1(i)). On the other hand, the parent can be computed as
p = select1(rank0(i)).

2.2.4.1 Fully Functional Succinct Tree

In this thesis, we use the recent proposal called fully-functional succinct tree (FF)
[SN10]. Based on a BP representation, it combines wide functionality, with little
space usage and good time performance. The main component is a range min-max
tree, which allows us to solve basic and sophisticated operations in constant time.
Unlike previous proposals [Sad07, MRR01, MR04, CLL05, LY08], FF does not need
auxiliary structures for each supported operation.

The fully-functional succinct tree proposal reduces every operation considered in
the state of the art to core operations on BP, that can be solved efficiently by the
range min-max tree. Given a sequence B[0 . . . n − 1] of balanced parentheses, we
can define excess(i) = rank((i)− rank)(i) as a function which returns the difference
between the number of opening and closing parenthesis in B[0 . . . i]. Note that when
P [i] is an opening parenthesis excess(i) is the depth of the corresponding node,
while in case of a closing parenthesis, it is the depth minus 1. As a consequence, the
core operations on BP can be reduced to:

• close(B, i) = j: where minj>i{j|excess(j) = excess(i)− 1}

• open(B, i) = j: where maxj<i{j|excess(j) = excess(i) + 1}

• enclose(B, i) = j: where maxj<i{j|excess(j) = excess(i)− 1}

By considering the operator excess(B, i, j) = excess(B, j)− excess(B, i− 1), we
can define two core primitives on range min-max trees:

• fwd_search(B, i, d) returns the smallest j > i, such that excess(B, i, j) = d

• bwd_search(B, i, d) returns the greatest j < i, such that excess(B, j, i) = d

26 Chapter 2. Basic Concepts

These core primitives can be used for solving different operations on trees:

close(B, i) = fwd_search(B, i, 1)
open(B, i) = bwd_search(B, i, 0) + 1
enclose(B, i) = bwd_search(B, i, 2) + 1

level_ancestor(B, i, d) = bwd_search(B, i, d+ 1)
level_next(B, i) = fwd_search(B, close(B, i), 0)
level_prev(B, i) = open(B, bwd_search(B, i, 0))

Therefore, the efficiency of those operations depends on the ability of the min-
max tree to compute the core operations (fwd_search and bwd_search). The
min-max tree is built over a virtual array of excess(i) by splitting it into blocks of
size s = w

2 , where w is the machine word length. For each block, the total excess
and the minimum/ maximum local left-to-right excess are stored. After that, blocks
are recursively assembled into groups of size k = O(w/ logw), and each formed
superblock stores the local excess and minimum/maximum excess within the blocks
it holds. The min-max tree turns into a k-ary balanced search tree, which requires
O(n log(s)/s) = o(n) bits of space (see Figure 2.10).

To compute fwd_search(B, i, d) by the range min-max tree, we first check if
it can be solved in the block where the position i is located. For instance, we
consider that the block q = bi/sc corresponds to the range [l, r] of B. The scan
inside the block can be computed in constant time by using lookup tables. Whether
the solution is not in the current block, the algorithm has to run a bottom-up
traversal from the leaves to the root until finding the first right node which contains
excess(i− 1) + d. If the node is a leaf block, it is scanned by using lookup tables. If
the node is internal, the range min-max tree is traversed top-down from the node
until finding the leftmost child that contains the desired excess. Analogously, we
can solve bwd_search(B, i, d).

Figure 2.10 solves fwd_search(B, 6, 0). Firstly, with lookup tables or a sequential
scan, the local excess el within that block regarding the position 6 is computed.
Since B[7] = 1 and given that it is the last position in that block, the relative
excess el is 1. As the second block is a right child, the algorithm moves up to the
parent, N8. Since this node is a left child, the search continues on its right sibling,
N9. We observe that el +N9.m ≤ d, since the excess can only increase by ±1, the
solution is contained within the interval covered by N9. The algorithm moves to
the leftmost child of N9, that is N3. However, the solution is not contained in N3
because el + N3.m � d. The next node to process is N4, the right sibling of N3.
As the N3 was completely skipped, el has to be updated with the addition of N3.e.
In this case, N3.e = 0 and el keeps its previous value. The node N4 contains the
solution (el +N4.m ≤ d), by scanning its content, we look for the position where el
turns out d = 0, in our case, at position 14.

Another important operation is rmq(i, j) (resp. rMq(i, j)), which computes the

2.2. Compact data structures 27

((() ()) (() () ()) ((() (() ()))))B:
0
1
2
3
4
5

excess

e= 2
m= 1
M= 3

e= 0
m=-1
M= 1

e= 0
m= 0
M= 1

e= 0
m=-1
M= 1

e= 2
m= 1
M= 2

e= 0
m= 0
M= 1

e=-4
m=-4
M= 0

e= 2
m= 1
M= 3

e= 0
m=-1
M= 1

e= 2
m= 1
M= 3

e= 2
m= 1
M= 3

e= -2
m=-2
M= 3

e= 0
m= 0
M= 5

e=-4
m=-4
M= 0

1 2 3 4 5 6 7

8 9 10 11

12 13

14

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
0 1 2

Figure 2.10: Example of fwd_search.

position of the minimum (resp. maximum) excess within the interval [i, j]. For
solving it in min-max trees, the algorithm firstly computes the minimum value in
that range. The algorithm starts with a linear scan in the first block intersecting
the queried interval between positions [s, e]. During that scan, the algorithm tracks
the local excess el and the minimum excess ml. If e ≥ j, ml is the minimum value.
Otherwise, the algorithm keeps looking for the minimum in the range [e+ 1, j] by
traversing the nodes of the min-max tree completely contained in [e + 1, j], from
the leaves to the root. Once the right sibling is not completely contained in [i, j],
the algorithm runs a top-down traversal that recursively checks which of its left
descendants contain j + 1, and its corresponding leaf is scanned. During the whole
traversal, ml value is updated with the minimum excess processed, thus ml contains
the minimum excess in [i, j]. Finally, the leftmost position where that minimum
excess can be computed as fwd_search(B, i− 1,ml).

In our example of Figure 2.11, the algorithm starts scanning the second block
(N2). Since B[7] = 1, el and ml are updated to 1. The algorithm continues with the
parent of N2 (N8). In that case, N8 is a left child, thus its covered area was processed,

28 Chapter 2. Basic Concepts

0 1 2

((() ()) (() () ()) ((() (() ()))))B:
0
1
2
3
4
5

excess

e= 2
m= 1
M= 3

e= 0
m=-1
M= 1

e= 0
m= 0
M= 1

e= 0
m=-1
M= 1

e= 2
m= 1
M= 2

e= 0
m= 0
M= 1

e=-4
m=-4
M= 0

e= 2
m= 1
M= 3

e= 0
m=-1
M= 1

e= 2
m= 1
M= 3

e= 2
m= 1
M= 3

e= -2
m=-2
M= 3

e= 0
m= 0
M= 5

e=-4
m=-4
M= 0

1 2 3 4 5 6 7

8 9 10 11

12 13

14

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

Figure 2.11: Looking for the minimum value between [7, 18].

and consequently, the algorithm moves to its right sibling N9. Since el +N9.m < ml

(0 < 1) the value of ml is updated to el +N9.m = 0 . The algorithm follows with
N12 and updates el to el +N9.e = 1, that is, the excess previous to the right child of
N12 (N13). Now, as N12 is a left child, the next node to process is N13. This is the
first node that is not completely contained in the queried interval, thus the algorithm
starts, from N13, a top-down traversal looking for a better local minimum excess.
N13 can improve ml because el +N13.m < ml (−1 < 0), so it continues checking its
children. The left child N10 cannot improve ml (el+N10.m ≥ ml), and the right one
does not intersect the queried interval. Therefore, the algorithm stops and returns
the local minimum excess, ml = 0. In other words, the algorithm has find the local
minimum excess ml. By running fwd_search(B, i− 1,ml) = fwd_search(B, 6, 0),
as in the previous example (see Figure 2.10), the minimum value between [7, 18] is
computed at position 14.

2.2. Compact data structures 29

2.2.5 Permutations
A permutation π of size n is a reordering of the values {1, . . . , n}, it can be represented
by an array π[1, n] where each value in {1, . . . , n} occurs only once. Storing the
permutation in an array requires n logn bits, we can solve in constant time the basic
operation π(i), which recovers the value at position i.

In some cases, more advanced operations are required, for instance, the inverse
permutation of i, π−1(i) = j, which returns the number j where π(j) = i. The
simplest way for solving the last operation in constant time is to store an additional
array I[1, n] where I[i] = π−1(i), but it doubles the space. However, the permutations
can be decomposed in cycles, which can speed up these kinds of queries [MRRR12].
Let us define the recursion of applying π over i as i0 = i, i1 = π(i), i2 = π(i1) =
π(π(i)), and so on. We discern a cycle, when starting at position i, after k recursive
steps of ap plying π we reach ik = i. Since ik−1 = π−1(i), we can solve π−1(i) in
O(k) time.

Since k can be as large as n and the expected value of k is Θ(n/ logn), this
solution turns impractical. However, this idea is the basis of a technique called cycle
decomposition, which splits the permutation into its cycles. Each of those cycles can
be of different sizes. Therefore the performance of solving π−1(i) depends on the
length of the cycle such that i belongs. By introducing a parameter t ≥ 1, we can
guarantee that π−1(i) requires at most t steps. To achieve it, on those cycles whose
length is greater than t, every t steps in a cycle, we add a shortcut that points to
π−t(i). An additional shortcut is added when the length of the cycle is not multiple
of t. In order to compute π−1(i), we start with j = i, and we repeat these steps: if
π(j) = i return j; otherwise, the procedure advances to the next j. Usually j ← π(j)
but, in case that there is a shortcut in j pointing to s, the new value of j ← s. It is
important to notice that the algorithm only follows the first shortcut.

The shortcuts can be represented by a bit-vector B[1, n] where B[i] = 1 such
that i contains a shortcut, and an additional array S stores the targets. Notice that
the size of S is the number of shortcuts, and the target of a shortcut whose source
is at position i can be computed as S[rank1(B, i)]. For example in Figure 2.12
the permutation π contains three cycles: {4, 5, 7, 12, 1, 9}, {10, 6, 2, 8, 11} and {3}.
The shortcuts are placed with t = 2. Except the for the last cycle, the remaining
ones have these shortcuts: 5 → 9, 12 → 5, 5 → 9, 6 → 11, 8 → 6, and 11 → 8.
In order to compute π−1(7), we start at 7 checking B and π. Since at position 7
there is no shortcut (B[7] = 0), the next position to check is at π[7] = 12. However
B[12] = 1, thus there is a shortcut that points to S[rank1(B, 12)] = 5. At π[5] we
find 7, therefore π−1(7) = 5.

As rank operation can be solved in constant time with an additional space of
o(n) bits, computing π−1(i) takes O(t) time. Given a length of cycle ` > t, there
are b`/tc shortcuts, which means that the size of S is at most 2n

t+1 and requires
2
t+1nblognc bits. Besides, B and π need n + o(n) and nblognc bits, respectively.
By denoting ε = 2

t+1 , the total space is (1 + ε)n logn+O(n) bits and can solve π−1

30 Chapter 2. Basic Concepts

8

11

10
6

2

39

4 5

7

121

9 8 3 5 7 2 12 11 4 6 10 1
1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 1 1 0 1 1 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12

9 11 6 12 8 5

ᴨ(i):

B:

S:

Figure 2.12: Example of Permutation.

in O(1/ε) time.

2.2.6 Range Minimum Queries
We can extend the query presented in Subsection 2.2.4.1, which finds the minimum
excess of a fully-functional succinct tree, to an array of integers. Let us define an
array of integers A[1, n]. The range minimum query rmq(A, i, j) between positions
i and j of A returns the position k, where A[k] is the minimum value in A[i . . . j].
In case that there are two identical minimums, the rmq can return the leftmost or
rightmost minimum; by default, it returns the leftmost one. The range maximum
query rMq(A, i, j) computes the position of the maximum instead of the minimum.
In this explanation, since rmq and rMq are analogous, we only refer to rmq.

The rmq problem in an array is related to obtaining the lowest common ancestor
(lca) on a tree, it means, the lowest node that is an ancestor of two given nodes.
Specifically, rmq operation can be equivalent to computing an lca [GBT84] on the
Cartesian tree [Vui80]. A Cartesian tree of an array of values A[1, n] is a binary tree
whose root is the minimum value in the range [1, n]. By assuming that the minimum
is at position p, the left and right subtrees of the root are the Cartesian tree of
A[1, p− 1] and A[p+ 1, n], respectively. For example, on the left of Figure 2.13 we
can observe the Cartesian tree of A. Firstly, we look for the lowest number in array
A, which is the 1 at position 5. Therefore, we create a root node with a value of 1
and label it with 5 (the position of the value in A). Then, the left and right subtrees
will be composed of the values in A[1, 4] and A[6, 12], respectively. We obtain the
minimum of A[1, 4], which is the value 3 at position 3, and the minimum of A[6, 12],
which is the value 2 at position 10. Consequently the second level is composed with a

2.2. Compact data structures 31

4 6 3 5 1 4 6 4 5 2 6 3
1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 3 4 3 2 3 2 1 2 3 2 3 4 3 2 3 2 1 2 3 2 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

(((() ()) ()) (() (()) ()) (()))
0 1 2 3 4 5 6 7 8 9 10 11 12

D:

E:

A:

1

3 2

5

6

4

6

34

56

4

5

3 10

126

118

7 9

1 4

2

1

3 5

64

6

3

4 5

6

4

5

3

10 12

6 118

7

9

1

4

2

-

2

Cartesian tree General tree (right-path)

rmq(A,2,10)

0

select0(E, 2) = 6 select0(E,10) = 21

rmq(D,6,10) = 11

rank0(E, 11) = 5

Figure 2.13: Example of Range Minimum Queries.

left child node that contains 3, and a right child node with 2. The next subtrees will
be created by applying theses steps recursively to A[1, 2], A[4], A[6, 9], and A[11, 12].

Notice that given a node in a Cartesian tree with an inorder position q, its
value is located at position q in A, and we can detect the minimum between
two nodes by computing its lowest common ancestor. Hence, rmq(A, i, j) =
inorder(lca(innode(i), innode(j)), where inorder maps from a node to its inorder
value, and innode(i) performs the reverse process [BV93, BFCP+05]. That is, we
first compute the corresponding nodes at the extremes of the queried interval with
inorder. Then the node which contains the minimum between those two nodes is
computed with lca. Finally, we translate the position of the node in the Cartesian
tree to its position in array A with innode.

The first succinct solution without accessing to A was proposed in [Sad07]. That
proposal requires to add n− 1 artificial leaves on a Cartesian tree, getting a space
of 4n+ o(n) bits. In[FH11], the authors propose the first rmq structure which can
solve this query in O(1) time using 2n+ o(n) bits. Recently, a structure proposed
in [FN17] simplifies the formula of computing the rmq, keeping it in O(1) time and
2n+ o(n) bits of space. In practice, this new structure obtains the best compression
ratios and response times, for this reason we explain it in more detail. The main
idea is to represent the Cartesian tree with BP. Firstly, we need to build the general

32 Chapter 2. Basic Concepts

tree of the Cartesian tree. That transformation creates an artificial root, and its
children are the nodes in the right-most path of the Cartesian tree. In Figure 2.13,
the rightmost path traverses the nodes labeled with 5, 10 and 12. Therefore, they
turn out the children of the artificial root. With the left subtrees of each node x,
the algorithm is recursively applied and takes x as its additional root. For example,
in Figure 2.13, the children of the node labeled with 3 are the rightmost nodes from
its left subtree of the Cartesian tree (nodes labeled with 1 and 2). Once the general
tree is computed, an array of depths D[1, 2(n+ 1)] is created. That array D stores
the general tree’s depths in a depth-first traversal. Since in D every consecutive cells
differ by ±1, it is transformed into a bitmap E, where E[i] = 1 and E[i] = 0 whether
the difference between D[i− 1] and D[i] is positive or negative, respectively. As a
consequence, E can be seen as a BP representation where we can solve efficiently
rmq on D by using a min-max tree. However, the result obtained from rmq(D, i, j)
is not equivalent to rmq(A, i, j). Notice that the node u from the Cartesian tree
with inorder i is the general tree node with postorder i. Since the general tree is
represented with E, we can compute the closing parentheses of the inorder position i
as select0(E, i). Consequently, the mapping from the closing parentheses at position
p to the inorder value of the node is rank0(E, p). Therefore, the rmq operation on
A is computed by the following equation:

rmq(A, i, j) = rank0(E, rmq(D, select0(E, i), select0(E, j)))

Firstly, the closing parentheses’ positions from the inorder values are obtained as
we explained before with select0. Then, the lowest common ancestor of those nodes
is computed by using the reduction of the lca into a rmq operation [BV93]. Finally,
the inorder value of the node is computed with rank0. Notice that storing D is
unnecessary because rmq in D can be solved on E with the min-max tree. Hence
the structure only requires 2(n+ 1) bits for E and o(n) bits for the min-max tree.
On the bottom of Figure 2.13, we can observe the array D and the bitmap E for the
array A. Notice that D is shaded because it does not need to be explicitly stored.
Additionally, over B and D the algorithm for solving rmq(A, 2, 10) = 5 is illustrated.

2.2.7 k2-tree
The k2-tree is a compact data structure initially designed to represent Web graphs
within reduced space, allowing them to be navigated directly in compressed form
[BLN14]. In general, a k2-tree can be used to represent the adjacency matrix of any
graph, as well as binary matrices.

Conceptually, the k2-tree is a k2-ary tree built from a binary matrix by recursively
subdividing the matrix into k2 submatrices of the same size. It starts by subdividing
the original n× n matrix into k2 submatrices of size n2/k2. The submatrices are
ordered from left to right and from top to bottom. Each submatrix generates a
child of the root node whose value is 1 if there is at least one 1 in the cells of that

2.2. Compact data structures 33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
T
:

0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L
:

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

0 0

0 0 0 01 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

0 00000000000

1

1 1 1 1

111

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

(1,0)

(5,4)

(13,4)

(1,0)

Figure 2.14: Example of k2-tree.

submatrix, and 0 otherwise. The subdivision proceeds recursively for each child
with value 1 until it reaches a submatrix full of 0s, or until it reaches the cells of
the original matrix (i.e., submatrices of size 1× 1). Figure 2.14 shows an example
of a k2-tree. In the first level, the first and third nodes are set to 0, because in
the submatrices [0, 8] × [7, 15] and [0, 0] × [7, 7] there is no cell with a 1. Instead
the second and fourth nodes are marked with a 1, and they are split into four
submatrices, in the next level.

Given an area, the positions with the values set to 1-bit can be detected by
going through the tree in a top-down traversal, following those branches with nodes
that contain any part of that area. Notice that for a node whose submatrix has the
top-left corner in (x, y), its i-th submatrix at the next level ` starts at position:

(x+ ((i− 1) mod k)× side, y − (i− 1)/k × side)

, where side = n/k` is the side of the submatrix. When ` = 0, (x, y) is initialized to
(0, n).

For example, in Figure 2.14, given the area [9, 10] × [10, 13] the arrows show
the followed path to find the 1s within that area. In the first level, that area is
contained within the second submatrix of side 8 whose top-left corner is (8, 15), so

34 Chapter 2. Basic Concepts

the traversal goes through the second branch. In the second level, the first and third
branches contain that region, but the submatrix of the third branch is empty, thus
the traverse continues only with the first branch. That branch corresponds with
the submatrix whose top-left corner is (8, 15,) of side 4. A similar case occurs in
the next two levels, where two nodes are contained in the area, but only one has
information. Finally, the algorithm reaches the leaf of the cell (10, 13) that contains
the one.

We can determine the location of a specific 1 in a cell by traversing the tree
from the corresponding leaf to the root. To obtain that location, we initialize
(x, y)← (0, 0). After reaching the i-th child of a node at level `, we update (x, y) as:

(x+ ((i− 1) mod k)× side, y + (k2 − i)/k × side)

, where side = n/k` is the size of the side in the current level `.
Figure 2.14 illustrates the bottom-up traversal to obtain the location of the

third 1 with the dashed lines. In the right, we can observe how the values of (x, y)
are updated in each level.

Instead of using a pointer-based representation, the k2-tree is compactly stored
using bit-vectors T and L (see Figure 2.14). T stores all the bits of the k2-tree,
except those in the last level. The bits are placed according to a level-wise traversal:
first, the k2 binary values of the children of the root node, then the values of the
second level, and so on. L stores the last level of the tree, consisting of cell values of
the original binary matrix.

We can simulate the navigation of the tree via rank and select operations over
bit-vectors T and L. For example, assuming a value of 1 at position p in T , its
k2 children start at position pchildren = rank1(T, p) · k2 of T . If the children of a
node return a position pchildren > |T |, the actual values of the cells are retrieved
by accessing L[pchildren − |T |]. Similarly, the parent of position p in T : L is q − (q
mod k2), where q = select1(T, bp/k2c), and q mod k2 indicates the submatrix of p
within that of its parent. Those operations make it possible to compute in logarithmic
time the 1s within a region and the location of a specific 1.

2.2.8 Direct Addressable Codes
Directly Addressable Codes (DACs) [BLN13] is a structure that gives direct access
to variable-length codes, that is, given a sequence of variable-length codes DACs
support the decoding of the i-th code without the need to decompress the preceding
integers. If the sequence of integers has many small numbers and few large ones,
then DACs obtain a very compact representation.

The basis of DACs is splitting the variable-length codes into blocks of fixed length
and store them in different levels. Given a sequence of integers X = x1, x2, . . . , xn,
DACs take the binary representation of that sequence and rearrange it into a level-
shaped structure as follows: the first level, B1, contains the first (least significant)

2.2. Compact data structures 35

3 0 1 8 0 5 2 3
1 2 3 4 5 6 7 8

0 0 0 1 0 1 0 0
1 2 3 4 5 6 7 8

11 00 11 00 00 01 10 11

0 0

10 01

C1:

B1:

C2:

B2:
Level 2

Level 1

X:

Figure 2.15: Example of Direct Addressable Codes.

n1 bits of the binary representation of each integer. A bit-vector C1 is added to
indicate whether the binary representation of each integer requires more than n1
bits (1) or not (0). In the second level, B2 stores the next n2 bits of the integers
with a value of 1 in B1. A bit-vector C2 marks the integers that need more than
n1 + n2 bits, and so on. This process is repeated for as many levels as needed. The
number of levels ` and the number nl of bits at each level l, with 1 ≤ l ≤ `, are
calculated in order to maximize the compression. Each value xi is then retrieved
using less than ` rank operations on the bit-vectors Cl and extracting chunks from
the arrays Bl.

Figure 2.15 shows how to obtain the value of x6, that is, the value on X at
position 6. Firstly the algorithm looks into B1[6] for its least significant bits, that is
01. Since C1[6] = 1, x6 requires more bits, thus it has to retrieve information from
the second level. Specifically, its two most significant bits are stored at position
k = rank1(C1, 6) = 2 in B2. By appending B2[2], the value of x6 up to the second
level is 0101. Finally, C2[k] is checked, as it contains a 0-bit, there are no more bits
for x6. Therefore the algorithm retrieves x6 = 01012 = 5.

36 Chapter 2. Basic Concepts

Chapter 3

Previous work

The different proposals in state of the art for the management of moving objects
and their trajectories could be roughly classified in two groups depending on the
kind of objects: objects whose movements are restricted to a network, e.g., road,
street or public transportation networks; and objects that are moving without any
restriction in the space (boats, planes, birds, etc.). This thesis fits in the second
group, we consider trajectories where objects move without any restriction, that is,
moving freely in a two dimensional space.

In this chapter, we introduce different techniques for the treatment of those
trajectories. Section 3.1 shows different techniques for indexing trajectories. Then,
Section 3.2 explains different lossy and lossless compression techniques for trajectories.
Section 3.3 presents several systems that support indexation and compression at the
same time. Finally, Section 3.4 presents the capabilities of each type of representation
to solve queries, and the main advantages of our proposals compared with the previous
work.

3.1 Indexing trajectories
Since this thesis covers trajectories without considering the constraints of a network,
we can define a trajectory as a set of tuples 〈t, (x, y)〉 where t is a time instant
and (x, y) are the coordinates of the object in the space at t. Though there are
different approaches, most of the spatio-temporal indexes are based on the R-tree
index [Gut84].

3.1.1 Spatio-temporal indexes based on R-trees
The R-tree index [Gut84] is a classic spatial structure designed to index spatial
objects. The key concept behind the R-tree is the Minimum Bounding Rectangle

37

38 Chapter 3. Previous work

R1

R2

R3

R4

R5

R6

R7

R8

R9

R1 R2 R3

R4 R5 R6 R7 R8 R9

Pointers to data

Q

Figure 3.1: Example of R-tree

(MBR), the minimum rectangle which covers a set of objects. The structure of an
R-tree is quite similar to a B-tree. We can define an R-tree as a balanced search
tree where each node includes an MBR which wraps the MBRs of their children or
objects, in case that the node is an internal node or a leaf, respectively. An example
of R-tree is shown in Figure 3.1. The left part shows the aggregation of MBRs, and
in the right part we can observe the corresponding R-tree.

In order to know which objects are contained by an area or region, the search can
be solved efficiently by descending through the nodes whose MBR intersects with
the queried area. In Figure 3.1 we illustrate how to obtain the objects within the
queried area Q. As Q overlaps R2 we descend to its children. In the next level, there
are two MBRs (R6 and R7) and both intersect with Q. Hence, the pointed data of
both MBRs are checked. Since the data contain the actual location of each object,
we can discern that the only object within Q is located on the top-right corner of R6.
Therefore, the queries can be solved faster when the number of intersected MBRs is
minimized. Hence the top-down traversal of the tree can be sped up by reducing the
size of the MBRs. For this reason, the strategy of building MBRs tries to arrange
groups of objects in such a way that the built MBRs are as small as possible.

Though they were designed as a dynamic structure, there is a version of a static
R-tree [BLNS13] where each MBR is represented with its four corners in compressed
form. The bottom-left corner is stored as the difference with the bottom-left corner
of the MBR from the parent. The remaining corners of the current MBR are encoded
as the difference with its bottom-left corner.

Some spatio-temporal indexes like the 3DR-tree [VTS98] replace MBRs by
Minimum Bounding Boxes (MBBs). An MBB is composed of three dimensions, the

3.1. Indexing trajectories 39

two spatial coordinates, and an additional dimension that represents the temporal
characteristics. Since this new dimension can cover a considerable interval of time,
the MBBs become large, the search performance is damaged. For this reason,
[PJT00] tries to solve this problem with two different approaches: STR-Tree and
TB-Tree. The first index is an extension of an R-tree that modifies the strategy of
construction of MBBs. Their proposal considers the trajectory orientation. That is,
the MBBs are built by keeping segments of the same trajectory together, not only
regarding the spatial dimensions. Instead, the TB-Tree inserts partial trajectories
as MBBs of an R-tree.

Another family of spatio-temporal indexes is the family of versioned R-trees,
which stores an R-tree (version) per each covered time instant and a B-tree to select
the relevant R-trees. Storing a version per time instant requires a large amount
of space. To overcome this, instead of storing the complete R-tree for each time
instant, these techniques store only the part of the version that is different from
the previous one. For instance, MR-Tree [XHL90] and HR-tree [NS98] can share
branches between consecutive R-trees. Their main disadvantage is the duplication
of objects, which results in high space consumption. Additionally, solving queries
that involve a significant interval of time is not efficient. The HR+-tree [TP01a] is
an improved version of the HR-tree, which reduces the space of the HR-tree to 20%,
and performs better in all kind of queries.

3.1.1.1 Multi-version R-tree

A Multi-version R-tree (MVR-tree) [TP01b] can contain multiple R-trees (versions).
In a similar way to HR-trees, those R-trees can share between them those parts that
do not suffer any change in their MBRs (see Figure 3.2). In order to simulate that
behavior, the MVR-tree is composed of a set of records where each entry is a tuple
〈S, ts, te, ptr〉. S is the MBR covered by that node during the interval of time [ts, te].
For an internal node, ptr points to the next level; otherwise, the node is a leaf, thus
it points to the data corresponding to that MBR. Notice that an entry can cover
different time instants since it is alive during [ts, te].

In Figure 3.2, we illustrate an example of MVR-tree where the first version
corresponds with Figure 3.1. The updates of each MBR through different versions
are shown on top of Figure 3.2. Notice that each version is associated with an R-tree,
and dashed lines show nodes that are replaced by nodes from a previous version.
For example, in the third version v3, the children of R1 are the same as those of R1
in v2 which are identical to those of v1. The children of R3 in v3 are equal to the
previous R-tree.

Solving queries that involve one time instant is very efficient in MVR-trees. For
example, in order to know which objects are within a region, the algorithm looks for
the version which involves the queried time instant, and then the query is solved as
a range search in an R-tree. However, solving queries covering an interval of time
need to check multiple R-trees. In Figure 3.2 we can observe how to compute the

40 Chapter 3. Previous work

R4 R5 R6 R7 R8 R9

Pointers to data

R1 R2 R3

R8 R9

v2

R6 R7

v3

R1 R2 R3 R1 R2 R3

R1
R2

R3

R4

R5

R6

R7

R8

R9

Q

v1

R1

R2

R3

R4

R5

R6

R7

R8

R9

Q

v2 v3

Figure 3.2: Example of MVR-tree

objects within Q during a range of time that covers versions v1, v2 and v3. Thus the
algorithm needs to check all these versions. The algorithm starts with a top-down
traversal through the first version v1, and follows the nodes that intersect Q. In the
first level, R2 is checked because R2 overlaps Q. In the next level, since R6 and R7
intersect with Q, both are checked. By accessing the data with the pointers of the
leaves, we obtain the objects within Q. In the example, there is only one object, and
it is added to the solution. The very same traversal is repeated for v2, obtaining
the object already in the solution. In v3, the main difference is that R7 does not
intersect Q. Therefore, only the data from R6 is checked. This produces another
object that is contained by Q, and thus it is appended to the previous solution.
After processing these three versions, the algorithm returns the two objects found in
v1 and v3.

In the MV3R-tree [TP01b] the versions are composed of a combination of MVR-
trees and auxiliary 3DR-trees [VTS98]. The former part is built on the leaves of the

3.1. Indexing trajectories 41

MVR-trees and tries to improve the performance on queries that involve more than
one time instant. This structure obtains the best time performance in interval and
time instant queries.

3.1.2 Grid-based indexes
Grid-based indexes split the space into several partitions and build a temporal index
for each partition. The Scalable and Efficient Trajectory Index (SETI) [CEP03]
divides the space into cells and, for each cell, indexes the trajectories by time with
a variant of an R-Tree, called R*-Tree [BKSS90]. This variant improves the split
heuristic and gets a better query performance. Another example of grid-based
indexes is Multi Time Split B-Tree [ZZS+05] where all the cells are indexed with
a TSB-Tree [LS89]. Instead, the Compressed Start-End tree [WZXM08] uses a
combination of B+-trees, dynamic arrays and different structures depending on the
update frequency of the data. PIST [BMNS08], and GCOTraj [YHC18] are other
examples of these indexes.

3.1.3 Other spatio-temporal indexes
The PA-tree [NR07] uses a completely different approach to the previous ones. This
index tries to avoid MBBs and spatial indexes, by approximating a series of line
or curve segments with a single continuous polynomial. Consequently, the original
trajectory and its approximation are not identical. In order to detect false negatives,
they keep the maximum deviation between both trajectories. By minimizing this
maximum deviation, the index provides better accuracy than MBRs, and its query
performance can be significantly improved.

Distributed computing frameworks to handle trajectories have recently appeared.
Their structure has two layers: a framework for distributed computing and a
set of spatio-temporal indexes. PRADASE [MYQZ09] is a framework based on
MapReduce for querying trajectory data by using Hadoop and a spatio-temporal
index. Another example of using Hadoop is CloST [TLN12], which splits the data
in a hierarchical way. That classification of the data takes into account spatial
and temporal dimensions for efficient parallel processing of spatio-temporal queries.
TrajSpark [ZJM+17] is a distributed framework based on Spark, which adds a two-
level spatio-temporal index called IndexTRDD. One level treats the global data,
whereas the other exploits the local data of segments for speeding up the performance
of trajectory queries.

Other indexes are based on distributed key/value storage. Most of them are
composed of two layers: storage and index. The first one allows high performance
on insertions and managing large data volumes. The second part supports
efficient spatio-temporal query processing. Examples of those indexes are MD-
HBase [NDAEA13], R-HBase [HWZ+14], and GeoMesa [HAE+15].

42 Chapter 3. Previous work

Indexes like SEST-Index [GNR+05, Wor05] use snapshots and logs. The
snapshots represent the area where each object is located by using a spatial index
(e.g R-tree). Each log corresponds with an individual object and is composed of
labels that trigger two events: moves in, the associated object goes within a region,
or moves out, the object leaves a specific region.

3.2 Compression of trajectories
There are different techniques for compression of trajectories. However, the simplest
one is trajectory simplification, which reduces the size of a trajectory by discarding
some of its points. This deletion of some points makes it impossible to retrieve the
original trajectory from the compressed one, thus it is considered a lossy method.

One way of trajectory simplification is taking points at regular intervals of times,
and discarding the remaining ones [PPS06]. In practice, the larger the span of
the interval, the smaller the representation of the trajectory. However, that new
representation loses too much precision, and the resultant trajectory can be quite
different compared to the original one. In order to avoid that gap between the
original and compressed trajectory, more sophisticated algorithms were designed.

The Douglas-Peucker algorithm [DP73] keeps the most relevant points and
discards those that are redundant. It defines a parameter ε and traces a line between
the first and last point of the trajectory. When there is a point whose perpendicular
distance to that line is greater than ε, the furthest point (outlier) to that line
is chosen as a relevant point. The algorithm is repeated recursively splitting the
trajectory into two parts, from the first point until the outlier and from the outlier
until the last point. The algorithm stops when every non-relevant point is located
closer than ε to its corresponding line. Another similar method is top-down time
ratio [MdB04] that takes into account the time. Instead of computing the distance
to a perpendicular point of the line traced in Douglas-Peucker, it is measured with
respect to the interpolated point at the corresponding timestamp in that traced line.
Similar algorithms with different heuristics for measuring the importance of a point
are SQUISH [MOH+14], and OPERB [LMZ+17].

Other algorithms try to represent the maximum number of points with a linear
segment, for instance, sliding window [KCHP01]. Firstly, the algorithm takes
the leftmost position and approximates the next point as a linear function. If
that approximation has an error lower than a given threshold, the next point is
represented by that segment and continues trying to add new points. Otherwise, the
algorithm stops adding points to that segment and starts building a new segment.

Previous algorithms only take into account the spatio-temporal context, other
techniques exploit speed and heading of objects to discern which points are more
representative in each trajectory. Examples of those algorithms are dead reckoning
[TCS+06] and STTrace [PPS06]. On the other hand, methods like [SRL09, TLCF16]
decide about the relevance of points by taking into account a network.

3.3. Trajectory compression and indexing 43

Delta compression is the most well-known lossless compression method for
trajectories. The first position of the trajectory is stored as an absolute position.
The remaining points are represented as the difference between the current position
and the previous known location. For example, Trajic [NH15] predicts the next
position by taking the previous location, and stores the difference from the actual and
the predicted position. Since small numbers can be stored with a short number of
bits, it obtains a better compression ratio when the predicted positions are accurate.

3.3 Trajectory compression and indexing
Previous algorithms for compression of trajectories are classical methods in the sense
that they do not provide any possibility of querying the compressed data. However,
a small number of techniques can compress and search without decompressing all
the data.

An example of system that compresses and indexes trajectories is TrajS-
tore [CMWM10]. Every trajectory is divided into subtrajectories, and each one
belongs to a cell whose size depends on the data distribution. Those subtrajectories
are compressed in each cell by clustering them into similar trajectories and only
storing one representative trajectory. For this reason, TrajStore can be considered a
lossy method. Additionally, delta compression is used over the chosen trajectories.
Concerning the indexation layer, each cell contains a temporal and a spatial (quadtree)
indexes.

SharkDB [WZX+14] is another system that supports indexing and compression.
The information is split into intervals of time of a fixed length, for each trajectory
and range of time, only one spatial point is stored. They are saved on a column
of a column-oriented database management system. The data of each column is
compressed with delta compression.

3.4 Conclusions
As we explained in Chapter 2, we classified the queries into two groups: object
queries and spatio-temporal range queries. In the previous work, we can observe as
each type of representation of trajectories is focused on only one of those two types.
For example, the structures presented in Sections 3.2 and 3.3 are good compressing
and solving object queries like retrieving the original trajectory. However, they
cannot solve in an efficient way spatio-temporal range queries. Notice that, for
detecting whether an object is within a region, those structures must obtain the
original trajectory of each object and check if each single point of that trajectory is
in that region.

On the other hand, those structures presented in Section 3.1 can efficiently solve
spatio-temporal range queries. For example, in a MVR-tree, by traversing a version,

44 Chapter 3. Previous work

we can detect the objects which are within a region at a given time instant. Instead,
computing the trajectory of an object requires to traverse all the nodes of all the
versions of the MVR-tree, looking for that specific object. Therefore, it cannot
efficiently solve object queries.

As we will see, the main goal of our structures is to join the main advantages
of two worlds: compression of trajectories and indexing. They would allow us
to compress the trajectories and to solve object queries and spatio-temporal range
queries in an efficient way.

Chapter 4

Basic structure

In this chapter, we explain the basic structure for all the proposals presented in
this thesis. To simplify the explanations, we assume that all trajectories start at
the same time instant, and there is no absence of information. Therefore, for this
conceptual explanation we assume that at any tracked time instant, the position in
the space of each object is known. Of course, those conditions are not satisfied when
using real data, for this reasons we present, in Chapter 8, how our data structures
must be adapted to treat with erroneous and missed data.

Firstly, let us define a trajectory as a sequence `1, `2, . . . , `n. Each `i is a pair
〈(x, y), t〉, where (x, y) is the object’s location at time instant t. We can denote a
relative movement mi as the difference between the location at `i and `i−1. Therefore,
we can obtain a specific location of an object starting from an explicitly stored
position (absolute position) and the addition of the relative movements of that object
up to the desired time instant (cumulative movement).

We explain how those trajectories are stored with the basic structure common to
all of our proposals in Section 4.1. A brief introduction of the different elements that
are part of our basic structure and the mechanism they use to retrieve the location
of an object are presented in Sections 4.2 and 4.3.

4.1 Introduction
In this thesis, we present eight different structures that provide a compact and a
self-indexed representation of moving object trajectories that support object and
spatio-temporal range queries efficiently. All of them share the very same properties:

• A raster model is used to represent the space, which is divided into cells of
a fixed size, and objects are assumed to fit into one cell. The size of those
cells can be adjusted depending on the domain. Note that smaller cells require
more space, but provide more precision.

45

46 Chapter 4. Basic structure

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

t0

t1 t2 t3
t4

t5

t6
t7 t8 t9

t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t0 t1

t2
t3 t4

t5

t6
t7

t8

t9 t10

O1

O2

ℒ1

ℒ2

𝒮0 𝒮10

O1=(2,12)
O2=(2, 2)

O1=(12,11)
O2=(12, 6)

Figure 4.1: Example of basic structure and its elements

• The structures assume that the positions of all the objects are synchronized
and stored at regular time instants (e.g., every minute). The length of the
period between represented time instants is a parameter that can be adapted to
the specific domain. The shorter the length of the period is, the more accurate
the trajectory representation will be, though achieving less compression.

• All of them are composed of the two same essential elements: snapshots and
logs.

– Snapshots: a snapshot stores spatial information of all the moving
objects in our space. That spatial information can refer to a time instant
or an interval of time. The main goal of this component is to support
spatial-temporal range queries and work as a spatial-index. We have
designed two different implementations to represent this element.

– Logs: there is a log per object. Each one stores the displacements of its
object along the time. It can be considered as the representation of the
trajectory, thus makes it possible to compute the position of the object
in each time instant. We propose two different ways to encode those
displacements.

Figure 4.1 shows two trajectories and their representation with our basic structure.
In this case, the snapshots S0 and S10 store the absolute positions of the objects at

4.2. Snapshots 47

time instants 0 and 10, respectively. For example, S0 represents the position (2, 12)
of the object O1 at time instant 0, and the location (2, 2) of the object O2 at the same
instant. Between the snapshots, there are two logs, one per each object. The first
log L1 store the sequence of displacements of O1, and L2 the corresponding sequence
of movements of O2. For example, we denote with M1 in L2 the movement from the
time instant 0 to the time instant t1. This value depends on the implementation of
the log. In the example, M1 represents that the object O1 moves one position to the
East and one position to the North from the previous location.

Since we design two types of snapshots and four types of logs, the combination
of those elements builds eight structures for the representation of trajectories, each
one with its own properties. All those structures are experimentally evaluated in
Chapter 9.

4.2 Snapshots
The snapshots are elements that store the absolute positions, that is, the cell where
the object is located in the raster model at a specific time instant. We denote with Sh
the snapshot at time instant h. In addition, the snapshots work as a spatio-temporal
index, making it possible to accelerate the computation of some queries.

Since the size of the snapshots can be significant, they are stored every d time
instants, that is, there is a snapshot at time instants t0, td, t2d, and so on. Notice
that, as the value of d reduces, the space required for the snapshots increases, but
some queries can be solved more efficiently, which introduces a space/time tradeoff.
That parameter d can be specified depending on the domain of the data. Notice
that the initial position of each object is stored at the first snapshot S0.

In this thesis, we designed two different data structures for the representation of
snapshots: snapshots based on k2-trees and those based on R-trees.

4.2.1 Snapshots based on k2-trees
This kind of snapshot stores the location of every object at the corresponding time
instant by using a k2-tree and a permutation of the object identifiers. Since the
space can be considered as a matrix, where each cell represents a location of the
space, we can transform it into a binary matrix, where the 1-bit values mark those
cells with objects, and the 0-bit the absence of objects in that cell. That binary
matrix can be represented with a k2-tree, and the identifiers of the objects that are
within each cell (leaf of the k2-tree) are stored in the permutation.

Every time we need to retrieve the location of an object, we can obtain it with
two steps. Firstly, we compute the corresponding leaf of that object in the k2-tree
with the π−1 operation on the permutation. Finally, the location of that leaf in the
space (cell) is computed by running a bottom-up traversal of the k2-tree.

48 Chapter 4. Basic structure

In addition, we can compute the objects that are within a region, by traversing
the k2-tree from the root to the leaves with objects that are within the queried
region and retrieving the object identifiers that correspond with each one of those
leaves by using the permutation.

In Section 6.1 we present the snapshots based on k2-trees in detail, with its
structure and algorithms.

4.2.2 Snapshots based on R-trees
The snapshots based on R-trees are focused on storing and indexing the Minimum
Bounding Rectangles (MBR) of the trajectory of an object during the interval of
time between the current snapshot and the next one: [th, th+d]. We store together
the MBRs of each object in a snapshot by using a compact representation of an
R-tree.

By running a top-down traversal on the R-tree, following the nodes whose MBR
intersects with a queried region, we know the MBRs of the objects whose trajectories
could intersect with the queried area. That is helpful to detect those objects that
are likely to be within the queried region during the interval of time [th, th+d]. Once,
the objects with chances are retrieved, the log is used to confirm that the object is
within the region. Unlike the snapshots based on k2-trees, those based on R-trees
cannot obtain the objects within a region at the snapshot time instant.

The absolute position of every object in the snapshot at time instant th is stored
by using two arrays X and Y , each one stores the location in the horizontal and
vertical axis, respectively. Therefore, we can compute the location of the object in
constant time by accessing those two arrays.

A detailed explanation of the snapshots based on R-trees can be found in
Section 6.2, where we show its structure and algorithms.

4.3 Logs
We designed four compact data structures to store the log, that is, the sequence
of relative movements of each object. Our four structures are composed by a log
per object denoted as Lid, where id is the identifier of its associated object. Each
of these logs stores a sequence of movements represented as the displacement on
both axes from the location of the object at time instant ti to the next one at ti+1.
Therefore, given a location (2, 5) and a relative movement (2, 1), we know that the
addition of those two values gives us the next location (4, 6). With the help of the
log, every position of the objects can be computed as the accumulation of the relative
movements up to the queried time instant, from the closest absolute position. For
example, in Figure 4.1, the cumulative movement of the object O1 from t0 to t4 is
(4,−2). Since the closest absolute position is (2, 12) at t0, the position at t4 will be
(4,−2) + (2, 12) = (6, 10).

4.3. Logs 49

42 43 44 45 46 47 48

41 20 21 22 23 24 25

40 19 6 7 8 9 26

39 18 5 0 1 10 27

38 17 4 3 2 11 28

37 16 15 14 13 12 29

36 35 34 33 32 31 30

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

8

9

8

9
8

7

9

8
7

9

8 9 8 9 8 7 9 8 7 9

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
ℒ1

Figure 4.2: Example of spiral encoding representation.

We encode the relative movements with two strategies. The first one consists
of representing each movement as an integer (spiral encoding representation)
representing the displacements in the two axis, and the second one uses the classical
representation of a vector of coordinates (coordinates representation). Below, we
explain those two strategies, and we classify the structures that we propose for the
representation of the log.

4.3.1 Spiral encoding representation
Our spiral encoding proposes a strategy to store the displacement of an object in a
two-dimensional space by using a single positive integer that is shorter when the
displacement is nearer to the previous location in the space. For this reason, the
cells around the actual position of an object are enumerated following a spiral in
which the origin is the previously known position of the object, as it is shown in
Figure 4.2 (left).

As an example, assume that an object moves one cell to the East and one cell to
the North with respect to the previous known position. With the encoding on the
left of Figure 4.2 that movement is encoded as an 8. Figure 4.2 (right) shows the
trajectory of an object starting at cell (0,2). Each number indicates a movement
between consecutive time instants. Since most relative movements involve short

50 Chapter 4. Basic structure

distances, this technique usually produces a sequence of small numbers. At the
bottom of Figure 4.2 we can observe the log representation of the trajectory on the
right. Since that log is compressible, we designed two different structures of log that
use the spiral encoding representation, where the only difference is the approach to
compress the log.

• ScdcCT assumes that the consecutive displacements of an object stored in
the log as a sequence of integers tend to be small. For this reason, it encodes
shorter movements with fewer bits than larger movements. To accomplish this,
it uses a statistical zero-order byte-oriented compressor, namely (s, c)-Dense
Code (SCDC) [BFNP07].

• GraCT: observe that the same type of objects tend to do similar movements,
that produces a sequence of relative movements where there are identical
subsequences between all the objects. GraCT exploits the repetitiveness of
patterns of movement between all the objects by using RePair [LM00], a
grammar compressor. That is, the log is compressed as a sequence of symbols
of two types: terminals or nonterminals. The terminals correspond with the
values of the spiral encoding and, each nonterminal represents a sequence of
symbols from the spiral encoding. Additional information is stored for each
nonterminal of the grammar, allowing us to improve the time performance of
some queries.

On these techniques, every time a position of an object has to be computed, the
algorithm has to retrieve a convenient absolute position from the closest snapshot,
and to process the log in order to obtain the displacement of the object from that
snapshot until the queried time instant. That is, the algorithm has to accumulate
the movements and add them to the absolute position. That procedure requires
scanning all the entries from the log up to the queried time instant. Therefore, in
both cases, we need a linear traversal of the log to retrieve the desired location.

The details of ScdcCT and GraCT are explained in Sections 7.1 and 7.2,
respectively.

4.3.2 Coordinates representation
As we explained before, each log is a sequence of relative movements, which is the
displacement of an object from a position to the next one. We need to represent that
information in such a way we can efficiently solve the queries. In this case, instead
of storing only one positive integer that encodes the displacement in both axis of
a two dimensional space, we represent each relative movement with the classical
representation of a vector of coordinates, that is, a pair of values where each one
corresponds to an axis, and they can acquire positive or negative values.

Figure 4.3 shows an example of a log whose relative movements use the coordinates
representation of the left part of the figure. That matrix shows several examples of

4.3. Logs 51

(-3,3) (-2,3) (-1,3) (0,3) (1,3) (2,3) (3,3)

(-3,2) (-2,2) (-1,2) (0,2) (1,2) (2,2) (3,2)

(-3,1) (-2,1) (-1,1) (0,1) (1,1) (2,1) (3,1)

(-3,0) (-2,0) (-1,0) (0,0) (1,0) (2,0) (3,0)

(-3,-1) (-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1) (3,-1)

(-3,-2) (-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2) (3,-2)

(-3,-3) (-2,-3) (-1,-3) (0,-3) (1,-3) (2,-3) (3,-3)

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

(1,1)

(3,1)

(1,1)

(3,1)
(1,1)
(0,1)

(3,1)

(1,1)
(0,1)

(3,1)

(1,1) (3,1) (1,1) (3,1) (1,1) (0,1) (3,1) (1,1) (0,1) (3,1)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
ℒ1

Figure 4.3: Example of log using coordinates representation.

how to represent the movements, for example, the value (1,−1) corresponds with an
object which moves from the previous location one position to the East, and one
position to the South. This technique is applied to the movements of the trajectory
on the right. The resultant log is at the bottom of the figure.

As in the previous technique, we designed two structures to compress the log
with this approach:

• ContaCT: the aim of this structure is computing the cumulative movement
of an object from the initial time instant up to a given one in constant time,
avoiding the linear traversal of the log. Thus we need to obtain the cumulative
displacement in both axes until the queried time instant in constant time. To
achieve that goal, we store the relative movements of the log in two arrays
per axis, where one represents the positive displacements and the other stores
the negative displacements in that specific axis. For example, in the vertical
axis, those two arrays store the movements to the North (positive) and South
(negative). Notice that we can compute the total displacement on the vertical
axis as N − S, where N and S are the cumulative displacements to the North
and the South, respectively. The cumulative displacement on the horizontal
axis can be computed analogously.
We can reduce the computation of those cumulative displacements to a partial

52 Chapter 4. Basic structure

sums problem on each of those four arrays. Since the problem of the partial
sum can be solved in constant time by using an Elias-Fano representation, we
can compute the cumulative movement in constant time.

• RCT: this technique is based on RLZ [KPZ10] and tries to join the advantages
of GraCT and ContaCT in one single structure. Firstly, an artificial reference,
composed of the most frequent patterns of relative movements, is built. Since
that reference can be considered as the log of a trajectory, and our goal is to
exploit the advantages of ContaCT, we store it by using ContaCT. Finally,
each individual log is compactly stored with RLZ. Therefore, the resultant
log is composed of a list of phrases from the reference. With the use of O(z)
extra-space, where z is the number of phrases, this structure can compute the
cumulative movement between two time instants in constant time.

More details about ContaCT and RCT are explained in Sections 7.3 and 7.4,
respectively.

Chapter 5

Queries

As we explained in Chapter 3, there are queries focused on retrieving the individual
information of an object (object queries), and the queries of the classical spatio-
temporal indexes, which are interested in obtaining information about those objects
that are inside a spatio-temporal range (spatio-temporal range queries). Notice that
object queries are required on those representations of trajectories that compress
the data, and the spatio-temporal range queries are the classical queries supported
by spatio-temporal indexes.

Section 5.1 classifies the queries and gives a brief description of each one of them.
Section 5.2 and Section 5.3 explain the algorithms to solve the object queries and
spatio-temporal range queries on our structures.

5.1 Types of queries
As we explained, we can classify the interesting queries about moving objects into
two groups: object queries and spatio-temporal range queries. Below we show
the queries that compose those groups and introduce their functionality. For the
formalizations, let us define the trajectory of n movements of an object id as
Tid = {〈t0, p0〉, 〈t1, p1〉, . . . , 〈tn, pn〉}, where each pair 〈ti, pi〉 stores the position pi
of the object id at time instant ti.

5.1.1 Object queries
This group is composed of three queries that retrieve the individual information of
an object during an interval of time:

• Object Position: given an object identifier id and a time instant tq, this
query computes the position of that object at the queried time instant tq.

53

54 Chapter 5. Queries

Formally, the object position query, for an object identifier id and a time
instant tq, returns the location pq such that 〈tq, pq〉 ∈ Tid.

• Object Trajectory: like the previous query, it computes the position of an
object during an interval of time. That is, the object trajectory query, for an
object identifier id and a time interval [tb, te], returns the sequence of locations
〈ti, pi〉 ∈ Tid such that tb ≤ ti ≤ te, in increasing order of ti.

• Minimum Bounding Rectangle (MBR): although it is not a classical
query, occasionally, we require a summary about the path followed by an
object, instead of computing the whole trajectory. The MBR query returns,
for an object identifier id and a time interval [tb, te], the smallest rectangular
area R such that, for every element 〈ti, pi〉 ∈ Tid with tb ≤ ti ≤ te, it holds
that pi ∈ R.

5.1.2 Spatio-temporal range queries
Three queries compute which objects are within a spatial region of the space during
an interval of time or a specific time instant.

• Time Slice: this query computes those objects within a given rectangular
region at a given time instant tq. That is, this kind of query returns, for a
rectangular region rq and a time instant tq, the set O of object identifiers such
that, for each id ∈ O, there exists a pair 〈tq, pq〉 ∈ Tid where pq ∈ rq.

• Time Interval: it is an extension of time slice that expands tq to an interval
of time [tb, te]. Hence, the time interval query returns, for a rectangular region
rq and a time interval [tb, te], the set O of object identifiers such that, for each
id ∈ O, there exists at least one pair 〈ti, pi〉 ∈ Tid where tb ≤ ti ≤ te and
pi ∈ rq.

• K-Nearest Neighbors: given a point pq in the space and a time instant tq,
it returns the K closest objects to pq at tq. Formally, the K-Nearest neighbor
query for a point pq at time instant tq returns a set O of objects such that
|O| = K and d(pq, id1) ≤ d(pq, id2) for any objects id1 ∈ O and id2 6∈ O, where
d(pq, id) is the Euclidean distance from point pq to the position of object id at
time instant tq (i.e., p such that 〈p, tq〉 ∈ Tid).

The classical solutions to represent moving objects and their trajectories are
not able to solve in an efficient way both types of queries in the same structure.
For example, the traditional spatio-temporal indexes, which are variants of R-trees,
can solve the last group of queries, but the object queries cannot be efficiently
solved. On the other hand, those structures that compress the trajectories by using
delta-compression or other techniques (see Chapter 3) obtain excellent performance
in object queries, but they are incapable of answering spatio-temporal range queries.

5.2. Solving object queries 55

Our structures join the advantages of spatio-temporal indexes and compression
in the same structure, by using our two elements: snapshots and logs. Consequently,
our structures permit us to solve both kinds of queries in an efficient way.

5.2 Solving object queries

5.2.1 Object Position
Given an object Oid and a time instant tq, the query computes the location of the
object Oid at the time instant tq. In case that tq corresponds to a snapshot, we can
directly retrieve that information from that snapshot. If the implementation of that
snapshot is based on a k2-tree, it can be obtained with a bottom-up traversal of the
tree. Otherwise, the snapshot is based on a R-tree, and we can get the absolute
position from the arrays X and Y , which store the absolute positions of all the
objects.

In case that tq is not associated with a snapshot, the algorithm has to obtain the
location of that object from the closest snapshot to tq. For example, if the closest
snapshot is at time instant th, the location of the object at the time instant th is
obtained from Sh. Then, assuming that th < tq the algorithm has to process the log
to compute the cumulative movement from th to tq, that is, the sum of the relative
movements. Finally, the algorithm computes the desired position as the addition
of the cumulative movement to the absolute position. Note that, if th > tq, the
algorithm has to consider the cumulative movement from tq to th, and subtract it
to the previous position.

For example, let us look for the position of an object O1 at time instant t2, whose
log is composed of the relative movements {(1, 2), (2, 0), (1,−1), (−1, 0), (2, 1)}. We
assume that the closest snapshot is at time instant 0, and contains the absolute
position (3, 4) of O1. The cumulative movement up to t2 is the sum of the first two
relative movements from the log, that is, (1, 2) + (2, 0) = (3, 2). The addition of that
cumulative movement to (3, 4) give us the location (6, 6) of O1 at the time instant 2.

As we will see in Chapter 7, logs like ContaCT and RCT can compute in constant
time the cumulative movement. Therefore, they only need to store the first tracked
location of each object and add the cumulative movements from the initial position
up to the queried time instant. Consequently, they avoid retrieving the absolute
position from the snapshot.

5.2.2 Object Trajectory
To obtain the trajectory T from an object Oid during an interval of time [tb, te] the
algorithm is similar to the presented for obtaining the location of an object at a
given time instant. Firstly, the algorithm computes the position of the object at tb
by scanning the log, as we have seen above. Then, T is initialized with that position.

56 Chapter 5. Queries

After computing the first position, the algorithm reads the next entry of the log,
that is, the following relative movement, which corresponds with the displacement
from tb to tb+1. Consequently, if we sum that relative movement to the last absolute
position of T , we obtain the next position of the object at tb+1, which is added back
to T . By repeating those steps for each read entry from the log that is covered by
the interval [tb, te], we obtain the resultant trajectory.

For example, considering that the time interval [t1, t3] and that closest snapshot
corresponds with the time instant t0, we can compute the trajectory of an object
by traversing its log {(1, 2), (2, 0), (1,−1), (−1, 0), (2, 1)}. Firstly we retrieve the
location of the object from the snapshot, that is (3, 4). Then we compute the
location of that object at the first time instant, (3, 4) + (1, 2) = (4, 6). Therefore, T
is updated to T = {(4, 6)}. The algorithm reads the next value of the log, which
corresponds to the relative movement (2, 0) and computes the next location as
(4, 6) + (2, 0) = (6, 6). After updating the trajectory with the new information,
T = {(4, 6), (6, 6)}, the last position is computed as (6, 6) + (1,−1) = (7, 5). Hence,
the solution is T = {(4, 6), (6, 6), (7, 5)}.

5.2.3 Minimum Bounding Rectangle

Given an interval of time [tb, te] and an object, this query computes the minimum
rectangle [x1, y1] × [x2, y2] that covers the trajectory of that object from tb to te,
where (x1, y1) and (x2, y2) are the bottom-left and top-right corner of that region,
respectively.

Some applications do not need to know the exact trajectory of an object to
support the queries of its domain. For example, in those applications that detect the
objects that are moving together during an interval of time, we can discern which
objects move together by computing the area where they move, instead of their
trajectory. As we will see, in some structures, computing the MBR can be solved
more efficiently than retrieving the trajectory, making it a quite interesting query.
It can also be used as a tool for solving time interval queries and other queries.

The general approach of computing the MBR in the interval of time [tb, te]
simulates retrieving the trajectory between tb and te, gathering the minimum and
maximum values of each axis. The final minimum and maximum values after
computing the positions correspond with the resultant MBR.

For example, we consider the time interval [t1, t3] to compute the MBR of an
object whose log is {(1, 2), (2, 0), (1,−1), (−1, 0), (2, 1)} and its previous and closest
position is (3, 4). The algorithm computes the position (3, 4) at the time instant t1
as we showed before, and it starts with the MBR [3, 4]× [3, 4]. The next position is
(3, 4) + (2, 0) = (5, 4), since that point is not covered with the current MBR, the
MBR is updated to [3, 4] × [5, 4]. Finally, the position (5, 4) + (1,−1) = (6, 3) is
computed, and the MBR is extended to the rectangle [3, 3]× [6, 4] in order to include
that point.

5.3. Solving spatio-temporal range queries 57

Although this general approach requires traversing the log and retrieving each
relative movement, in Chapter 7, we show that using the log of GraCT speeds up
this query without needing to retrieve the trajectory. In addition, we explain how
the logs of ContaCT and RCT solve this query in constant time.

5.3 Solving spatio-temporal range queries
5.3.1 Time Slice
Time Slice computes the objects within a region rq at a specific time instant tq. All
of our structures start by retrieving from the closest snapshot (Sh) those objects
(candidates) that have chances to be within rq at tq. That is, to avoid scanning all
the objects stored in the structure, the first step is selecting those objects that have
chances to be within rq at tq. To obtain those candidates, the algorithm depends on
the implementation of the snapshot.

On those snapshots based on k2-trees, we have to compute, at the time instant
associated with the snapshot, the region around rq that contains all the objects
that can be within rq at tq. That region is called expanded region. Therefore, every
object outside the expanded region has no chances to be within rq at time tq.
Definition 5.3.1. The expanded region of a given region rq during the interval of
time [ti, tq] is denoted as E(rq, ti, tq). That region is the result of expanding rq in
all directions |ti − tq| ×Ms cells, where Ms is the speed of the fastest object of the
dataset.

Since that region considers the maximum speed of our dataset, every object
outside that region cannot reach region rq after |ti − tq| time instants, otherwise
the object has to overcome the maximum speed. For example, in Figure 5.1, we
assume that the maximum speed is Ms = 1 cells per time instants, and the closest
snapshot is at time instant t0. We show two examples, on the left part of the
figure tq = t1, and on the right part tq = t2. Since we are looking for the objects
within rq = [5, 5]× [8, 8], the expanded regions are E(rq, t0, t1) = [4, 4]× [9, 9], in the
first case, and E(rq, t0, t2) = [3, 3]× [10, 10], in the second. Therefore, the objects
{O1, O2} have chances to be within the region [5, 5]× [8, 8] at the time instant t1.
The other objects cannot be within rq. Instead, in the second example, since the
difference between the snapshot and the tq is longer, the region is bigger, so the
candidates are {O1, O2, O3}.

On the other hand, on the snapshots based on R-trees, we can directly detect
which objects have chances to be within rq from the previous snapshot to tq, that is,
the one that stores the MBRs whose time interval includes tq. Since those MBRs
provide an idea of the path followed for each trajectory, we can run a top-down
traversal through the R-tree to obtain those objects whose MBR intersects with
rq. Note that in case of not intersecting rq, the object cannot be within rq at time
instant tq.

58 Chapter 5. Queries

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

O1

O2

O4

O3

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

O1

O2

O4

O3

𝛆(rq, 0, 1) 𝛆(rq, 0, 2)

𝒮0 𝒮0

Figure 5.1: Two examples of expanded region, with distinct differences
between the snapshot and the queried time instant.

We abstract the operation of obtaining the candidates to be within rq from the
implementation of the snapshot by defining the operation reach(S, rq, tq).

Definition 5.3.2. reach(Sh, rq, tq) is the function that computes the object
candidates stored in Sh that can be within rq at time instant tq.

Once the object candidates are obtained, the algorithm has to process the log of
each one of them to get the position of them at tq time and check if the object is
within rq to add it to the final solution.

Since some log representations need to traverse the log for retrieving the desired
position, we can take advantage of it to detect which objects are moving in the
wrong direction. We can detect those objects that are moving further away from
rq, and stop processing its log before computing its location at tq. To accomplish
it, we need to define a new operation chance. It is conceptually similar to reach,
but it considers the position of the object at a specific time instant, which can be a
snapshot time instant or not.

Definition 5.3.3. We define chance(pi, ti, rq, tq) as a function that returns true
when an object located in the cell pi at ti have chances to reach the region rq at time
instant tq.

After reading an entry of the log, we compute the new location of the object pi
at ti. In case that chance(pi, ti, rq, tq) does not hold, the algorithm stops processing

5.3. Solving spatio-temporal range queries 59

that object and continues with the next candidate. We can know whether an object
has possibilities of being within rq at tq by computing E(rq, ti, tq), in case that pi is
within that expanded region, the object has chances to be within rq at tq.

5.3.2 Time Interval

Time interval queries return the objects that were within a region rq at any time
instant during a time interval [tb, te]. An easy solution is to use an algorithm
similar to time slice but taking into account that the interval of time can involve
more than one snapshot. That is, the locations in the interval [tb, te] can be
solved by considering snapshots {Si,Si+d, . . . ,Sj−d,Sj}, where Si and Sj are the
first and last covered snapshots. Therefore, the solution can be computed as the
union of the results from the partial solutions of each interval of time between two
snapshots: {[tb, ti+d−1], [ti+d, ti+2d−1], . . . [tj−d, tj−1], [tj , te]}. That is, we compute
a time interval query in each one of those time intervals.

To solve a partial solution whose corresponding time interval is [ti, tj], and the
previous snapshot is Sh, we have to obtain the candidates that can be in rq at tj by
using reach(Sh, rq, tj). Then we have to compute the trajectory of each candidate
with a traversal through the log for obtaining the locations between ti and tj . In
each time instant ti ≤ tc ≤ tj , we obtain a position pc, and the algorithm checks if
pc is within rq. If the object is contained, the algorithm stops and adds the object
to the partial solution. Otherwise, the algorithm checks chance(pi, ti, rq, tj). In
case that the object has no opportunities to be within rq at tj , the algorithm stops
processing this object. In case that the object still has chances to be within rq, the
algorithm continues processing that log. The partial solution is obtained when all
the logs of the candidates were processed.

In Figure 5.2, assuming that our candidates are O1 and O2, let us compute the
objects within region rq = [8, 5] × [10, 8] at [t0, t10]. Firstly O1 is processed, the
algorithm computes each time instant up to t5, and O1 continues with chances to be
within rq. However, after computing the position of O1 at t6, (8, 12), we observe as
the expanded region E(rq, t6, t8) does not contain O1. Therefore, O1 has no chances
to be within rq during the given interval of time. Hence the object is discarded,
and O2 is processed. O2 keeps the chances to be within rq up to t5, and then it
computes the position at t6, (8, 6). Since O2 is within rq, it is added to the solution,
and the algorithm stops processing O2. There are no more objects to process, thus
the solution is only composed of the object O2.

This general approach for solving the partial solutions of time interval queries is
improved on those structures that can solve in constant time the Minimum Bounding
Rectangle between two time instants. In that case, the algorithm performs a binary
search looking for an MBR during the interval of time [tb, te] included within rq.

Therefore, the algorithm starts computing the MBR of [tb, te] and checks three
cases:

60 Chapter 5. Queries

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t0

t1 t2 t3
t4 t5

t6 t7 t8 t9
t10

t0 t1

t2

t3 t4 t5
t6

t7
t8

t9 t10

O1

O2

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t0

t1 t2 t3
t4 t5

t6 t7 t8 t9
t10

t0 t1
t2

t3 t4 t5
t6

t7
t8

t9 t10

O1

O2

𝛆(rq, t6, t8)

MBR1

MBR2

MBR3

MBR4MBR5

MBR6rq

rq

Figure 5.2: Example of the algorithm to solve time interval queries:
retrieving the trajectory (top) and binary search through the MBRs (bottom).

• MBR ⊆ rq. The object is within rq during the whole interval [tb, te], thus the
current candidate is part of the solution. The algorithm continues with the
next candidate and adds this object to the solution.

• MBR∩rq = ∅. Since there is no intersection with rq during the whole interval,
the object has no chances to be within rq. Therefore, this object is discarded,
and the algorithm continues with the next candidate.

5.3. Solving spatio-temporal range queries 61

• MBR ∩ rq 6= ∅. Though there is an intersection, the current candidate could
be outside rq, thus the process continues recursively with the two halves of
the queried range [tb, tm] and [tm+1, te], where tm is the time instant in the
middle, i.e. tm = d tb+te

2 e.

At the bottom of Figure 5.2, we show how to compute the time interval query
during the time interval [t0, t10] and with the queried region rq = [8, 5] × [10, 8].
Our candidates are the objects O1 and O2. Firstly, we compute the MBR of O1
in the queried interval (MBR1). We can observe that MBR1 does not intersect
rq. Therefore that object is discarded as part of the solution, and the algorithm
continues with O2. Since its MBR (MBR2) during the queried interval contains
rq, it starts the binary search through the MBRs. That is, MBR2 is split into
MBR3 = [2, 2]× [7, 5] and MBR4 = [8, 6]× [12, 8]. MBR3 does not cover any part
of rq, hence the algorithm stops breaking it. Instead, MBR4 intersects with rq, and
it is divided in two parts: MBR5 = [8, 6]× [10, 7] and MBR6 = [11, 7]× [12, 8].

Notice that the binary search involves the time interval [tb, te]. That is the main
difference with the previous approach, where the chances are checked with respect
to the last instant of the sub-interval. Consequently, with the binary search of the
MBRs, once an object is candidate in a snapshot, it will not be longer considered in
the remaining snapshots.

5.3.3 K-Nearest Neighbor
K-Nearest Neighbor or KNN is a spatio-temporal range query that returns the K
closest neighbors (objects) to a given point pq at a time instant tq. That is, it
computes the distance from pq to the K-th nearest object, and returns the objects in
a radius lower or equal to that distance. In order to obtain the result, the algorithm
uses a priority queue of candidate nodes with objects from the closest snapshot (Qc),
and a priority queue of best known results (Qr).

Before explaining how to solve this query, we define the minimum and maximum
Euclidean distance, necessary to discern which objects are closer to pq in the space.

Definition 5.3.4. We denote with pr the minimum Euclidean distance between the
region r = [x1, x2]× [y1, y2] and the point p = (x, y).

Definition 5.3.5. We denote with pr the maximum Euclidean distance from the
region r = [x1, x2]× [y1, y2] to the point p = (x, y).

Qc is a min-priority queue that recollects the nodes of the chosen snapshot
prioritized by their proximity to pq. Notice that all the structures of the snapshots
are trees whose nodes contain some spatial data. For example, in the snapshot
based on k2-trees the internal and leaf nodes represent regions and cells of the space,
respectively. Instead, in those snapshots based on R-trees, each leaf stores the MBR
of the trajectory of an object during the corresponding interval of time. Therefore,

62 Chapter 5. Queries

each internal node stores a MBR that wraps the MBRs of its children. Consequently,
every node, independently of the implementation of the snapshot, corresponds with
a region of the space (of size 1× 1 in case of cells) and we can prioritize all of them
by their proximity to pq.

In order to compute that proximity, we define the minimum and maximum
reachable Euclidean distance, that is, the minimum and maximum Euclidean distance
that an object can achieve with respect to a point at a time instant.

Definition 5.3.6. The minimum reachable Euclidean distance, denoted as
dmin(ri, ti, pq, tq), is the Euclidean distance of the objects within ri at ti can be with
respect to the queried point pq at the queried time instant tq.

Definition 5.3.7. The maximum reachable Euclidean distance, dmax(ri, ti, pq, tq) is
analogous to the previous definition, but instead of the minimum Euclidean distance
they compute the maximum Euclidean distance.

Notice that the main difference of these definitions with respect to Definitions 5.3.4
and 5.3.5 is that the Definitions 5.3.6 and 5.3.7 consider that the object can move
during the interval time [ti, tq].

The minimum and maximum reachable distance depends on the snapshot’s
implementation. For example, if the snapshot is based on an R-tree and the node
contains r1 as its MBR, the objects are moving within r1 during an interval that
includes tq. Therefore, the minimum and maximum reachable distance to pq is the
minimum and maximum Euclidean distance between r1 and pq, that is, they can be
computed as r1 pq and r1 pq, respectively.

On the other hand, in the case of a snapshot that is based on a k2-tree, the
region r1 does not correspond with any trajectory. Therefore we have to assume
that the included objects move at the maximum speed of the dataset during the
interval [th, tq]. Consequently, we expand r1 to re = E(r1, th, tq), where th is the
time instant of the snapshot. That expanded region corresponds with the area
where the objects within r1 can be moving during the interval [th, tq]. Hence, the
minimum and maximum reachable distance to pq can be computed as re pq and
re pq, respectively.

For example in Figure 5.3 we show dmin(r, 0, pq, 2) and dmax(r, 0, pq, 2). Let
us assume that the chosen snapshot corresponds with time instant 0, the region
of a node is r = [3, 4] × [4, 5], the maximum speed is Ms = 1, and pq = (8, 3).
Hence, the objects within r could be moving during the interval of time [0, 2] to
any part of re, that is, the resultant region of expanding the region of the node
(2 − 0) × 1 = 2 cells in all directions. Consequently, the closest position to pq
that an object within r can reach will be the nearest point of re to pq. In that
example, the closest point is (6, 3), and its Euclidean distance to pq is equivalent
to dmin(r, 0, pq, 2) =

√
(8− 6)2 + (3− 3)2 = 2. Analogously, dmax(r, 0, pq, 2) is

computed with respect to the furthest cell (1, 7) of re concerning to pq.

5.3. Solving spatio-temporal range queries 63

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9

r
pq

re

dmax

dmin

Figure 5.3: Example of minimum and maximum reachable distance on
snapshots based on k2-trees.

Therefore, prioritizing the nodes of Qc by its proximity to pq means sorting them
in ascending order by using its minimum reachable Euclidean distance, thus the
closest nodes to pq are on top of Qc. The ties between two nodes are broken with
the maximum reachable distance.

Assuming that Sh is the previous snapshot1 to tq, the algorithm starts adding
the root of Sh to Qc. Then, the procedure continues retrieving the element on top
of Qc, that is the closest one to pq. Depending on the type of node, the algorithm
chooses between the following steps:

• If it is an internal node, it is removed from Qc and its children are added to
Qc, considering the minimum and maximum reachable Euclidean distance.

• Otherwise, if it is a leaf node, the algorithm computes the position of its
objects at tq, and they are added to Qr.

Qr is a max-priority queue that stores objects sorted by their distances to pq.
The maximum size of this queue is K, that is, once Qr contains K elements, every
time a new object is added, the farthest is deleted. This queue can compute in
constant time the distance to pq of the K-th closest object (the last element of the
queue), which decreases as the search progresses.

Therefore, the algorithm can stop in two cases: (i) when Qc is empty, there are
no more objects to check; or (ii) the candidate on top of Qc cannot improve the
distance of the K-th element of Qr, that is, the best candidate cannot improve the
current solution of Qr.

1When the closest snapshot corresponds to a time instant after tq , the process is analogous but
backwards.

64 Chapter 5. Queries

m = 4 m = 3 m = 1 m = 1

m = 1m = 3

m = 1

n1 n2

n3 n4 n5 n6

n0

O1 O2O3 O4

Step Qc Qr k-th dist.

1 n0

2 n2 n1

3 n5 n6 n1

4 n6 n1 O1 2

5 n1 O2 O1 1

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10

O1

O2

O3

O4

pq

tq

M = 4

M = 5

M = 5

M = 5

M = 3

M = 3M = 2

Figure 5.4: Example of KNN query with K=1 and the followed steps.

To illustrate the algorithm, the left part of Figure 5.4 shows the location of a set
of objects at tq and a point pq. On top of the right part, we observe a conceptual
tree of a snapshot where each node has two values: m and M . m is the minimum
reachable Euclidean distance from the region represented with that node, and M
corresponds with the maximum reachable Euclidean distance.

Following the steps in the right part of Figure 5.4, we can compute the KNN
of that point with K = 1. Firstly, n0 is added to Qc, since it is the root and the
only node on Qc it is located on top of Qc. In the second step, n0 is retrieved and
split into n2 and n1. Once n1 and n2 are added to Qc, n2 is on top because its
minimum reachable Euclidean distance is lower than its corresponding value to n1
(n2.m < n1.m). In the next step, n2 is divided into n5 and n6. Both have the same
priority, but in our case, we decide to process the first n5 because of the maximum
Euclidean distance (n5.M < n6.M). Since it is a leaf and contains the object O1,
we compute the corresponding position of O1 at the queried time instant tq. The
distance between its location and pq is 2, thus it is added to Qr with priority 2.
As it turns out the current solution to our query, we track its distance. We look
if the distance of the recently added object (since we are computing K = 1) can
be improved by checking the minimum reachable Euclidean distance of the object
on top of Qc. In that example, the node on top is n6, since n6.m is 1 and it is
lower than the distance between O1 and pq, the next node to process is n6. This
node only contains the object O2, thus its position at tq is computed. The distance
between O2 and pq is 1, moving it to the top of Qc and removing O1. Consequently,

5.3. Solving spatio-temporal range queries 65

the K-th distance is 1, and it cannot be improved because the first node of Qc has
a minimum reachable Euclidean distance (n1.m = 3) greater than 1. Hence, the
algorithm stops and returns the solution {O2}.

66 Chapter 5. Queries

Chapter 6

Snapshots

In this chapter, we present the different structures designed for the representation
of snapshots. All of them assume a raster model that splits the space into cells of a
fixed size. That is, the space can be understood as a matrix, and the coordinates of
a trajectory are mapped into their corresponding cells. The size of those cells can
be established depending on the domain, notice that the smaller the cells are, the
higher the precision we obtain.

This chapter is divided into Sections 6.1 and 6.2 that introduce our two
implementations of the snapshots: based on k2-tree and based on R-trees. In
each section, we explain both, the structure and the required algorithms to compute
the queries of Chapter 5.

6.1 Snapshot based on k2-tree
The k2-tree represents a binary matrix where a cell set to 1 indicates that the
cell contains one or more objects. Recall that the k2-tree exploits the clustering
and sparsity of that matrix by recursively splitting into k2 parts those submatrices
containing information. Therefore, the nodes of the navigable tree represent regions
of the space, and their leaves refer to a specific cell, which can contain objects or not.
In case of the existence of objects, each 1-bit is associated with the corresponding
leaf of its cell. Below we present the data structure and the algorithms to compute
the spatial operations.

6.1.1 Data structure
Let Sh denote the snapshot representing the position of all the objects at time
instant th. The components of Sh are:

• The time instant represented by the snapshot, in this case th, a multiple of d.

67

68 Chapter 6. Snapshots

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T:L 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

15

14

13 3,6
12

11

10

9

8

7

6

5 4,5
4 2
3

2

1

0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1

L 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1
Q 1 0 1 0 0 0

perm 3 6 4 5 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 2 3 4 5 6
c3 c8 c10

c18

p39p22p15

ᴨ-1(2)p qselect1(L,3)

rq

T:L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 6.1: Example of snapshot and the different operations that supports.
The indexes marked as T : L denote the indexes of concatenating the bitmaps
T and L.

• A k2-tree storing the positions in the space (i.e., the cells of the raster) where
there are objects.

• An array of integers perm storing the identifiers of the objects at each cell.

• A bitmap Q, which is an auxiliary data structure of perm that is used to
determine the correspondence between positions in the space and the positions
of perm.

Recall that the k2-tree represents a binary matrix where a cell set to 1 indicates
that the cell contains one or more objects. Although the k2-tree provides a fast way
to retrieve the cells with objects, we need to know the identifier of those objects.
Each 1 in the binary matrix corresponds to a bit set to 1 in bitmap L of the k2-tree.
The object identifiers corresponding to every cell that have at least one object are

6.1. Snapshot based on k2-tree 69

stored in perm according to their order of appearance in L. This array turns out to
be a permutation of all the object identifiers. Bitmap Q is aligned with perm; a 0
at a given position of Q means that the object identifier aligned in perm is the last
object in the cell, while a 1 marks that the next object identifier in perm is in the
same cell.

Figure 6.1 shows an example. On top of this figure, we can observe the matrix
representing the space and the objects placed in the cells (these cells are the same
containing a 1 in Figure 2.14). The four arrays at the bottom are the actual data
structures that represent the snapshot information. Arrays T and L are the same as
those in Figure 2.14 and mark the positions having objects. The object identifiers
are stored in arrays Q and perm. For instance, the object identifiers corresponding to
the second 1 in L (which is at position 5 in L and corresponds to the cell at position
(9,5)) are stored starting at position 3 in perm, because the first 0 (signaling the end
of the entries corresponding to the first 1 in L) is at position 2. Since the last object
inside this cell is stored in the position 4 of perm, Q[4] = 0, the object identifiers
corresponding to the third 1 in L start at position 5 in perm, and so on. Therefore,
the identifiers of those objects inside (9,5), i.e. 4 and 5, are stored at positions 3
and 4 in perm.

6.1.2 Queries
As we explained in Section 2.2, the k2-tree supports efficient navigation from a
parent node to its children and vice-versa. With the help of this type of snapshot,
we can solve the queries presented in Chapter 5. Below, we explain the different
algorithms designed in the snapshot to support those queries.

6.1.2.1 Object queries: obtaining the absolute position

Recall that queries like Object Position, Object Trajectory, and MBR need to obtain
the absolute position where an object is in the closest snapshot. Considering a
snapshot Sh, to obtain the absolute position of the object, the algorithm starts by
using π−1(id) operation over perm, that obtains the position i in perm where the
identifier id is located. Then the leaf of the k2-tree corresponding to Oid is computed
with the help of the bitmap Q. Since Q is aligned with perm and marks with 0
the last object of a leaf of the k2-tree, the number of leaves with objects before the
object in position i of perm can be computed as y = rank0(Q, i− 1). Consequently,
the position of L corresponding to Oid is the (y + 1)-th 1; that is, select1(L, y + 1).
With that position in L, we can traverse the k2-tree upwards in order to obtain the
position in the space of that cell, and thus the position of the object.

For example in Figure 6.1, we illustrate how to obtain the position of the object
with identifier 2 (O2). We start computing its location in perm with π−1(2) = 5. By
using rank0(Q, 5− 1) = 2, we know that there are two leaves with objects before the
leaf of O2, therefore it is stored into the third cell with objects, and it corresponds

70 Chapter 6. Snapshots

with the 11-th leaf (select1(L, 3) = 11). Finally, with a bottom-up traversal of the
k2-tree from the 11-th leaf up to the root, we can compute the cell containing O2.
That traversal requires of O(log s) time, where s× s is the size of the matrix that
represents the space. In Figure 6.1, pa is the position in T of the 1-bit corresponding
to the parent of the node whose position in T : L is a, which can be computed as
select1(T, ba/k2c). The values in bold are accessed during that traversal.

Notice that, this operation is the only one that requires a bottom-up traversal of
the k2-tree, and requires an additional space of (1 + ε)m logm+O(m) bits to solve
π−1 in O(1/ε) time, where m is the number of objects that contains the dataset. In
case that this operation is not required, the structure does not need to store the
additional space for π−1.

6.1.2.2 Time Slice and Time Interval: choosing the candidates

Recall that Time Slice and Time Interval queries need to obtain the object candidates
that can be within the queried region rq during a specific time instant or interval
to avoid the sequential scan of the logs of all the objects. In order to obtain those
candidates, we need to compute reach(Sh, rq, tq), where Sh is the chosen snapshot,
and tq the considered time instant.

Computing reach(Sh, rq, tq) depends on the type of snapshot, in order to solve
it on a snapshot based on k2-tree, we use Definition 5.3.1, that is, the expanded
region. We have seen that those objects that are not contained within E(rq, th, tq)
at time instant th have no chances to be within rq at tq; otherwise, they should
move faster than the maximum speed of the dataset. Consequently, the candidates
of these queries can be computed by obtaining those objects that are within the
region E(rq, th, tq) at th. For example, given rq = [10, 4]× [10, 5], |th − tq| = 1 and
Ms = 1, the maximum distance that an object can move from th to tq is only one
cell. Therefore, the expanded region is [9, 3]× [11, 6], and includes objects that can
be at rq after one time instant.

To retrieve the information within a region from this snapshot, we first run a
top-down traversal in the tree, from the root until we reach those positions in L
corresponding to the queried area. Let us assume that, after the traversal, the
algorithm reaches only one leaf at position j in L. We compute the number of leaves
of objects up to the j-th leaf with x = rank1(L, j). Then, we compute the position
of the last bit of the previous leaf with objects, the (x−1)-th 0 in Q, and we add 1 to
obtain the first position in our current leaf. That is, p = select0(Q, x− 1) + 1 is the
position in perm of the first object identifier corresponding to the searched position.
Similarly, the last position of our leaf can be computed as q = select0(Q, x). Since
Q is aligned with perm, the objects’ identifiers are from position p to q in perm.

Figure 6.1 shows the steps followed to compute the objects within region rq =
[9, 3] × [11, 6]. Notice that the cells colored in gray correspond with the checked
positions. The top-down traversal starts at position 3 in T , because its corresponding
submatrix [8, 0]× [15, 7] contains rq. Since T [3] = 1, we compute the positions of

6.1. Snapshot based on k2-tree 71

the k2 children of the node at T [3]. That operation is denoted as ca, and computes
rank(T, a)× k2 where a is the position of the node in T . In our case we compute
c3 = 8. There are two nodes that overlap rq whose positions in T are 8 and 10;
notice that, their corresponding submatrices are [8, 4] × [11, 7] and [8, 0] × [11, 3].
Then, c8 and c10 are computed, and their children intersecting rq are checked. In
that case, only the node at position 18 has objects. We reach the leaves with
c18, and just one leaf contains objects, that at position 5 of L. By computing
rank1(L, 5) = 3, we know that this leaf is the third cell with objects. Finally we
compute p = select0(Q, 2) + 1 = 3 and q = select0(Q, 3) = 4, hence we know that
our result are those values in the range [3, 4] of perm; that is, the object identifiers 4
and 5.

Observe that when tq = th the operation is solved directly in the snapshot,
without the use of an extended region (rq = E(rq, th, tq)). Consequently, when
tq = th, time-slice queries do not need to traverse the log because the solution
corresponds with the objects retrieved from reach(Sh, rq, tq).

6.1.2.3 K-Nearest Neighbor: prioritizing the objects

To solve KNN queries, the nodes of the snapshot are collected in a priority queue
Qc, taking into account the minimum and maximum possible distance of each node.
Those distances correspond with the Definitions 5.3.6 and 5.3.7, respectively. That
is, given a snapshot Sh and a node ni of Sh whose corresponding region is ri, we
can compute the minimum and maximum reachable distances of the objects to pq
at time instant tq with dmin(ri, th, pq, tq) and dmax(ri, th, pq, tq).

This kind of snapshots does not store the trajectory of the objects. Thus we have
to assume that the objects are moving at the fastest speed of the dataset. Therefore,
those objects that are within ri, can only be moving within rexp ← E(ri, th, tq),
otherwise the object would be moving faster than the maximum speed. Therefore,
in the case of the minimum, the result is the distance between the expanded area
rexp and pq, that is, rexp pq, whereas the maximum possible distance is computed
as rexp pq.

For example in Figure 6.1 assuming we are processing the node that corresponds
with the region ri = [8, 8]× [15, 15], pq = (13, 4), th = 0, tq = 1 and Ms = 1, let us
consider the operation dmin(ri, 0, (13, 4), 1). Firstly, it computes rexp ← E(ri, 0, 1) =
[7, 7]× [16, 16], the area where any object within ri can be moving. Then, it returns
rexp pq = 3 because from the closest point in rexp, (13, 7), with respect to pq the
distance in cells is 3. On the other hand, dmax(ri, 0, (13, 4), 1) =

√
62 + 112 ' 12.53

cells, the Euclidean distance from (13, 4) to (7, 15), the furthest point of rexp to
(13, 4).

Note that dmin(ri, th, pq, tq) is equivalent to ripq when th = tq. That feature
makes it possible to improve the KNN queries. Recall that two priority queues are
used, Qc that contains the nodes of the snapshot, and Qr, the known results. An
object is added to Qr after retrieving its position at tq, and computing its distance to

72 Chapter 6. Snapshots

pq. Since the snapshot stores the location of the object at th, obtaining the distance
when th = tq is straightforward. When a leaf is reached, the position pi of the object
is known, and it can be directly added to Qc with the distance set to pipq.

6.2 Snapshot based on R-tree
The classical R-tree stores the locations of the objects to compute an imprecise
extended region, and uses the Minimum Bounding Rectangles for representing the
spatial distribution of those objects. Recall that it is a tree, where the MBR of each
internal node wraps the MBRs of their children, instead, each leaf node contains the
MBR of several objects. All the MBRs of the tree are chosen following a heuristic
that minimizes the size of the MBRs.

Unlikely our snapshot based on k2-tree that only stores the position of the
objects at the corresponding time instant of the snapshot, the snapshots based on
R-tree store the MBR that encloses the trajectory of an object between the time
instants of the cited snapshot and the next one. More precisely, since snapshots are
created every d time instants, a snapshot Sh based on R-tree stores the MBRs of the
trajectories of the objects in the interval [th, th+d]. Therefore, it avoids to consider
the maximum speed of the dataset when computing spatio-temporal range queries,
providing a more accurate area where the object can be moving during the interval
of time [th, th+d]. In the following sections, we show the complete data structure
and the algorithms for solving the spatial operations.

6.2.1 Data structure
Since the R-tree stores MBRs that wrap the trajectory of objects, we cannot obtain
the position of any object at a specific time instant of the trajectory, including the
time instant th. Therefore, we need to add some additional structures to the R-tree
to specifically store the absolute positions of the objects at th. Consequently, every
snapshot Sh is composed of:

• The time instant represented by the snapshot, in this case th, a multiple of d.

• A static and compressed R-tree [BLNS13] storing the MBR of the trajectories
of each object during the interval of time [th, th+d].

• The absolute positions of those objects at th are stored into two arrays of
integers X and Y , for the displacement on the horizontal and vertical axis,
respectively.

Figure 6.2 shows an example. In the left part, we can observe the location of the
objects of Figure 6.1 and their trajectory during the following four time instants
until the next snapshot. All those trajectories are surrounded by a rectangle that

6.2. Snapshot based on R-tree 73

15

14

13 3,6
12

11

10

9

8

7

6

5 4,5
4 2
3

2

1

0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R2

X 11 13 10 9 9 10
1 2 3 4 5 6

R1 R2 R3

R4 R5 R6 R7 R8 R9

R1

R3

R4

R5

R6

R7

R8

R9

O2 O1 O5 O4 O3 O6

Y 0 4 13 5 5 13
rq

Figure 6.2: Example of snapshot based on R-tree at time instant th.

represents their MBRs. The superposed rectangles involving more than one MBR
belong to the first levels of the R-tree. For example R1 encloses theMBRs of objects
O1 and O2. The locations of the objects at th are stored in X and Y . That is, the
first entry of X and Y corresponds to the first object, the second to the second
object, and so on. Therefore, the location of the object O2 at th is stored at X[2]
and Y [2], that is (13, 4).

6.2.2 Queries
The use of this type of snapshot in the different queries of Chapter 5 is explored in
the followings sections.

6.2.2.1 Object queries: obtaining the absolute position

Notice that the queries that belong to the group of object queries need to obtain
the absolute position of an object from the closest snapshot. Once we figure out the
closes snapshot, we retrieve the absolute position from X and Y . Since the locations
are contiguously stored into those two arrays, and the identifiers of the objects index
them, we know that the id-th entry in X and Y corresponds with Oid, thus the
solution is the point (X[id], Y [id]).

For example, in Figure 6.2 we know that the absolute position of O2 at th is
(X[2], Y [2]) = (13, 4).

74 Chapter 6. Snapshots

Notice that the arrays X and Y require of O(m log s) bits, where s × s is the
size of the matrix and m the number of objects of the dataset. As we will see later,
when we use some structures of log we do not need to compute the absolute position
in the snapshot, because the log supplies that information. Since X and Y are only
focused on storing the absolute positions of the objects in each snapshot, those types
of logs can save those O(m log s) bits.

6.2.2.2 Time Slice and Time Interval: choosing the candidates

With the operation reach(Sh, rq, tq), we can obtain the objects that have chances to
be within rq at tq. This operation is necessary in order to obtain the objects that
have chances to be part of the solution of Time Slice and Time Interval queries. Since
our snapshots based on R-trees keep MBRs that enclose every individual trajectory
during [th, th+d], we have to choose the snapshot that stores the trajectories that
include tq. In that snapshot, each object whose MBR of its trajectory intersects with
rq has chances to be within it. Therefore, by running a top-down traversal following
the nodes of the R-tree that overlap with rq, we get the objects that intersect that
area.

In Figure 6.2, the traversal of the tree starts with the second node of the first
level because it is the only one that intersects rq (R2 ∩ rq 6= ∅). The algorithm
continues with the children of R2, but only R6 intersects rq (R6 ∩ rq 6= ∅). Since R6
only contains object O5, it is the solution of the operation.

Notice that this technique to select candidates is more accurate than extending
the region, as we did in the snapshots based on k2-tree, because it takes into account
the trajectory of each individual object. This particular change makes it possible
that the snapshots based on R-tree yield a better prune of the objects that can reach
rq at tq.

As in the case of snapshots based on k2-tree, when tq = th, the snapshots based
on R-tree that retain X and Y can solve time slice queries without using the log.
Thus, once the objects whose trajectories intersect with the queried region are
obtained, for each of them, its position at tq = th is computed in the snapshot. With
that information, the algorithm adds to the solution the objects within rq.

6.2.2.3 K-Nearest Neighbors: prioritizing the objects

Recall that to solve KNN queries we have to prioritize the nodes of the closest
snapshot Sh to tq by its proximity to pq in a min-priority queue Qc, but taking
into account that the objects included in that node can move closer to pq during
the interval of time [th, tq]. To consider that proximity we compute the operations
dmin(ri, th, pq, tq) and dmax(ri, th, pq, tq) for each node of the snapshot, where ri is
the region of that node. Since ri corresponds to theMBR that encloses its children’s
trajectories during the interval of time [th, th+d] and tq ∈ [th, th+d], the minimum

6.2. Snapshot based on R-tree 75

and maximum reachable Euclidean distance can be easily computed as ri pq and
ri pq.

This type of snapshot obtains a better approximation that the k2-tree based
counterpart, especially when the difference between tq and th is significant. For
example, in Figure 6.2, with pq = (10, 5), tq − th = 4 and Ms = 1, with the k2-tree-
based approach, the minimum distance for O4 and O5 is 0, because their expanded
region, [5, 1]× [13, 9], overlaps rq. However, with this new approach the minimum
distance R7 pq = 1 for O4. Therefore O4 has less probabilities to be within rq than
O5 whose minimum reachable Euclidean distance is R6 pq = 0.

With this technique, KNN queries when tq = th, can be sped up. Recall that, in
these queries, the solution is composed of the K-th first objects of a priority queue
Qr where the objects are sorted by its minimum distance to pq at tq. When tq = th
that distance is directly obtained from the information stored in X and Y . This
allows adding the objects directly to Qr without needing to check the log, hence
improving this kind of query. Notice that, in case of not storing X and Y , such
improvement is not possible.

76 Chapter 6. Snapshots

Chapter 7

Logs

The log is the second element of our structure. We design four different types of log
structures and for each of them we provide the necessary algorithms to solve the
queries presented in Chapter 5. Each log corresponds with an individual object, and
represents its relative movements along time. Therefore, each log can be considered
as a sequence of values where each element represents the displacement of an object
from a position to the next one. Consequently, given the location of an object, we
can compute the next position by applying its corresponding relative movement.
Additionally, with the log, we can retrieve the actual location of all the objects, at
the time instants not covered by snapshots.

In this chapter, we propose four data structures to represent the log. All of them
support the presented queries, but they have different features related to compression
and time performance, as we explain in the next sections. Section 7.1 presents a
structure that assigns fewer bits to shorter movements by using (s,c)-Dense Codes.
The technique explained on Section 7.2 shows how to exploit the repetitiveness of
movement patterns by using grammar compression. A technique that is focused on
time performance instead of on compression, and is based on a partial-sums structure
is introduced in Section 7.3. Finally, Section 7.4 illustrates a structure whose main
goal is to obtain a good space/time tradeoff by using relative compression.

7.1 ScdcCT
By considering the concept of the first law of geography [Tob70], which states
that “near things are more related than distant things”, we can assume that short
movements are more common than long displacements. ScdcCT tries to exploit this
fact by encoding the movements with a variable-length code that assigns shorter
or longer codewords depending on how long is the movement. That is, shorter
movements require fewer bits. Although this technique is simple, it turns out to be

77

78 Chapter 7. Logs

a good starting point for obtaining compression on trajectories.

7.1.1 Data structure
The relative movements in a log can be represented with two integers that denote
the displacement of the object in each dimension. To save space, ScdcCT encodes
the two values with one positive integer by using the spiral encoding representation,
which was presented in Chapter 4.

The result of that encoding is a sequence of integers representing the movements,
which at the same time are encoded with (s, c)-Dense Codes. Recall that (s, c)-Dense
Codes need a first phase to compute the frequencies. We avoid that step by assuming
that the shortest movements are more frequent, thus short movements require fewer
bits than longer displacements.

Let us consider the trajectory of an object Oid as the list of points p0, p1, . . . , pn
where pi is the position of the object at time instant i. Lid stores m1,m2, . . . ,mn

where mi is the relative movement from pi−1 to pi, and they are represented with
the spiral encoding and encoded with (s, c)-Dense Codes.

As the snapshots are distributed every d time instants, we can figure out that
Lid is split into many sections, delimited by the snapshots. That is, the first section
of the log corresponds with the movements from time instant 1 to d, the second
from d+ 1 to 2d, and so on. For solving the queries of Chapter 5, we need to access
the closest snapshot and traverse the corresponding section of the log.

Since the log of each object is as unique sequence and each entry has variable-
length, we need a mechanism to access the first and last entry of the log between
two snapshots. Therefore, we store idx = [l0, l1, . . . , lk] where each lj is a pair that
stores the position in Lid that contains the previous and posterior entry of the log
from a snapshot. Hence, we can access to the first or last position of the log between
two consecutive snapshots in constant time without requiring to traverse the log
from the start to the previous or posterior position of the desired snapshot.

7.1.2 Object queries
7.1.2.1 Object Position

In order to compute the position of an object we have to take the absolute position of
that object stored in the closest snapshot Sh, and add the cumulative movement from
the snapshot to the queried time instant tq. If Sh is previous to tq that cumulative
movement is computed by traversing the log from the entry that corresponds with
th+1 to tq. Notice that we can compute the entry of th+1 in O(1) time from idx.

Let us denote (cx, cy) as the current position, and tc as the current time instant
to process. Hence we set tc ← th+1 and (cx, cy) is initialized with the absolute
position from Sh. Since each entry of the log refers to one time instant, every time
a new codeword from the log sequence is read, the algorithm repeat these steps:

7.1. ScdcCT 79

1. Assuming that CWscdc is the corresponding codeword of (s, c)-Dense Code for
tc, we decode CWscdc to its spiral codeword (CWspiral). Then, the CWspiral

is decoded and we obtain the movement (mx,my), where mx and my are
the displacements in the horizontal and vertical axis, respectively, which can
acquire positive and negative values.

2. By updating (cx, cy)← (mx,my) + (cx, cy), the value of (cx, cy) corresponds
with the position at tc.

3. The algorithm continues repeating Steps 1–2 with the next entry, which
corresponds with time instant tc ← tc+1.

Notice that, after each iteration through Steps 1–2, the point (cx, cy) contains
the object’s position at tc. Therefore, after tq − th iterations, the desired solution
is stored in (cx, cy). For example, in Figure 7.1, we can observe a trajectory (left)
and the mapping between a word and its codeword for (2, 6)-Dense Code, assuming
that b = 3 (right), that is, the codewords are formed by chunks of 3 bits. On the
bottom of both elements, there is the corresponding compressed log (Lid), and the
position of that object in Sh is (0, 2). To obtain the position of the object after six
time instants, the algorithm decodes the first CWscdc = 001 to its corresponding
CWspiral = 1. Since the spiral codeword corresponds with the movement (1, 0),
the position at t1 is computed as (cx, cy) = (0, 2) + (1, 0) = (1, 2). Then the
algorithm continues with the next entry of the log 001 and obtains the position
(cx, cy) = (1, 2) + (1, 0) = (2, 2). The process is repeated until reaching t6, where the
position (cx, cy) = (9, 4) is obtained. Besides, comparing the first and third entries
of Lid, we can observe that short displacements require fewer bits than the long
ones, thus obtaining compression.

7.1.2.2 Object Trajectory

In order to obtain the trajectory T between two time instants tb and te, the algorithm
starts by getting the position of that object at tb, as in the previous explanation.
Then the solution T is initialized with the first position of the trajectory. Since we
have scanned the log up to the entry with the corresponding movement to tb, by
reading the next entry, we can obtain the relative movement from tb to tb+1. We
apply it to the previous computed absolute position, and we obtain the absolute
position of the object at tb+1. Therefore, we only need to decompress the next entry
by using the Steps 1–2 to compute the next position. The solution is obtained by
scanning the log and decompressing the entries until the algorithm computes the
absolute position at te.

7.1.2.3 Minimum Bounding Rectangle

This query requires considering the absolute positions of the trajectory of the
object from ti to tj . Therefore, the MBR query can be implemented as an Object

80 Chapter 7. Logs

8
7
6
5
4

3
2
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1
9

810

7

9

1

9
1

Word Codeword
0 000
1 001
2 010 000
3 010 001
4 011 000
5 011 001
6 100 000
7 100 001
8 101 000
9 101 001

10 110 000
11 110 001

001 001 101001 101001 110000 001 101000 100001 101001ℒid
Decoding (s,c)-Dense Codes

Decoding Spiral Encoding

(1,0) (1,0) (2,1) (2,1) (2,0) (1,0)

1 1 9 9 10 1

Sum of movements

t0 t1 t2 t3 t4 t5 t6
(0,2) (1,2) (2,2) (4,3) (6,4) (8,4) (9,4)

Cspiral

mi

pc

Trajectory (2,6)-DC8

Figure 7.1: Example of a log compressed with ScdcCT .

Trajectory query but with a small modification. That is, the algorithm computes
the whole trajectory between the interval of time [ti, tj], and gathers the minimum
and maximum values in each axis. Once all the time instants are processed, the
final minimum (minx and miny) and maximum (maxx and maxy) values of both
dimensions correspond with the resultant MBR: [minx,miny]× [maxx,maxy].

Notice that, computing the trajectory is mandatory to compute the MBR.
Therefore, it requires a linear traversal of the log, thus calculating the MBR takes
O(d) time, where d is the distance between snapshots.

7.1.3 Spatio-temporal range queries
7.1.3.1 Time Slice

As we presented before, to solve Time Slice queries, the algorithm has to compute
the location of an object at tq and check if it is within the queried region rq. This
requires computing the cumulative movement from the time instant of the snapshot,
which provides the absolute position, until tq. Therefore, a linear traversal of the

7.1. ScdcCT 81

log is necessary. To avoid checking all the logs of the objects, the algorithm starts
computing the candidates with chances to be within rq at tq, as we explained in
Section 5.3.

During the traversal of the log Lid, we can detect objects that are moving away
from the queried region. Therefore, at some point, the object can loose all the
chances to be within rq at tq. For this reason, every time a new location is computed,
the algorithm checks chance(pc, tc, rq, tq), where pc is the position of the object at tc.
If chance returns false, the object has no chances to reach rq at tq and the algorithm
stops processing that object. With this mechanism, we avoid decompressing all the
entries up to tq, when the object has no possibilities to be within rq.

7.1.3.2 Time Interval

Regarding Time Interval queries, for simplification, we assume that the queried
interval [tb, te] is between two snapshots. In other case, as we explained in Section 5.3,
the solution is computed as the union from the partial solutions of each interval of
time between two snapshots.

After selecting the candidates in the closest snapshot, the algorithm simulates
retrieving the trajectory of each candidate. However, obtaining the whole trajectory
is not necessary in some cases. After computing each position pc at time instant tc
in the trajectory, we check two conditions:

• If pc is within the queried region rq, the algorithm adds that object to the
solution, and stops processing its log.

• As in Time Slice, we detect if an object cannot reach rq, thus we check
chance(pc, tc, rq, te). In case there are no chances, the object cannot be in the
solution and the algorithm stops processing its log.

After processing the logs of all the candidate objects we will have obtained the
solution.

7.1.3.3 K-Nearest Neighbors

In KNN queries, every time an object is obtained from the priority queue of candidates
Qc, we have to compute its position at the queried time instant tq. Once it is
computed, the object is added to the priority queue of known results Qr. The
algorithm continues until Qr contains k elements and the first candidate of Qc
cannot improve the results of Qr. As we can observe, in this query, the log is
only used to compute the position at tq, which is obtained as we explained in
Section 7.1.2.1.

82 Chapter 7. Logs

7.2 GraCT
In many applications, objects spend most of their time either stopped or moving
along a specific course at a fixed speed. These circumstances generate long sections of
the log with numbers representing the same or contiguous values if we use the spiral
encoding. For example, the moving object in Figure 7.2 follows a NE trajectory,
moving one or two cells in the time elapsed between two consecutive time instants.
The log represents the series of relative movements 2,9,2,9,8,7,9,8,7,9,9,2,9,2,9,9,9.
These series of similar movements are compressed very efficiently using a grammar
compressor. Indeed, it is particularly useful when many objects usually follow the
same movements. This is the basis of GraCT that compresses all the log sequences
with RePair [LM00]. In contrast to ScdcCT, GraCT can skip the decompression of
some movements when computing queries by storing additional information along
the rules of the grammar; consequently, it gets better performance in most cases.

7.2.1 Data structure
As in ScdcCT, this structure transforms all the movements of each object in a
sequence of integers of the spiral encoding. Then, that sequence of integers is
compressed by using Re-Pair. As a result of that compression, we obtain a sequence
where every pair of symbols appears only once, and that sequence is composed of
two types of symbols: terminals and nonterminals. Each terminal is an original
integer, and each nonterminal represents a list of movements. Since the nonterminals
are built by substituting pairs of symbols, each nonterminal contains at least two
movements, but it can include more since the symbols of a pair can be nonterminals
as well, and this can continue recursively. Therefore, each terminal corresponds with
only one time instant, and each nonterminal includes at least two time instants. In
addition, each nonterminal has a grammar rule associated, which identifies the two
symbols that compose it. By recursively expanding those grammar rules over each
nonterminal, we can obtain the original trajectory.

In order to query trajectories without completely decompressing them, the
grammar rules in GraCT not only include the symbols to be replaced, but they
are also enriched with additional information. Specifically, each rule in R has the
following information: s→ a, b,#t, (x, y),mbr, where:

• s→ ab is the normal rule of Re-Pair.

• #t is the number of time instants covered by the rule.

• (x, y) are the relative coordinates of the final position of the object after the
application of the rule. That is, (x, y) will be the location of the object after
applying the movements of the nonterminal when the previous position is (0, 0).
Notice that (x, y) can acquire positive and negative values.

7.2. GraCT 83

10
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

9
2

Trajectory

2
9

8

7
9

8

7
9

9 9
2

9
2

9
9

W W

W W

X

X

Y

Y

Z

Z

Rule #t (x, y) MBR

W 2, 9 2 (3, 0) (0,-1, 3, 0)

X 9, 9 2 (4, 2) (0, 0, 4, 2)

Y 8, 7 2 (1, 2) (0, 0, 1, 2)

Z W, W 4 (6, 0) (0, -1, 6, 0)

ℒid
t4 t6 t7 t9 t11 t15 t17

Z Y 9 Y X Z X

2 9

W

2 9

W

Z

t12 − t15

t12 − t13 t14 − t15

t14

(9,3) (10,5) (14,7)

(17,7)

(17,8)

(6,0) (7,2)

Figure 7.2: Example of a log compressed with GraCT .

• mbr is the minimum bounding rectangle enclosing the movements of the
rule. mbr is represented as (x1, y1, x2, y2), where (x1, y1) corresponds to the
bottom-left corner and (x2, y2) to the top-right corner. As in the previous
explanation, we assume that the position preceding the nonterminal is (0, 0).

For example, the rules in Figure 7.2 are enriched as follows. The first rule
is W → 2, 9, 2, (3, 0), (0,−1, 3, 0): 2 and 9 are two terminal symbols that are
substituted by the nonterminalW ; the next 2 indicates thatW represents a sequence
of two movements; (3, 0) indicates the position of the object after the application of
the rule if we start at (0, 0), and the last four values are two corners (bottom-left
and top-right) defining a rectangle that encloses all the movements encoded by the
nonterminal.

These additional elements that enrich the rules are compressed with DACs. To
obtain better compression, the times of all of the rules are compressed using one

84 Chapter 7. Logs

DAC, separately from the three pairs of coordinates of all of the rules, which are
compressed using another DAC.

As in ScdcCT, since the log sequence is contiguous and the entries have no fixed
length, this representation stores the indexes idx = [l0, l1, . . . , lk], where each lj is a
pair with the previous and following entry of the log related to the j-th snapshot.
That information is necessary to access in constant time to the first or last entry of
a log section between two snapshots, avoiding scanning previous parts in order to
locate the desired entry.

7.2.2 Object queries
7.2.2.1 Object Position

.
After obtaining the absolute position from the closest snapshot, the algorithm for

computing the position of an object at a given time instant computes the cumulative
movement. As in ScdcCT, it needs to traverse the log to accumulate the relative
movements. In GraCT, each nonterminal can cover more than one movement. That
is, to retrieve each movement, we need to decompress the nonterminals.

However, with the additional information, most of the nonterminal symbols of a
compressed log Lid do not need to be decompressed in order to obtain the cumulative
movement of an object. Actually, we only need to decompress the nonterminal at
the end of the queried time interval.

Consider, for example, the compressed log Lid = Z, Y, 9, Y,X,Z,X of Figure
7.2. Assume that we want to find the position of the object at t14, that is, (18, 7).
Firstly, we inspect the log Lid from the beginning. The first value is a Z. The
enriched rule indicates that this symbol represents four time instants, thus it covers
from time instant t1 to t4. Since t14 > t4 the cumulative movement is initialized to
(6, 0), which is the relative movement of the nonterminal Z. The algorithm continues
with the next entry Y , which lasts two time instants up to t6. As t14 > t6 and the
relative coordinates of Y are (1, 2), the algorithm updates the cumulative movement
to (7, 2). The third entry is the terminal value 9, ant it is completely covered in
the queried interval. It corresponds with moving two positions to the East and
one to the North in the spiral encoding. Since every terminal involves only one
time instant, the cumulative movement is updated to (9, 3) at t7. Then, the next
entry is Y , with the enriched information, we know that it lasts two time instants
between t8 and t9. As that interval does not surpass t14, the relative coordinates are
added to the cumulative movement, that is, (9, 3) + (1, 2) = (10, 5). This process
is repeated until the current log entry surpasses our last target time instant; in
this example, it occurs at the sixth entry, with the cumulative movement set to
(10, 5) + (4, 2) = (14, 7). That entry would take us to t15, and our target is t14.
Therefore, we have to decompress the rule and process its components: Z →W W .
The first W is a nonterminal that lasts two time instants, containing information

7.2. GraCT 85

about the position at t12 and t13. As t14 > t13, we use the enriched information
from W and move the object three positions to the East, getting the value (17, 7) at
t13. Then, the second W is checked, and we can observe that surpasses t14 because
it contains information from t14 and t15. Hence, we need to decompress W , its first
value 2 is a terminal symbol that lasts one time instant, and thus it is enough to
reach our target time instant. The terminal moves the object one position to the
East, and one to the South, which applied to the current cumulative movement
(17, 7) computes the cumulative movement (18, 6) between t0 and t14.

Once the cumulative movement is obtained, the position at t14 is computed by
adding the cumulative movement to the absolute position of the closest snapshot.
In this case, the closest snapshot corresponds with t0 and the absolute position is
(0, 1). Therefore, the position at t14 is (18, 6) + (0, 1) = (18, 7).

Notice that unlikely ScdcCT, this structure allows us to skip more than one time
instant every time it reads a nonterminal symbol. As a consequence, in practice, the
traversal of the log in GraCT is faster than in ScdcCT.

7.2.2.2 Object trajectory

In this kind of queries, the advantage of reading an entry from the log and advance
more than one time instant cannot be exploited. Notice that, to solve the trajectory
of an object during an interval of time [tb, te], we have to compute all the involved
movements. Therefore, the algorithm needs to decompress all the nonterminals
included in that range of time. Thus, the algorithm starts by obtaining the position
at tb, as we explained in the previous section.

The next position at tb+1 is computed by looking for the next leaf in the grammar
parse tree. Since the value of the leaf is a terminal, it corresponds with a relative
movement that spans only one time instant. That movement is added to the previous
computed absolute position, obtaining the position at tb+1. Those steps are repeated
until the computed position corresponds with te. Therefore, we have to decompress
all the entries of the log that contain the information of the interval [tb, te].

Notice that all those entries have to be fully decompressed except the last one.
In case that the time instants covered by the last nonterminal are not fully contained
in the queried interval, we only have to partially decompress it. For example, in the
parse grammar tree of Figure 7.2, let us assume that the queried interval of time is
[t0, t13] and that we have processed until the time instant t11. The next and last
entry corresponds with Z. We decompress Z → W,W . Since the first W covers
[t12, t13] and it is completely contained into the queried interval, W is decompressed
into 2 and 9. Those terminals give us the positions at time instants t12 and t13,
which are (15, 6) and (17, 7), respectively. As t13 is the last time instant of the
queried interval, we do not need to decompress the second W from Z.

86 Chapter 7. Logs

7.2.2.3 Minimum Bounding Rectangle

Recall that each nonterminal rule stores its mbr, but it is relative to the position of
the object that precedes the nonterminal. Therefore, the actual MBR will be the
addition of the previous position (px, py) and mbr. On the other hand, the MBR of
each terminal can be computed as [px, py]× [px +mx, py +my] , where (mx,my) is
the displacement corresponding to that terminal. With this two formulas, we can
obtain the actual MBR of each entry of the log.

To obtain the MBR in the interval [tb, te], we consider the minimum subsequence
of entries of the log that contains [tb, te]. Assuming that no terminal intersects
with the limits, the global MBR can be computed as the union of the MBRs of the
symbols of the minimum subsequence.

When an intersection with a nonterminal occurs at the limits, we have to consider
only the part of those nonterminals covered by [tb, te]. Therefore, we decompress it
with the parse grammar tree, considering only those subtrees that include some part
of [tb, te]. Notice that, when we find a node that is completely included in [tb, te],
its MBR contains the MBRs of its children too, thus we do not need to continue
decompressing its children.

For example, in Figure 7.2, to compute the MBR between t6 and t14, we access
the snapshot at time instant 0 retrieving the location of the object (0, 1), and then
we traverse the log up to the symbol covering t6 (first Y) to compute the position
(7, 3) at t6. The result of this operation is initialized to res ← [7, 3] × [7, 3]. The
next entry is a terminal that contains the spiral codeword 9 (1 North and 2 East), as
it lasts one time instant, we know that the object at t7 is in position (9, 4). As the
current result does not cover (9, 4) we have to enlarge the top-right corner of res,
updating it to res← [7, 3]× [9, 4]. The next entry covers a nonterminal completely
included in [t6, t14], whose MBR is [9 + 0, 4 + 0]× [9 + 1, 4 + 2] = [9, 4]× [10, 6], thus
updates res← [7, 3]× [10, 6].

These steps are repeated while any entry of the log intersects with the queried
interval. In our case, it occurs in the sixth entry and reaches it having res ←
[7, 4] × [14, 8]. We traverse the parse grammar tree of that nonterminal Z, and
we observe that the first child of the root is within [t6, t14]. Specifically, it covers
the interval [t12, t13] and its nonterminal is W . Therefore, we compute its MBR
as [14 + 0, 8 + (−1)]× [14 + 3, 8 + 0] = [14, 7]× [17, 8], that expands the result to
res ← [7, 4] × [17, 8]. Finally, the second child of the root is processed, and it is
decompressed because it intersects the queried interval. The terminal 2 corresponds
with t14 and moves one position to the South and one position to the East. Thus
the object reaches the position (18, 7). Consequently, the final result is updated to
res← [7, 4]× [18, 8].

7.2. GraCT 87

7.2.3 Spatio-temporal range queries
7.2.3.1 Time Slice

Time Slice requires to compute the position at tq of the candidates. As we saw
above, it requires processing the log. As in ScdcCT, every time we read an entry
from the log the position pc at time instant tc is computed. Therefore, we can
check if the object still has chances to be within the queried region rq. In case that
chance(pc, tc, rq, tq) does not hold, the algorithm stops processing the log of that
object.

In addition, when te movement at tq is stored within a nonterminal in Lid
that corresponds with tq, we can avoid the decompression of that nonterminal
in some cases. Assume that we traverse the log, and our current entry contains
the movement of tq. With the addition of pk and the mbr associated with that
nonterminal, we compute the MBR during an interval of time [ti, tj] that includes
tq. The nonterminal has to be decompressed only when that MBR intersects with
rq because in the remaining cases:

• MBR ⊆ rq, MBR is within rq, that is, the object is within rq during the
whole interval [ti, tj]. Since tq ∈ [ti, tj], the object is part of the solution.

• MBR∩ rq = ∅, MBR does not cover any part of rq; thus the object is outside
rq during [ti, tj]. Since tq ∈ [ti, tj], Oid is discarded as a possible solution.

7.2.3.2 Time Interval

In Time Interval, when the queried time interval involves several snapshots, we split
the queried time interval [tb, te] into subintervals delimited every two snapshots.
Consequently, the global solution corresponds with the union of each partial solution
from those subintervals, as we explained in Section 5.3. For simplification, we assume
that the queried interval only involves one snapshot.

Therefore, the algorithm starts obtaining the candidates from that snapshot. For
each candidate object, we check with the log if it is in the queried region rq at any
time instant of the queried interval of time. To achieve it, we simulate to retrieve
the trajectory and, for each point, we check if it is contained in rq. If the object is
within rq at any of these points, we can stop scanning its log. In addition, we can
stop processing the log of an object, when chance(pc, tc, rq, te) does not hold, that
is, we know that the object cannot reach rq.

Also, we can skip the decompression of several nonterminals as in Time Slice. In
each entry of the queried interval of time [ti, tj], the MBR is computed. When the
MBR intersects rq, the nonterminal has to be decompressed. Otherwise, we skip
the decompression of the MBR because either it is fully contained in rq, thus the
object is part of the solution and we stop processing it; or it does not intersect rq,
and we have to process the next entry.

88 Chapter 7. Logs

7.2.3.3 K-Nearest Neighbors

In KNN queries, every time an object is on top of Qc, we have to compute the
position of the object at the queried time instant tq and add it to the priority queue of
known results Qr. The algorithm stops when there is no candidate that can improve
the results of Qr and Qr has k elements. As we can observe, in this query, the log
has the function of computing the position at tq, as we show in Section 7.2.2.1.

7.3 ContaCT
ContaCT aims to compute the position of an object at a given time instant tq in
constant time. Thus, it uses a representation of the log based on a partial sums
structure, which we replicate in every direction (North, South, West, and East).
Consequently, we can compute the cumulative movement from the beginning until
a time instant in constant time, by using select operation over bitmaps. Notice
that the cumulative movement must be added to a previous absolute position ph in
order to obtain the position at tq. In the previous structures, the absolute position
that is added to the cumulative movement is obtained from the closest snapshot,
but it requires a traversal of the tree that takes logarithmic time. In order to keep
the constant time, ContaCT stores the first position of each object, therefore we
can compute the desired position by adding that first position to the cumulative
movement.

Another important new feature of ContaCT is that it can rapidly compute the
Minimum Bounding Rectangle (MBR) between two time instants. The result yields
an approximate description of the movements. Additionally, computing the MBR
allows us to speed up some spatio-temporal queries like time interval.

7.3.1 Data structure
By using bitmaps equipped with a select auxiliary structure, it is possible to build
a data structure to store integers that allows the computation in constant time of
the partial sum of all the numbers from the first one until any position i. Given a
list of values 0 < x1 < x2 < ... < xn, we define the differences di = xi − xi−1, and
d1 = x1. If we store the differences d1, d2, . . . , dn, it is easy to see that xi can be
computed by adding the differences from d1 until di. That is xi =

∑i
j=1 dj . An

Elias-Fano representation of the partial sums is a bitmap B[1..n] , where B[xi] = 1,
1 ≤ i ≤ n, and 0-bit in the rest. In other words, that bitmap is the list of the values
di represented in unary. Therefore, we can retrieve xi as select1(B, i), which can be
computed in constant time.

In ContaCT, we use a small variation of the above partial sums structure, which
allows us to represent differences that are 0. In our case, the value of a difference
di = v is represented as v consecutive zeros followed by a 1 to mark the end of the
number. Therefore, the value xi can be obtained as select1(B, i) − i because the

7.3. ContaCT 89

8
7
6
5
4
3

2
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

ℒid

Trajectory

t1

t0

t2

t3

t4 t5

t6
t7

t8
t9

t10

t11

t12

ΔX(7) = 5

ΔY(7) = 1

01 01 01 01 01 01 1 1 001 001 001 1Xp

1 1 1 1 1 1 01 1 1 1 1 001Xn

01 1 01 01 1 1 1 1 1 01 1 1

1 1 1 1 1 01 01 01 1 1 01 01

Yp

Yn

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Fid (0, 1)

3

2

6

1

Figure 7.3: Example of a log compressed with ContaCT .

searched value corresponds to the number of zeros until that position, and that
number is the position of the i-th 1 minus the number of 1s until there.

Based on this approach, we can represent the displacements through each axis with
two bitmaps. First, we define positive displacements and negative displacements as
those movements that increase or decrease the value of a specific axis. Consequently,
the bitmap Xp (resp. Yp) stores the positive displacements and Xn (resp. Yn) the
negative displacements through the horizontal (resp. vertical) axis. For example, in
Figure 7.3, the movement from t5 to t6 corresponds to (1,−1). On the horizontal
axis, its positive and negative displacements are 1 and 0; that is, “01” is added to
Xp and “1” to Xn. Concerning the vertical axis, there is no positive displacement,
and the negative one is 1. Therefore, Yp adds “1” and Yn appends “01”. In case of
the object is at a static position on an axis, as in the movement between t7 and t8
where the object does not move on the horizontal axis, it is represented appending
“1” to Xp and “1” to Xn. Notice that Fid stores the first location of the object.

90 Chapter 7. Logs

7.3.2 Object queries
7.3.2.1 Object Position

The main goal of ContaCT is to compute the location of an object at tq in constant
time. Therefore, ContaCT avoids the use of the snapshots to obtain the absolute
position. Instead, it uses its information stored in Fid. Consequently, we have to
compute the cumulative movement from the initial time instant up to tq.

We know that the horizontal axis’s positive and negative movements are
stored in Xp and Xn, respectively. The partial sum of the displacement after
tq movements in each bitmap, Xp or Xn can be computed in constant time as
δ(Xp, tq) = select1(Xp, tq) − tq and δ(Xn, tq) = select1(Xn, tq) − tq. Hence, the
cumulative movement until tq on the horizontal axis is ∆X(tq) = δ(Xp, tq)−δ(Xn, tq).
If the value of ∆X(tq) either is positive or negative, it corresponds with movements to
the right or left, respectively. Notice that we can simplify ∆X(tq) = select1(Xp, tq)−
select1(Xn, tq), and, in the same way, we can compute ∆Y (tq) for the vertical axis.
Therefore, the cumulative movement corresponds with (∆X(tq),∆Y (tq)).

Recall that this operation is the basis of the others. Since it does not require
obtaining the absolute position from the snapshot, all the snapshots used with
ContaCT uses its minimum-space setup, that is, the snapshots based on the k2-tree
do not use the additional structure for efficiently solving π−1, and those based on
the R-tree save the space of X and Y .

In Figure 7.3, we can observe the computation of ∆X and ∆Y for tq = 7, that
is, the movement on both axis until the time instant 7. Firstly, the values of δ are
computed. Therefore, to compute δ(Xp, 7) we count the number of zeroes until
the seventh 1-bit; that is 6. In the same way, we compute δ(Xn, 7) = 1, and the
subtraction of those two values is ∆X(7) = 6− 1 = 5. Analogous we can compute
∆Y (7) = δ(Yp, 7)− δ(Yn, 7) = 3− 2 = 1. Consequently, the cumulative movement
up to the time instant 7 is (5, 1). The absolute position could be computed as the
addition of that cumulative movement and the initial position of the object stored
at Fid, in this example, the position at time instant 7 is (0, 1) + (5, 1) = (5, 2).

7.3.2.2 Object Trajectory

In order to obtain the cells where is an object during an interval of time [tb, te],
we start by computing the position at tb as we explained above. Then, we have
to compute the locations in the interval time [tb+1, te]. Recall that each individual
movement is computed, and added to the previous location in order to obtain the
next location. Therefore, to compute tb+1, we have to compute the next movement
and add it to the position at tb.

Notice that every time the next movement is computed, its cumulative movement
until the previous time instant is known, thus for each axis, the last select positions
in its positive and negative bitmaps are known (ip and in). Notice that all of them
correspond with a 1-bit. Therefore, the displacement in an axis is the number of 0-bits

7.3. ContaCT 91

between the index (ip or in) and the next 1-bit. Since the next 1-bit after the index ip
can be computed as selectnext(Xp, ip+ 1), the displacement on the x-axis of the next
movement is disx = (selectnext(Xp, ip+1)−(ip+1))−(selectnext(Xn, in+1)−(in+1)).
In the same way, we calculate disy, the displacement in the vertical axis, and the
retrieved movement is (disx, disy).

For example, in Figure 7.3, let us compute the position at time instant t8,
considering that the position at time instant t7 was computed. The last selected
indexes from the vertical axis were ip = 10 and in = 9. Therefore, the next
displacement in the vertical axis corresponds with (selectnext(Yp, 11) − 11) −
(selectnext(Yn, 10) − 10) = (11 − 11) − (11 − 10) = −1. Since the object does
not move in the horizontal axis, the next movement is (0,−1), that is, one position
to the South. By adding it to the previous location (at time instant t7), we obtain
the position at time instant t8: (5, 2) + (0,−1) = (5, 1).

7.3.2.3 Minimum Bounding Rectangle

ContaCT can efficiently compute the MBR of a trajectory, that is, the smallest
axis-aligned rectangle that contains every point visited by the object Oid during a
given time interval [tb, te]. This is an interesting operation since it provides summary
information about the path followed by an object without computing the whole
trajectory and, in addition, it is used as a tool to compute time interval queries
efficiently.

A good option for solving the MBR in constant time would be building an rMq
and rmq structure on both axes. Therefore, by computing where is the maximum
(resp. minimum) on both axis and computing their position with the cumulative
movement and the initial location; we retrieve the top-right (resp. bottom-left)
corner of the MBR.

However, we notice that most of the trajectories follow a constant heading
through its course. Whether we analyze each axis’s values independently, we can
find a lower number of local maxima and minima, comparing them with the number
of movements within the trajectory. Notice that knowing the maximum (maxlocal)
and minimum (minlocal) from the local values for an axis C ∈ {x− axis, y − axis}
between [tb, te], we can compute the values of the corners of the MBR on that axis
C during the interval [tb, te] as:

global_minC = min(minlocal, C[tb], C[te]) (7.1)

global_maxC = max(maxlocal, C[tb], C[te]) (7.2)

, where C[tb] and C[te] are the value of the object on the axis C at the extremes of
the interval and min (resp. max) is a function that computes the minimum (resp.
maximum) value.

Considering Equations 7.1 and 7.2, we can reduce the space required by the
rmq and rMq. Using rmq and rMq through the arrays of the local values (minC

92 Chapter 7. Logs

Horizontal axis

13
12
11
10
9
8
7
6
5
4
3
2
1
0

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12t0

Vertical axis

13
12
11
10
9
8
7
6
5
4
3
2
1
0

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12t0

rMq rmq
1 2

6 11

1

5

0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0

Mx

mx

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0

My

my

rMq rmq
1 2

4 2

1

1

6 < 11 > 9 6 > 5 < 9
α[ti] < α[tM] > α[tj] α[ti] > α[tm] < α[tj]

3 > 2 > 0
α[ti] > α[tm] > α[tj]

3 > 1 > 0
α[ti] > α[tm] > α[tj]

0 0 0 0 0 1 0 1 0 0 1 0Sx 0 0 0 0 1 0 0 0 1 1 0 0Sy

minxmaxx minymaxy

Figure 7.4: Example of a log compressed with ContaCT .

and maxC) and two additional bitmaps, mC and MC , marking the time instants
when the local minimums and maximums occur in each axis, we can know the
corresponding time instants for minlocal and maxlocal (tm and tM).

In Figure 7.4, we can observe the evolution of the values on the horizontal axis
(top-left) and the vertical axis (top-right) for the trajectory of Figure 7.3. Below
those plots the values of the local maximums are stored in maxx, that is, the values
6 and 11. The time instants that correspond with that local values are marked in
bitmap Mx at positions 6 and 11. An rMq structure is built on the maxx array,
to know which of them is the local maximum in a given range. Analogously, we
can build the structure for the minimums. Notice that for the vertical axis, this
structure is replicated.

In order to obtain tm between tb and te, firstly, we find the range of local
minimums of minC contained in that interval, that is, [i, j] = [rank1(mC , tb−1) +
1, rank1(mC , te)]. Then, a rmq(minC , i, j) operation in that range retrieves the
position with the smallest value in the array minC , and its corresponding time
instant tm can be computed as select1(mC , rmq(minC , i, j)). Analogously, we can

7.3. ContaCT 93

compute tM , for example, to compute tM in the range [t6, t12], firstly the algorithm
looks the range of local maximums between t6 and t12 by using rank1(Mx, 5) + 1 = 1
and rank1(Mx, 12) = 2. Then rMq(1, 2) obtains the maximum of the locals on
the range [1, 2], that is, the second local maximum. Therefore, tM corresponds
with the time instant of the second local maximum, which can be computed as
select1(Mx, 2) = 11.

It is important to notice that rMq and rmq do not store the values of the maxC
and minC ; for this reason in Figure 7.4, the borders of those values are dashed.
Therefore, we can reduce Equations 7.1 and 7.2 to:

global_minC = min(C[tm], C[tb], C[te]) (7.3)

global_maxC = max(C[tM], C[tb], C[te]) (7.4)

, those C[t] values are obtained in constant time, as we explained before using the
log of Figure 7.3. Once we can compute any global_minC and global_maxC for
each axis, the MBR is [global_minx, global_miny]× [global_maxx, global_maxy].
In the bottom of Figure 7.4 we show the needed comparisons for computing the
MBR during the interval of time [6, 12], that is, [5, 0]× [11, 3].

To further save n bits of space, where n is the size of the trajectory, we exploit the
fact that local maximums and minimums must alternate: we replace MC and mC by
a single bitmap SC , with SC [i] = 1 iffMC [i] = 1 or mC [i] = 1 (see Figure 7.4). If the
first bit of SC came fromMC , then tM = select1(SC , 2i−1) and tm = selecti(SC , 2i),
and the other way if the first bit of SC came from mC .

7.3.3 Spatio-temporal range queries
7.3.3.1 Time Slice

In this kind of queries, after obtaining the candidates from the closest snapshot, the
log only needs to compute the position of each candidate at the queried time instant
tq. In those structures that use the spiral encoding representation, they check if the
object has chances to reach the region every time a position is computed. However,
in ContaCT, the position is calculated in constant time; furthermore the algorithm
avoids the traversal and checking if the object has chances. That is, the position at
tq is computed for all the objects selected as candidates.

7.3.3.2 Time Interval

Since ContaCT can solve the operation MBR in constant time, in time interval
queries, it uses the algorithm that simulates a binary search looking for an interval
of time in [tb, te] whose MBR is contained within the queried region.

94 Chapter 7. Logs

7.3.3.3 K-Nearest Neighbors

In KNN queries, every time an object is on top of Qc, we have to compute the
position of the object at the queried time instant tq and add it to the priority queue
of known results Qr. Therefore, the log only is useful to KNN queries for obtaining
the position of the object at tq, which can be solved as we show in Section 7.3.2.1.

7.4 RCT
We can consider RCT as an evolution of ContaCT that exploits the high
repetitiveness of patterns between the different trajectories but keeping the capability
of computing the position of an object in constant time. The log is composed of two
parts: an artificial reference and the individual logs. The reference is a representative
trajectory consisting of different parts from the set of trajectories, and it is compressed
with ContaCT. The actual trajectories are compressed considering that reference by
using Relative Lempel-Ziv. Therefore, each trajectory is composed of z phrases that
point to the reference, being z the number of phrases of a LZ77 parsing. Although
the reference is represented with the log of ContaCT, we need O(z)-sized structures
on the sequences of phrases in order to speed up the search for the object’s location.
Additional O(z)-sized structures are also necessary to compute the spatio-temporal
queries.

7.4.1 Data Structure
Though RCT is similar to ContaCT, there is a new element that is shared between
all the objects, the artificial reference. This reference is a synthetic representative
trajectory composed of parts from different trajectories. Besides, the reference is
compressed by using ContaCT.

The actual trajectories are compressed using RLZ, that is, each trajectory is
represented with z phrases: w1w2w3 . . . wz. Recall that each phrase is a pair (pi, li)
where pi is a pointer that refers to the first movement of the i-th phrase in the
reference, and li the length of that phrase. We store the information of the pairs
separately, pi values in an array p, and we mark in the bitmap l the beginning of
all the z phrases from a specific trajectory. For example, in Figure 7.5, we can
observe a trajectory compressed with respect to a reference by using three phrases
(1, 5), (8, 4), (10, 2). Therefore, we store in p values 1, 8 and 10. As the phrases start
at 1, 6 and 10, those positions are set to 1-bit in l. As in ContaCT, Fid stores the
first position of that trajectory.

As the phrases can be pointing to non-consecutive areas of the reference, in
order to keep the constant time computation of the position of the object, we need
to store, for each wi, the cumulative movement from the start of the trajectory
until the previous movement to wi. As we can see in Figure 7.5, those values are
stored in X and Y respectively. For example, the position before the second phrase

7.4. RCT 95

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12
w1

Reference

Trajectory

w1 = (1,5) w2 = (8,4) w3 = (10,2)

1 2 3 4 5 6 7 8 9 10 11

Ref

Traj

1 8 10p

1 0 0 0 0 1 0 0 0 1 0l

ℒid

w2 w3

rank1(l,8) = 2

0 5 9X
0 2 3Y

(1,3)Fid

1 2 3 4 5 6 7 8 9 10 11

Figure 7.5: Example of a log compressed with RCT .

is (6, 5) and the first known location is (1, 3), thus (6 − 1, 5 − 3) = (5, 2) its the
cumulative movement. Therefore, 5 and 2 are stored at the second entry of X and
Y , respectively.

7.4.2 Object queries
7.4.2.1 Object Position

Since RCT explicitly stores the first location of the trajectory in Fid, we can obtain
the absolute position from it. As a consequence, the position at tq is the addition of
the first location and the cumulative movement from the first time instant until tq.

The algorithm starts computing the phrase that contains tq, which corresponds
with the i-th phrase, where i is rank1(l, tq). The first time instant of that phrase
corresponds with select1(l, i), we denote it with tw. Since we store explicitly the
cumulative movement until every phrase in X and Y , the previous position to time
instant tw is obtained as Fid+ (X[i], Y [i]). Now, we only need to add the cumulative
movement from tw to tq. Since m = tq − tw and the current phrase points to
pw = p[i] in the reference, the information of that movement corresponds with the
relative movement in the interval [pw, pw +m] of the reference.

Recall that the reference is stored with ContaCT and we have to compute the
cumulative movement from pw to pw +m on it. However, in ContaCT every time we
compute the cumulative movement, it is done with respect to the first time instant.

96 Chapter 7. Logs

Since in RCT pw can be different to the first movement, we compute the movement
from pw to pw +m as (∆X(pw +m)−∆X(pw),∆Y (pw +m)−∆Y (pw)).

For example in Figure 7.5 in order to compute the cumulative movement of the
object up to the time instant t8, first we look for the phrase that contains that
information. By computing rank1(l, 8) = 2 we know the information is included in
w2. Due to select1(l, 2) = 6, w2 starts at time instant t6, and the position at t5 is
Fid + (X[2], Y [2]) = (1, 3) + (5, 2) = (6, 5). The queried time instant is t8, as we
know the position at t5, the first three movements of the chosen phrase will give
us the queried position. The second phrase is pointing to the eighth movement at
the reference; thus we have to compute the cumulative movement from 8 to 10.
Since the cumulative movement is (3, 2) and the previous position to w2 is (6, 5),
the desired position of the object is (6, 5) + (3, 2) = (9, 7).

7.4.2.2 Object Trajectory

Obtaining the trajectory of an object in a time interval [tb, te] is similar to the
algorithm of ContaCT. We have to compute the location at tb and from it, with the
help of selectnext operations we compute the next movements.

However, as two consecutive phrases do not correspond to two successive
subsequences of the reference, there are two possible ways of computing the next
movement. Assume that the previous position was obtained from the i-th phrase.
Since that position was computed with the ContaCT structure of the reference,
we know for each axis X the values ip = select1(Xp, tc) and in = select1(Xn, tc),
where tc is the time instant of the previous computed position. In addition, we know
that the next phrase starts at time instant tw = select1(l, i+ 1) and points to the
reference at position pw = p[i + 1]. Depending of those values we have to choose
between the following steps.

• If the next movement falls within the same phrase, that is, tc 6= tw. The
movement is computed by using the selectnext operation as in ContaCT. That
is, the displacement on the horizontal axis is disx = (selectnext(Xp, ip + 1)−
(ip+1))−(selectnext(Xn, in+1)−(in+1)). In the same way, we calculate disy,
the displacement in the vertical axis, and the retrieved movement is (disx, disy).
By the addition of (disx, disy) to the previous position, the algorithm obtains
the position at tc+1. To prepare ip and in to the next iteration, they are
updated to ip = selectnext(Cp, ip + 1) and in = selectnext(Cn, in + 1), where
C is the corresponding axis.

• If tc = tw, the movement is stored in the next phrase. Therefore, the movement
will be stored at position pw on the reference. As ip and in can refer to a
movement different to the previous one to pw, we have to synchronize the
indexes ip and in of ContaCT in both axis. To achieve it, we compute, for
each axis C, ip = select1(Cp, pw − 1) and in = select1(Cn, pw − 1), that is,
the previous information to pw. Once those indexes are synchronized, the

7.4. RCT 97

1 2 3 4 5 6 7 8 9 10 11

Ref

Traj

1 8 10p

1 0 0 0 0 1 0 0 0 1 0l

0 5 9X

0 2 3Y

ℒid
1 7 11m′�x 6 10 12M′�x

3 6 5m′�y 5 7 6M′�y

1 2 3 4 5 6 7 8 9 10 11

1 2 3 1 2 3

MBRc = [7,5] × [12,7]
MBRb = [5,5] × [6, 5]

MBR = [5,5] × [12,7]

rank1(l,4) = 1 rank1(l,11) = 3

w1 = (1,5) w2 = (8,4) w3 = (10,2)

}
(1,3)Fid

Figure 7.6: Example of computing the MBR with RCT.

algorithm can compute the next movement with ContaCT by counting the
number of 0-bits from ip and in to the next 1-bit by using the selectnext
operation.

Therefore, we can use the same mechanism of ContaCT, but taking into account
that we need to synchronize both in and ip of each axis when the algorithm advances
to the next phrase.

7.4.2.3 Minimum Bounding Rectangle

RCT can solve in constant time the MBR query, but it requires to add additional
information to the structure. Firstly, we need to know which phrases from Lid
are involved in that interval. We denote those phrases as W = wawa+1 . . . wa+k−1,
where wa and wa+k−1 can be completely included in that interval or not. Notice
that every pointer in W can be pointing to different non-consecutive parts of the
reference. Hence, we would need to compute the MBR for each phrase in W . That
means, there are two cases: (i) computing the MBR covered by a whole phrase or
(ii) computing the MBR of an interval within the phrase. Both cases can be solved
by computing the MBR as in ContaCT through the reference. Once all the involved
MBRs are computed, the final MBR is the result of obtaining the maximum and
minimum coordinates from the previous MBRs.

Notice that the previous algorithm depends on the number of phrases of W .
Assuming that k is that number, it would require k MBR operations through the

98 Chapter 7. Logs

reference. In order to solve it in constant time, we add a O(z)-sized structure that
stores the minimum and maximum on each axis for each phrase. In Figure 7.6,
arrays m′x and M ′x store the minimum and maximum concerning the horizontal
axis within each phrase; that is, at the second position of both arrays, we have the
minimum and the maximum of the second phrase, respectively. Analogously, we
have the minimum and maximum of the vertical axis stored in m′y and M ′y. We
create an rmq (resp. rMq) structure for the minima (resp. maxima) over those
arrays. Consequently, the MBR for those phrases completely contained in [tb, te]
(MBRc) can be computed in O(1) time by using rmq and rMq. Then, we compute
the MBRs on the remaining phrases, but considering only that interval included
within [tb, te]. That is, if a phrase covers [t′b, t′e], when t′b < tb we compute the MBR
in [tb, t′e] (MBRb) and if te < t′e we compute it in [t′b, te] (MBRe). The global
MBR is computed by taking the maximum and minimum coordinates from MBRb,
MBRc, and MBRe.

For example, in Figure 7.6, we compute the MBR in the time interval [t4, t11].
Firstly, we obtain the involved phrases in that interval by using rank1 at the bitmap
l at positions 4 and 11. We can observe as the required information is included
within phrases w1, w2, and w3, but we have to know which of these phrases are
completely covered by the queried interval. Since the partially covered phrases can
only occur at the extremes, we know that w2 is completely covered, but we need to
check the remaining phrases. By using select1(l, 1) = 1 and select1(l, 1 + 1)− 1 = 5,
we know that w1 is in the range [t1, t5], thus that phrase is not completely covered.
The last phrase corresponds with the interval [t10, t11], so w3 is completely covered.
Consequently, we have to compute MBRc of the completely coverd phrases w2w3.
With the help of rmq and rMq onm′x andM ′x we obtain the minimum and maximum
(7 and 12) for those two phrases w2w3. The same procedure through M ′y and m′y
obtains the minimum and maximum (5 and 7) on the vertical axis. Therefore, our
MBRc turns [7, 5]× [12, 7]. Then, we need to look for MBRb, which partially covers
the first phrase w1. The MBRb is solved in the reference by using ContaCT. The
algorithm takes into account that the previous location of the object to that phrase
was Fid + (X[1], Y [1]) = (1, 3), and the MBR is calculated considering the last
two locations of w1, at indexes 4 and 5 on the reference. As in those two indexes
the location of the object is (5, 5) and (6, 5), ContaCT gets MBRb = [5, 5]× [6, 5].
Finally, MBRc and MBRb are merged into one MBR, obtaining [5, 5] × [12, 7].
Notice that we do not have to compute MBRe because the last phrase is completely
contained in the queried interval.

With that algorithm, we only need to run at most three operations, one for those
consecutive phrases completely included within [ti, tj] and two for the phrases that
intersect with the extremes of the time interval. Therefore, we can solve in O(1)
time by using O(z) extra space.

7.4. RCT 99

7.4.3 Spatio-temporal range queries
7.4.3.1 Time Slice

Once we detect the candidates with the snapshot, the log only needs to compute
each candidate’s position at the queried time instant. This operation is solved in
RCT as we explained in Section 7.4.2.1. By checking if the object is within the
queried region, the object is either added to the solution or not.

7.4.3.2 Time Interval

After detecting the candidates on the snapshot, the log has to discern which objects
are within the region rq and the queried interval [tb, te]. Due RCT computes the
MBR in constant time, for each candidate, it runs a binary search looking for an
interval of time in [tb, te] whose MBR is contained within the queried region rq.

7.4.3.3 K-Nearest Neighbors

Every time an object is on top of the priority queue of candidate Qc, we have to
compute its position at the queried time instant tq and then we try to add it to
the queue of known results Qr. As we can see, the log only needs to compute the
position of the object at tq. In the case of RCT, it is solved as we presented in
Section 7.4.2.1.

100 Chapter 7. Logs

Chapter 8

Using real data

All the presented structures consider a raster model representation of the space and
deal with object positions at regular time instants. However, the incoming spatial
data of objects are coordinates that may not match the considered regular time
instants. Therefore, we need a mechanism that transforms those locations to the
cells of a grid that represents the space, and they have to be associated with the
tracked time instants. Thus, a preprocessing of the data is necessary.

In the previous chapters, we assume that all the objects start emitting their
location at the same time instant, and all the time instants have information about
the location of the object. Though the data preprocessing can help to accomplish
those constraints, there are cases where it is impossible to avoid lack of information,
for example, the objects can start sending their locations at different time instants,
or there are significant periods of time where the location of the object is unknown.
Therefore, our structures need some modifications in order to consider trajectories
where those two constraints do not hold.

For these reasons, in this chapter, we explain the prepocessing of the data to
achive their normalization, and how to deal with the uncertainty in our structures.

8.1 Data preprocessing
When we have a dataset with trajectories, there are errors of GPS coordinates caused
by a bad calibration of the GPS, problems with the network, or other reasons. This
kind of information must be fixed in such a way that it does not affect the other
transmitted locations. Therefore, we decided to remove all entries from the dataset
whose speed between the previously known location is considered unrealistic. That
is, the speed is greater than a parameter that we call speed limit. This parameter
can be adjusted depending on the domain of the data; for example, if we are using
trajectories of cars, we can limit reasonably it to 200km/h, instead if we represent

101

102 Chapter 8. Using real data

people running speed limit can be set to 45km/h.
Once those errors have been deleted, the next step deals with the discretization

of the coordinates and time instants. To transform the coordinates into grid cells,
the algorithm computes the origin, the known location with the minimum values
for both coordinates. Therefore, we can calculate the distance in both axes for any
location with respect that origin, that is dx, dy. Since every cell of the raster model
is squared and has a fixed side size β, with an algebraic operation, we know that
the object is located in the cell (bdx/βc, bdy/βc). Notice that the value of β can be
tuned depending on the domain, in fact, different units of measurement can be used
(e.g. feet, degrees, radians).

Finally, we define a parameter tspan that determines the gap between each
tracked time instant. For example, if tspan is 60 seconds, the structure only stores
the location of all object after 60 seconds, that is, at time instants 0, 60, 120, and so
on. Since every object can emit its location with different frequencies that do not
match with the tracked time instants, we need a mechanism that transforms the
actual time instants to the regular ones. By using a window of size tspan for the first
window, we can observe the object’s locations during [0, tspan − 1], and the regular
time instant 0 can be represented by choosing one of those time instants. We repeat
this step for each regular time instant i and the interval [i× tspan, (i+ 1)× tspan].
In our case, we choose the first element of that interval since it is the closest to the
tracked time instant.

After the data processing, the spatial and temporal information is discretized
into a grid and regular time instants, respectively. Nevertheless, objects can still
have periods of time without spatial information. In some cases, when the difference
of time between the time instant without data and the previous one with information
is smaller than a parameter τ , we can interpolate the location of the object. Notice
that τ must be defined by taking into account the domain and it should be a value
that avoids a large displacement of the object.

8.2 Missed data
Although the previous process reduces the number of instants without information,
the datasets can still have some periods without knowing the location of the objects
and trajectories that start at different time instants. For this reason, our structures
have to deal with those missed data. Different approaches are applied depending on
the kind of log.

8.2.1 Events of missed data
Notice that, in the case of ScdcCT and GraCT, if some of the log information is
unknown, there is no way to associate a movement with its corresponding time
instant. For example, consider a trajectory with ScdcCT whose log has three entries

8.2. Missed data 103

but evolves the interval of time [t1, t5], we notice that there are two time instants
without information about the trajectory.

For this purpose, the log manages three events: when an object starts emitting
its positions, when it stops, and when it stops emitting signals for periods of time.
In fact, the three cases are homogeneously managed by the following events, each
identified in the log with a special codeword. For a better explanation of these
codewords, let us define two contiguous snapshots as Sh and Sh+d, and the section
of the log that tracks the movements between those snapshots as Lid(h, h+ d).

• Disappearances (D). The occurrence of codeword D in Lid(h, h + d) means
that object Oid stopped emitting its position at the corresponding time instant
of that portion of the log and that Oid did not restart emitting (at least) until
the time instant of the next snapshot (Sh+d).
To enable backward traversal of the logs, each disappearance must store the
time instant and the absolute coordinates of the object at the moment where
it disappears.

• Absolute appearance (AA). The occurrence of codeword AA in Lid(h, h+ d)
means that Oid started to emit its position in the corresponding time instant
of that portion of the log and that Oid had not emitted its positions (at least)
since the previous snapshot (Sh). AA may signal the first appearance of an
object or its reappearance after having disappeared in a preceding section of
log.
To enable forward traversal of the logs, an absolute appearance stores the
time instant and the absolute coordinates where the object appears. Note
that, even if the object is reappearing, it could do that very far away from the
previously known location.

• Relative disappearance. The occurrence of a codeword indicating a relative
disappearance in Lid(h, h + d) in an entry corresponding to time instant ti
means that Oid stopped emitting positions at that time instant and that Oid
restarted emitting its positions at a time instant between ti and the time
instant of the next snapshot (Sh+d). In other words, a relative disappearance
occurs when the object disappears and reappears within the same section of
log.
A relative disappearance must store the number of time instants in which
Oid was not emitting its positions and, depending on the type of relative
disappearance, also a movement:

– Relative disappearance with movement (RM) means that Oid appears in
a different position concerning its last known position. This requires the
log to store the relative movement (using the spiral encoding).

104 Chapter 8. Using real data

– Relative disappearance without movement (RNM) means that Oid appears
in the same position where the signal was lost. Therefore, there is no
need to store a movement.

The extra information is stored in two auxiliary arrays associated with each
partition of the log Lid(h, h+ d):

• Array Did(h, h + d) stores the time characteristics of each codeword that
represents a disappearance or appearance:

– in the case of relative disappearances, the time the disappearance lasted;
– in the case of an absolute appearance or a disappearance, the absolute

time instant of that event.

• Array Pid(h, h + d) stores the spatial characteristics of each codeword that
represents a disappearance or appearance:

– in the case of relative disappearances with movement, the relative
movement with respect to the last known position;

– in the case of an absolute appearance or a disappearance, the absolute
position of that event.

Regarding the synchronization of the appearances and disappearances with the
time instants, during the traversal of the log we can find two cases: reading an
D or a relative disappearance (RM or RNM). In the first case, there is no more
information about the object until h+d, and the next location of that object is stored
in a snapshot or with AA, in both cases, we know the corresponding time instant
and its location. Therefore, we keep the synchronization between the locations and
the time instants. For the second case, when RM or RNM appears, the duration of
the disappearance is stored and we only need to add it to the time instant previously
read to compute the next time instant with information. If the codeword is RNM ,
the object is in the same position; otherwise, we have to add the relative movement
of RM to the previous position. Thus we obtain the position where the object
appears.

For example in Figure 8.1, with ScdcCT the location of the object at time instant
t19 can be computed by traversing the log and tracking the time instant of each entry.
We start at the first entry, which is marked with AA and contains the information
〈t4, (0, 5)〉, the time instant, and position where the object appears. Therefore, we
know that the object is at positon (0, 5) at t4, then we traverse the log. Every time
we read an entry the time instant increases by one, thus we reach the fourth entry
at t7 and with location (4, 4). Since the next entry is marked as RM , we have to
consider the extra information. The elapsed time is three time instants and the
displacement (−2, 2), thus we obtain the position of the object (2, 2) at t10. Those
steps are repeated until the current time instant is t19, getting the position (6, 4).

8.2. Missed data 105

ℒid
t4 t5 t6 t7 t10 t11 t18

AA 2 9 2 RM 8 RM 9 9 2 D

t19 t20 t21 t22

(0,5) (1,4) (3,5) (4,4) (2,2) (3,3) (4,3) (6,4) (8,5) (9,4) (9,5)

⟨t4, (0,5)⟩

pos

01 001 01 1 01 01 001 001 01 1Xp

Fid ⟨t4, (0,5)⟩

1 1 1 001 1 1 1 1 1 1Xn

t5 t6 t7 t8 t10

1 01 1 1 01 1 01 01 1 01Yp
01 1 01 001 1 1 1 1 01 1Yn

t4 t5 t6 t7 t10 t11 t18 t19 t20 t21 t22

1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1

t9 t11 t12 t13 t14 t15 t16t17 t18 t19 t20 t21 t22

M

⟨3,(−2, − 2)⟩ ⟨7,(1,0)⟩ ⟨t22, (9,5)⟩

ContaCT

ScdcCT

Figure 8.1: Different approaches to represent the lack of information.

8.2.2 Setting marks of missed data

For those logs where the position of an object is solved in constant time (ContaCT
and RCT), we use a different approach to the previous one. We add an additional
bitmap M [1, n] and the first time instant of each trajectory tstart, where n is the
number of time instants from tstart to the last time instant of the trajectory. Each
index i of M corresponds with the time instant tstart+i, and M [i] = 1 iff there is
location information for tstart+i. Consequently, we can map each time instant tj
with the corresponding movement by computing rank1(M, tj − tstart). Therefore, in
order to compute the different queries, the algorithm has to map those time instants
to movements and solve them with the mapped movements.

In the bottom part of Figure 8.1, we can observe the structure for ContaCT. In
order to compute the position at t19, we have to compute the number of known
movements up to that time instant. Since the trajectory starts at t4, the number
of movements is rank1(M, t19 − t4) = rank1(M, 15) = 7. Therefore, t19 maps with
the seventh movement, and its displacement can be computed with as the number

106 Chapter 8. Using real data

of 0s up to the seventh 1-bit in the positive bitmap minus the number of 0s until
the seventh 1-bit in the negative bitmap, for each axis. That is, we obtain an
accumulative movement of (6,−1) cells. By adding it to (0, 5), we know that the
object is in the cell (6, 4) at t19.

8.2.3 The effect of missed data on selecting the candidates
For spatio-temporal range queries, when using the k2-tree-based snapshots, recall
that we first check in the closest snapshot to the queried time instant (or time
interval), the objects with chances of being part of the result of the query (called
candidates), by using the spatial index characteristics of the k2-tree. Though the
log manages the appearances and disappearances, we need a mechanism that allows
adding to the candidates those objects that have information in the involved section
of the log, but are not present at the time instant of the snapshot. If we do not
store more information at this kind of snapshot, those objects without information
are not considered candidates. For this reason, we store two additional arrays:

• Dis, a list of the active objects during the time interval (th−d, th−1] that
stopped emitting before the time instant represented by Sh.

• App, a list of objects that are not present in Sh and appear (or reappear)
before the next snapshot, that is in the interval [th+1, th+d).

Therefore in time-slice, time-interval, and knn queries the candidates of Dis or
App, depending on whether the traversal is backward or forward, are directly added
to the set of candidates.

Chapter 9

Experimental evaluation

In this chapter we compare all the proposed structures. Additionally, we compare
them with the MVR-tree, a classical spatio-temporal index. The MVR-tree [TP01b]
is one of the best exponents of the classical approaches, where the speed is the main
goal, without worrying too much about space. MVR-tree is a spatio-temporal index
designed to solve range and nearest neighbour queries. It can be combined with
other structures, as done with MV3R-tree [TP01b], which adds auxiliary 3DR-trees
for speeding up basic queries like retrieving the trajectory of an object.

For our experimental evaluation, we implemented our structures ScdcCT, GraCT,
ContaCT, and RCT in C++, using components from the SDSL library1 [GBMP14].
We used the MVR-tree of the spatialindex library.2 The experiments were conducted
on an Intel® CoreTM i7-3820 CPU @ 3.60GHz (4 cores/8 siblings) with 10MB of
cache and 64 GB of RAM, running Debian GNU/Linux 9 with kernel 4.9.0-8 (64
bits). We used compiler g++ version 6.3.0 with -O9 optimization.

9.1 Datasets
During the experimental evaluation, we used four sources of data, three of them
containing real-world data and the other one with pseudo-real data. They are briefly
described below.

• Ships: a real dataset obtained from MarineCadastre.3 It contains the location
of 4,461 vessels travelling inside the UTM Zone 10 during one month of 2017.

• Planes: it contains real data corresponding to 2,263 trajectories between
30 European airports from aircrafts of 30 different airlines. Altitude is not

1https://github.com/simongog/sdsl-lite
2http://libspatialindex.github.io
3http://marinecadstre.gov/ais

107

108 Chapter 9. Experimental evaluation

Ships Planes Taxis Ciconia
Total objects 4,461 2,263 24 88
Total points 63,093,559 36,741,877 44,682,648 4,390,159
Max x 6,000 22,901 1,215,897 407,367
Max y 647,776 4,688 1,160,360 299,593
Max time 44,639 172,547 2,102,639 505,573
Size Plain 1,293.13 MB 738.93 MB 1,024.00 MB 98.71 MB
Size Bin 481.37 MB 315.36 MB 426.12 MB 41.87 MB
Size p7zip 38.11 MB 58.30 MB 53.58 MB 7.21 MB

Table 9.1: Datasets and their dimensions.

considered, only latitude and longitude are represented in our dataset. The
original data can be obtained from OpenSky Network.4

• Taxis: a pseudo-real dataset containing trajectories of 433 taxis in New York
City during 2013. Since the original dataset only includes the origin and
destination of each trip, the trajectories were computed as the shortest path
between each origin and destination by taking into account the road network.
The original data are available at NYC Taxis: A Day in the life.5

• Ciconia: a small and non-repetitive real dataset containing the locations of
88 white storks travelling between Europe and North Africa from 2013 to
2019. The original data can be obtained from MoveBank Data Repository
[FFW16, CFWF19].

All the structures considered here deal with raster data, that is, every position
is stored into a discrete grid. Every location associated to a given object from our
four datasets must be represented by the corresponding cell of that grid. Depending
on the application and its precision requirements, a different size of cell is chosen.6.
In particular we choose cells of size: 100×100 meters in Ships, 1000×1000 meters
in Planes, and 10×10 meters in Taxis and in Ciconia. The time also requires a
normalization because each object emits its location with different frequency, and
our structures need to synchronize those positions at regular time instants. We used
regular intervals of 1 minute for Ships, 15 seconds for Planes and Taxis, and 6
minutes for Ciconia.

Following the ideas presented in Chapter 8, after the discretization, we detected
some errors in several locations of our real datasets (Ships, Planes, and Ciconia),

4https://opensky-network.org
5http://chriswhong.github.io/nyctaxi/
6https://en.wikipedia.org/wiki/Decimal_degrees

9.2. Compression 109

because some movements would require extremely high speed. To filter these errors,
a maximum speed parameter was set for each dataset: 800 km/h in Planes, 234
km/h for Ships, and 54 km/h in Ciconia. As a consequence, those signals that
imply exceeding the maximum speed were removed: 0.01%, 0.83%, and 0.42% of
the signals were deleted from Ships, Planes and Ciconia, respectively. In addition,
an object can emit its signals with different frequency; for example, in Ships, the
frequency is lower when they are in a port. The asynchronism between the frequency
of emission of GPS devices and the regular time instants of the structures, makes it
possible that there are some time instants without information about the position
of the object. In the cases where the difference between two consecutive signals is
less than 15 time instants, we interpolate the locations of those time instants.

Trajectories are usually stored in a plain text file composed of four columns:
object identifier, time instant, x coordinate, and y coordinate. To obtain a fair
comparison, we stored all this information in binary form by using the minimum
number of bytes required for each column. For example, in Ships, two bytes are
used to represent the first column (max value 4,461), two bytes for the time instant
column (max value 44,639), two bytes for the x-axis (max value 6,000), and finally,
three bytes are used for the y-axis (max value 647,776).

Table 9.1 shows a description of the datasets, their binary and plain text size,
and their size after compressing them with p7zip. The last row gives us an idea
of how compressible the data are: we observe that p7zip compresses the data to
5%–20%7 of its binary representation.

9.2 Compression
Firstly, we analyze the space requirements of all our structures. For each dataset we
build the eight possible structures, that is the combination of kinds of snapshots (2)
and logs (4). All of them use the same distances between snapshots, i.e, we keep a
snapshot every d = 60, 120, 240, 360, and 720 time instants.

Figures 9.1 and 9.2 show the compression ratios and the space requirements
for each dataset. Note that each chart refers to a specific implementation of the
log and the odd/even bars represent those structures that use snapshots based on
k2-tree and R-trees, respectively. Each chart corresponds with the best setup of
each technique. Therefore, ContaCT represents Dp and Dn using plain bitmaps
and the size of the reference of RCT, in plain format, is 100MB on Ships, Planes,
and Taxis. Instead, Ciconia uses sparse bitmaps and the size of the reference is
50MB. We can observe that most of the space is occupied by the compressed log
(represented by the red part of the vertical bars).

In the case of ScdcCT and GraCT, the log reduces its size when d increases but,
as expected, this does not occur in the case of ContaCT and RCT. In GraCT, the

7The values are shown as the size of the compressed file as a percentage of the size of the original
file.

110 Chapter 9. Experimental evaluation

60 120 240 360 720
Period

0
20
40
60
80

100
120
140

Si
ze

 (M
B)

22
.9

2%

17
.8

9%

15
.3

7%

14
.5

2%

13
.6

8%

23
.7

3%

18
.3

2%

15
.6

%

14
.6

8%

13
.7

7%

ScdcCT

60 120 240 360 720
Period

0
20
40
60
80

100
120
140

Si
ze

 (M
B)

11
.2

7%

7.
24

%

5.
21

%

4.
53

%

3.
85

%

12
.0

8%

7.
67

%

5.
44

%

4.
69

%

3.
94

%

GraCT

60 120 240 360 720
Period

0
20
40
60
80

100
120
140

Si
ze

 (M
B)

13
.9

7%

13
.0

9%

12
.6

6%

12
.5

1%

12
.3

6%

14
.2

8%

13
.2

7%

12
.7

6%

12
.5

8%

12
.4

1%

ContaCT

60 120 240 360 720
Period

0
20
40
60
80

100
120
140

Si
ze

 (M
B)

10
.1

3%

9.
26

%

8.
82

%

8.
68

%

8.
53

%

10
.4

4%

9.
44

%

8.
92

%

8.
75

%

8.
58

%

RCT

Log Snap-k2-tree Snap-r-tree

(a) Ships

60 120 240 360 720
Period

0

25

50

75

100

125

150

175

Si
ze

 (M
B)

37
.0

8%

24
.0

8%

17
.5

3%

15
.3

5%

13
.1

5%

34
.9

7%

23
.1

1%

17
.1

%

15
.1

%

13
.0

6%

ScdcCT

60 120 240 360 720
Period

0

25

50

75

100

125

150

175

Si
ze

 (M
B) 27

.4
9%

17
.8

3%

12
.9

5%

11
.3

3%

9.
68

%

25
.3

8%

16
.8

6%

12
.5

3%

11
.0

8%

9.
6%

GraCT

60 120 240 360 720
Period

0

25

50

75

100

125

150

175

Si
ze

 (M
B) 30

.2
5%

28
.2

3%

27
.2

2%

26
.8

8%

26
.5

4%

28
.0

3%

27
.2

%

26
.7

6%

26
.6

1%

26
.4

5%

ContaCT

60 120 240 360 720
Period

0

25

50

75

100

125

150

175

Si
ze

 (M
B) 29

.8
1%

27
.7

9%

26
.7

8%

26
.4

4%

26
.1

%

27
.5

9%

26
.7

6%

26
.3

2%

26
.1

7%

26
.0

1%

RCT

Log Snap-k2-tree Snap-r-tree

(b) Planes

Figure 9.1: Space requirements of each structure when representing the
datasets of Ships and Planes.

9.2. Compression 111

60 120 240 360 720
Period

0

20

40

60

80

100

120

Si
ze

 (M
B)

20
.8

2%

15
.8

9%

13
.4

2%

12
.6

%

11
.7

8%16
.2

7%

13
.6

3%

12
.3

%

11
.8

5%

11
.4

%

ScdcCT

60 120 240 360 720
Period

0

20

40

60

80

100

120

Si
ze

 (M
B) 16

.7
%

11
.9

2%

9.
49

%

8.
68

%

7.
86

%12
.1

4%

9.
65

%

8.
36

%

7.
93

%

7.
49

%

GraCT

60 120 240 360 720
Period

0

20

40

60

80

100

120

Si
ze

 (M
B)

20
.4

2%

16
.8

6%

15
.0

8%

14
.4

9%

13
.8

9%

15
.0

%

14
.1

7%

13
.7

4%

13
.6

%

13
.4

5%

ContaCT

60 120 240 360 720
Period

0

20

40

60

80

100

120

Si
ze

 (M
B)

19
.3

8%

15
.8

2%

14
.0

4%

13
.4

4%

12
.8

5%

13
.9

6%

13
.1

2%

12
.6

9%

12
.5

5%

12
.4

1%

RCT

Log Snap-k2-tree Snap-r-tree

(a) Taxis

60 120 240 360 720
Period

0

10

20

30

40

50

Si
ze

 (M
B)

52
.2

6%

32
.9

1%

22
.9

7%

19
.6

4%

16
.3

1%

39
.8

1%

26
.0

9%

19
.5

9%

17
.3

9%

15
.2

%

ScdcCT

60 120 240 360 720
Period

0

10

20

30

40

50

Si
ze

 (M
B)

54
.3

9%

38
.4

8%

30
.1

8%

27
.4

%

24
.6

2%41
.9

8%

31
.6

6%

26
.8

%

25
.1

5%

23
.5

%

GraCT

60 120 240 360 720
Period

0

10

20

30

40

50

Si
ze

 (M
B)

53
.6

1%

46
.3

3%

41
.9

2%

40
.4

5%

38
.9

8%

40
.3

5%

39
.0

%

38
.2

9%

38
.0

4%

37
.7

8%

ContaCT

60 120 240 360 720
Period

0

10

20

30

40

50

Si
ze

 (M
B)

89
.3

%

82
.0

5%

77
.6

4%

76
.1

8%

74
.7

%

76
.0

7%

74
.7

2%

74
.0

1%

73
.7

6%

73
.5

%

RCT

Log Snap-k2-tree Snap-r-tree

(b) Ciconia

Figure 9.2: Space requirements of each structure when representing the
datasets of Taxis and Ciconia.

112 Chapter 9. Experimental evaluation

quotient of the log space with d = 720 versus d = 60 is 0.63 and in ScdcCT that
quotient is 0.66. As d increases, the length of the log between snapshots is larger.
Since ScdcCT and GraCT require to know where each portion of the log starts, the
size reduces when d is larger. However, that difference of 3% is occasioned because
GraCT’s grammar compressor finds more repetitiveness in large sections. ContaCT
and RCT do not exploit this redundancy, therefore that previous quotient is 1. As
we will see soon, this higher space usage is traded by ContaCT and RCT to provide
much faster evaluation of some queries.

Regarding the other main component of our structures, the snapshots based
on R-trees tend to use less space than those based on k2-trees, except in the case
of Ships. Comparing the space used for the snapshots with the different kinds
of logs, we can observe that they require more space in ScdcCT and GraCT than
in ContaCT and RCT. For example in the dataset Planes and assuming d = 60,
ScdcCT and GraCT require 1.18 times more space on snapshots based on k2-tree
than ContaCT and RCT, and 1.45 times more space on those based on R-trees.
Recall that the extra-space is required in order to compute the spatial operation
abs(Sh, id) over ScdcCT and GraCT, which is not needed in ContaCT and RCT.

The compression ratios, computed with respect to the binary representations,
are showed above each individual bar. In addition, the gray line signals the space
used by p7zip. As explained, GraCT exploits the redundancy of trajectory data
to obtain better compression, requuiring around 75%–85% of the space needed by
p7zip, (except on Ciconia, which is not repetitive and makes GraCT use 50% more
space than p7zip). With d = 720, GraCT uses 1.6–2.7 times less space than RCT,
1.8–3.2 times less space than ContaCT, and 1.4–3.5 times less space than ScdcCT.
As we expected, RCT is ranked between GraCT and ContaCT. However, it slightly
reduces the space of ContaCT in repetitive datasets, that is, it uses 70%–99% of
the space of ContaCT. ContaCT is the structure demanding more space, however it
obtains competitive compression ratios: the version with d = 720 uses 10%–60% of
the space of a binary representation, and about twice the space used by p7zip (which
just compresses the data; it cannot solve any query without decompressing the
whole dataset). To compare with another system that uses differential compression
(and also does not support queries), we built Trajic [NH15], which used 140.30 MB
on Ships, 167.05 MB on Planes, and 16.86 MB on Ciconia.8 However, the space
required for Trajic around 2.3–3.7 times larger than that of p7zip. Comparing it
with our largest setup (ContaCT), Trajic uses 100% more space on Ships, an 85%
more on Planes, and a 6% more on Ciconia.

9.3 Query times
In this section, we focus on comparing the performance at query time of the tested
techniques. We study the response times of all the structures with the queries

8Trajic crashed when building on Taxis.

9.3. Query times 113

presented in Chapter 4. All the structures use the same distances of snapshots of
the previous experiment, that is d = 60, 120, 240, 360, and 720. ContaCT-SD uses
the sd-array (see Section 2.2.2) over the sparse bitmaps that represent the positive
and negative displacements for each axis. The ‘X’ value from RCT-X refers to the
size in MB of the reference in plain format. The response times correspond to the
average user time after a set of the same kind of queries. Note that, in Ciconia, we
only show the structures that obtain compression ratios lower than 50%. In our
experiments we have executed the following queries over all the tested structures:

Object queries

– ObjectPosition: this query obtains the position of a given object at a given
time instant tq. We show average times, obtained from 20,000 queries for
random objects and time instants.

– ObjectTrajectory: this query returns the trajectory followed by an object
during an interval [tb, te], where te − tb is fixed at 2,000 time instants. We
averaged over 10,000 queries for random objects and time instants tb.

– MBR: it computes the minimum bounding rectangle that covers a trajectory
between two time instants tb and te. We computed 1,000 random queries
whose time intervals involve 200 instants.

Spatio-temporal range queries

– TimeSlice S: this query obtains the identifiers and positions of the objects
lying within a small region (40×40 cells) at a given time instant. We averaged
over 1,000 queries for random region positions and time instants.

– TimeSlice L: this query obtains the identifiers and positions of the objects
lying within a larger region (320×320 cells). We run 1,000 queries for random
region positions and time instants, and show average times.

– TimeInterval S: this query obtains the objects that were in a small region
(40×40 cells) at any time instant between tb and te, where the interval
size is te − tb = 100 instants. We averaged over 1,000 queries with random
region positions and time intervals starting at random instants tb (hence
te = tb + 99).

– TimeInterval L: this query obtains the objects present in a larger region
(320×320 cells) over a longer interval of size te − tb = 800 instants. We
averaged times obtained from 1,000 queries with random region positions
and starting time instants tb.

– Knn: this query obtains the K nearest neighbors to a given position at a
given time instant, where K is a random value between 1 and 50. We show
average times from 1,000 queries with random objects and time instants.

114 Chapter 9. Experimental evaluation

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

0
1
2
3
4
5
6
7

Ti
m

e
(µ

s)

Ships (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

0
1
2
3
4
5
6
7

Ti
m

e
(µ

s)

Ships (Snap-r-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

0
1
2
3
4
5
6
7
8

Ti
m

e
(µ

s)

Planes (Snap-k2-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

0
1
2
3
4
5
6
7
8

Ti
m

e
(µ

s)

Planes (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.3: Time performance for ObjectPosition on Ships and Planes in
microseconds.

9.3. Query times 115

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

0

2

4

6

8

Ti
m

e
(µ

s)

Taxis (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

0

2

4

6

8
Ti

m
e

(µ
s)

Taxis (Snap-r-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

0

2

4

6

8

10

Ti
m

e
(µ

s)

Ciconia (Snap-k2-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

0

2

4

6

8

10

Ti
m

e
(µ

s)

Ciconia (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.4: Time performance for ObjectPosition on Taxis and Ciconia in
microseconds.

116 Chapter 9. Experimental evaluation

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

0

20

40

60

80

100

120

Ti
m

e
(µ

s)

Ships (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

0

20

40

60

80

100

120
Ti

m
e

(µ
s)

Ships (Snap-r-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

0

20

40

60

80

Ti
m

e
(µ

s)

Planes (Snap-k2-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

0

20

40

60

80

Ti
m

e
(µ

s)

Planes (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.5: Time performance for ObjectTrajectory on Ships and Planes
in microseconds.

9.3. Query times 117

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

0

25

50

75

100

125

150

175

Ti
m

e
(µ

s)

Taxis (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

0

25

50

75

100

125

150

175

Ti
m

e
(µ

s)

Taxis (Snap-r-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

0

25

50

75

100

125

150

175

Ti
m

e
(µ

s)

Ciconia (Snap-k2-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

0

25

50

75

100

125

150

175

Ti
m

e
(µ

s)

Ciconia (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.6: Time performance for ObjectTrajectory on Taxis and Ciconia
in microseconds.

118 Chapter 9. Experimental evaluation

9.3.1 ObjectPosition
Figures 9.3 and 9.4 show the space-time tradeoffs for ObjectPosition queries. The
best performance is obtained with ContaCT that computes this query in around
200–600 nanoseconds. Though RCT is based on ContaCT, it requires some additional
time in order to detect the phrase that contains the information corresponding to
the queried time instant. This makes it around 2–4 times slower than ContaCT.
Note that there is no difference in time with the structures that use k2-tree or R-tree
because this query does not require to access the snapshot in ContaCT and RCT.

ScdcCT and GraCT, instead, have to retrieve the position of the object from
the snapshot. Since the snapshot representations using a k2-tree can compute the
location at the snapshot in logarithmic time and, in those that use the R-tree can
solve it in constant time, this query turns 2–5 times faster on the last kind of
snapshots. Once the position is retrieved, the algorithm traverse the log computing
the positions. These structures turn out slower as d becomes greater. GraCT
benefits from phrases expanding into very long sequences of terminals that appear
in repetitive datasets. Due to this, GraCT traverses the log faster than ScdcCT,
hence it computes the location 1.1–1.5 times faster than ScdcCT, except in Ciconia
which is non-repetitive. Such a difference is expected because most of the log is
composed of terminals, thus there is no improvement when traversing the log.

The dependence of ScdcCT and GraCT on the value of d is also clearly illustrated
in the figure. The times of RCT and ContaCT, instead, remain constant as d changes.

9.3.2 ObjectTrajectory
In trajectory queries, as shown in Figures 9.5 and 9.6, ContaCT also outperforms
the other structures in most datasets. However, its variant ContaCT-SD worsens its
performance due to the use of sparse techniques when those bitmaps are not actually
sparse. For this reason, ContaCT-SD is not the dominant technique in Ciconia.
During the computation of the trajectory, RCT traverses the involved phrases. For
each one of them, it requires to synchronize the cumulative movements until the
starting position of the phrase at the reference. That need of synchronizing the
phrases, makes RCT around 1.6–2 times slower than ContaCT, when solving this
kind of queries.

The only structures that depend on the snapshot to solve this query are ScdcCT
and GraCT. The penalty of obtaining the location of the object in the snapshot
with a k2-tree is higher than in the R-tree-based snapshot. Since the trajectories to
recover are significantly longer than the snapshot periods, snapshots mostly disrupt
the processing of the logs, which explains why times improve with fewer snapshots.
Consequently, the trajectory queries are 1.5–11 times slower in ScdcCT and GraCT
with the snapshots based on k2-trees than in those configurations with R-trees.
Comparing ScdcCT and GraCT combined with the snapshots based on R-trees, we
observe that the difference in response times is small. In the extreme cases, ScdcCT

9.3. Query times 119

is around 9% slower on Ships and GraCT is a 10% slower on Planes.

9.3.3 Minimum Bounding Rectangle
Figures 9.7 and 9.8 show the space-time tradeoffs for MBR queries. Only those
structures with the log of ScdcCT and GraCT need to retrieve the absolute position
from the snapshot, and consequently, they obtain different time results depending
on the type of snapshot being used. In this query, the combinations of ScdcCT and
GraCT with the snasphots based on R-trees are 1.1–1.8 and 1–2 times faster than
their respectively variants with k2-trees.

The best performance in all datasets is obtained with ContaCT, that computes
this query in around 1.8–2.4 microseconds. As in ObjectPosition, its most immediate
competitor is RCT that is around twice slower because of the need of computing
the MBR of the phrases that are completely covered by the interval tb and te, and
the two MBRs of the phrases that intersect with the bounds of the queried interval.
Therefore, RCT yields a good space-time tradeoff. The remaining indexes need to
traverse the log in linear time, but GraCT can skip the nonterminals, and compute
the MBR as the union of the MBRs of the traversed nonterminals, thus it only
needs to decompress those nonterminals at the limits of the time interval. As a
consequence it makes GraCT around 5%–30% faster than ScdcCT. In those figures
we can observe the dependence of ScdcCT and GraCT on the value of d, whereas
the times for RCT and ContaCT remain constant as d increases.

9.3.4 TimeSlice S and TimeSlice L
We start analyzing the results from those setups that use snapshots based on k2-trees.
In Figures 9.9, 9.10, 9.11, and 9.12, we observe in TimeSlice S and TimeSlice L
with d = 60, that RCT and ContaCT are the slowest structures, except on Ciconia.
We can observe two groups of structures that obtain similar times: one is composed
of ScdcCT and GraCT and the other contains ContaCT and RCT. The first group
obtains better performance than the second one, for example, in Ships and Planes,
ScdcCT and GraCT require around 83% – 89% of the response times of RCT and
ContaCT. ScdcCT and GraCT can do better, without necessarily computing the
position of each object at time tq. After processing each value of the log in the
way to tq, they determine if the object still has chances of being within the queried
region at tq. If not, the object is discarded immediately, speeding up these queries.
However as d increases, those response times grow faster in ScdcCT and GraCT
because of the linear traversal through the log.

On the other hand, the structures based on R-trees are much faster than the
previous ones (16–55 times). Note that the R-trees compute the objects that can
reach the region at tq taking into account the trajectory of each individual object,
instead of the maximum speed of the dataset. Therefore, the number of considered
objects is lower in the snapshots based on R-trees than on k2-trees, and discarding

120 Chapter 9. Experimental evaluation

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

0

5

10

15

20

Ti
m

e
(µ

s)

Ships (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

0

5

10

15

20

Ti
m

e
(µ

s)

Ships (Snap-r-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

0

5

10

15

20

Ti
m

e
(µ

s)

Planes (Snap-k2-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

0

5

10

15

20

Ti
m

e
(µ

s)

Planes (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.7: Time performance for MBR on Ships and Planes in
microseconds. Notice the log scale in the vertical axis.

9.3. Query times 121

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

0

5

10

15

20

25

Ti
m

e
(µ

s)

Taxis (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

0

5

10

15

20

25

Ti
m

e
(µ

s)

Taxis (Snap-r-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

0

5

10

15

20

Ti
m

e
(µ

s)

Ciconia (Snap-k2-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

0

5

10

15

20

Ti
m

e
(µ

s)

Ciconia (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.8: Time performance for MBR on Taxis and Ciconia in
microseconds. Notice the log scale in the vertical axis.

122 Chapter 9. Experimental evaluation

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Ships (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Ships (Snap-r-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Planes (Snap-k2-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Planes (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.9: Time performance for TimeSlice S on Ships and Planes in
microseconds. Notice the log scale in the vertical axis.

9.3. Query times 123

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Taxis (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Taxis (Snap-r-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Ciconia (Snap-k2-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Ciconia (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.10: Time performance for TimeSlice S on Taxis and Ciconia in
microseconds. Notice the log scale in the vertical axis.

124 Chapter 9. Experimental evaluation

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Ships (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Ships (Snap-r-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Planes (Snap-k2-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Planes (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.11: Time performance for TimeSlice L on Ships and Planes in
microseconds. Notice the log scale in the vertical axis.

9.3. Query times 125

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Taxis (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Taxis (Snap-r-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Ciconia (Snap-k2-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Ciconia (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.12: Time performance for TimeSlice L on Taxis and Ciconia in
microseconds. Notice the log scale in the vertical axis.

126 Chapter 9. Experimental evaluation

objects in ScdcCT and GraCT is unlikely. As a consequence, all the structures
obtain similar times with d = 60. However, as d increases, ContaCT and RCT
obtain a better performance, for example in Taxis, ContaCT and RCT-50 become
arouund 1.5–6.5 and 1–5 times faster than ScdcCT, respectively.

9.3.5 TimeInterval S and TimeInterval L
Figures 9.13, 9.14, 9.15, and 9.16 show the average times of time interval queries.
We use λ = 20 for the different structures using ContaCT and RCT to represent the
log. As in time slice queries, there is a large difference between the structures that
use k2-trees or R-trees, being 3–15 and 3–33 times slower in GraCT and ScdcCT,
respectively. The main reason is that, in those snapshots based on k2-trees, retrieving
an object is much slower than in the R-tree based counterparts. Of course, this
becomes more noticeable when the number of retrieved objects increases.

Focusing on those structures with R-trees, we observe that ScdcCT and GraCT
grow faster than ContaCT and RCT when d increases. However, with d = 60, both
GraCT and ContaCT are competing for being the fastest structure. We observe
that ContaCT is faster than GraCT in all cases, except on Planes, where the
maximum-space configuration of GraCT is as fast as ContaCT and still uses 90%
of its space. In the other cases, when comparing the fastest configuration of both
structures, ContaCT is around 1–1.2 times faster on Ships, 1.2–2.5 in Taxis, and
1.5–1.8 in Ciconia. Since ContaCT can compute any MBR on the fly, it can apply
a perfect binary search on the whole interval [tb, te]. GraCT, instead, must follow
the partitioning given by the grammar, where each nonterminal stores its MBR.
It may require traversing several nonterminals to cover the queried interval, and
even several snapshots on large intervals. Regarding the remaining indexes, RCT
is around 1.7–4 times slower than ContaCT in all datasets. In the case of ScdcCT,
although it is 28% faster in the maximum-space configuration on Planes, it becomes
1.1–4.3 times slower than ContaCT in the remaining datasets.

9.3.6 K-Nearest Neighbor
Figures 9.17 and 9.18 show the response times of the Knn query for all the structures.
All the algorithms for solving this type of query start the process from the snapshot
and prioritize those objects that have more chances to be closer to the queried point.
As those snapshots based on R-trees take into account the trajectory of the object,
and those based on the k2-trees do not, the objects are better prioritized in the
first kind of snapshots. Consequently, the best performance is obtained with those
structures that use snapshots based on R-trees that can solve k-nearest neighbor
queries around 1.3–15.5 times faster.

Focusing on the structures that use snapshots based on R-trees, in this kind of
queries, ContaCT becomes the best choice in terms of performance. When d = 60 it
is as fast as GraCT and ScdcCT. In addition, when d increases, the response times

9.3. Query times 127

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

104

105

Ti
m

e
(µ

s)

Ships (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

104

105

Ti
m

e
(µ

s)

Ships (Snap-r-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Planes (Snap-k2-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Planes (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.13: Time performance for TimeInterval S on Ships and Planes
in microseconds. Notice the log scale in the vertical axis.

128 Chapter 9. Experimental evaluation

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Taxis (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Taxis (Snap-r-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Ciconia (Snap-k2-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Ciconia (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.14: Time performance for TimeInterval S on Taxis and Ciconia
in microseconds. Notice the log scale in the vertical axis.

9.3. Query times 129

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

104

105

Ti
m

e
(µ

s)

Ships (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

104

105

Ti
m

e
(µ

s)

Ships (Snap-r-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Planes (Snap-k2-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Planes (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.15: Time performance for TimeInterval L on Ships and Planes
in microseconds. Notice the log scale in the vertical axis.

130 Chapter 9. Experimental evaluation

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Taxis (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Taxis (Snap-r-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Ciconia (Snap-k2-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Ciconia (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.16: Time performance for TimeInterval L on Taxis and Ciconia
in microseconds. Notice the log scale in the vertical axis.

9.3. Query times 131

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Ships (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Ships (Snap-r-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Planes (Snap-k2-tree)

0.0% 10.0% 20.0% 30.0% 40.0%
Compression ratio

100

101

102

103

104

Ti
m

e
(µ

s)

Planes (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.17: Time performance for Knn on Ships and Planes in
microseconds. Notice the log scale in the vertical axis.

132 Chapter 9. Experimental evaluation

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Taxis (Snap-k2-tree)

0.0% 5.0% 10.0%15.0%20.0%25.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Taxis (Snap-r-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Ciconia (Snap-k2-tree)

0.0% 10.0%20.0%30.0%40.0%50.0%
Compression ratio

100

101

102

103

Ti
m

e
(µ

s)

Ciconia (Snap-r-tree)

ScdcCT GraCT ContaCT ContaCT-SD RCT-50 RCT-100

Figure 9.18: Time performance for Knn on Taxis and Ciconia in
microseconds. Notice the log scale in the vertical axis.

9.4. Scalability 133

of ContaCT worsen slower than those of GraCT and ScdcCT. That is expected
because as d increases, GraCT and ScdcCT require scanning a larger section of the
log in order to compute the location of each object. Since ContaCT can solve the
position of the object in constant time, Knn is solved around 1.1–1.6 times faster,
comparing the fastest configurations. RCT-50 and RCT-100 keep the constant time
computation of the location at tq, however, they still require synchronizing with
the phrase that contains tq. For this reason RCT-50 and RCT-100 are slower than
ContaCT (20%–60%) being the second fastest structure in both Ships and Taxis.

9.4 Scalability
We have studied the scalability of our structure in terms of query times and
compression ratios by generating new datasets from the same source of Taxis.
The size of those new datasets are 5,120 MB, 10,240 MB, and 20,480 MB in plain
form. We chose the indexes with the best time performance on Taxis, that is, the log
representations ScdcCT, GraCT, ContaCT, and RCT-50 combined with snapshots
based on R-trees. We built those indexes on the resulting datasets with distance
d = 720 between snapshots and compared all of them.

Figure 9.19(b) shows the compression ratios of those structures. We can observe
as all the structures, except GraCT, slightly improve their compression ratios with
respect to the smallest dataset of Taxis. Instead GraCT reduces the compression
ratio to a 57.33% between the smallest to the largest dataset. That is expected,
since the size of the dataset increases, the trajectories also grows, which makes it
possible to find more repetitiveness between them and, consequently Re-Pair yields
better compression. Although RCT-50 can exploit this redundancy of movements,
the extra-space required for computing the queries in an efficient way makes it
impossible to improve the compression ratios as fast as in GraCT. RCT-50 only
improves the compression ratio by around 12%. On the other hand, the remaining
structures do not exploit the repetitiveness, which explains the compression ratio
does only improve by around 8%–10%.

Figure 9.19(a) shows the time performance of the structures with the different
types of queries. In ObjectPosition, as expected, GraCT turns much slower (80%
more) when the size of the dataset increases. Note that, in large datasets, GraCT
can traverse faster the log, but it needs to decompress a deeper grammar when
it reaches the queried time instant. ScdcCT only decreases its performance 5%,
because the scanning of the log is limited by the distance between the snapshots
d = 720. Instead ContaCT and RCT-50 solve it in constant time. A similar behavior
can be observed in MBR queries where GraCT is a 15% slower and the remaining
structures keep the response times rather constant.

Regarding ObjectTrajectory queries, we compute the quotient between the time
and the size of the results obtained from the query, i.e. the number of points involved
in the trajectory. RCT-50 is clearly the most irregular and slowest structure, because

134 Chapter 9. Experimental evaluation

1024 5120 10240 20480
Dataset Size (MB)

0

1

2

3

4

5

Ti
m

e
(µ

s)

ObjectPosition

1024 5120 10240 20480
Dataset Size (MB)

0

20

40

60

80

Ti
m

e
(n

s)
/ T

ra
je

ct
or

y
siz

e

ObjectTrajectory

1024 5120 10240 20480
Dataset Size (MB)

0

20

40

60

80

100

Ti
m

e
(µ

s)
/ I

np
ut

 si
ze

Time Slice

1024 5120 10240 20480
Dataset Size (MB)

0

50

100

150

200

250

Ti
m

e
(µ

s)
/ I

np
ut

 si
ze

Time Interval

1024 5120 10240 20480
Dataset Size (MB)

0

50

100

150

Ti
m

e
(µ

s)
/ I

np
ut

 si
ze

Knn

1024 5120 10240 20480
Dataset Size (MB)

0

5

10

15

Ti
m

e
(µ

s)

MBR

ScdcCT GraCT ContaCT RCT

(a) Query times

1024 5120 10240 20480
Dataset Size (MB)

0%

2%

4%

6%

8%

10%

12%

Co
m

pr
es

sio
n

ra
tio

(b) Compression ratios

Figure 9.19: Evolution of query times and compression ratios as the dataset
grows.

9.5. Comparison with a spatio-temporal index 135

of its dependency on the number of phrases that split the trajectory. Retrieving
a point of a trajectory shows a logarithm increase in GraCT as the height of the
parse tree of its grammar increases. ContaCT retains constant time for the queries
where it has O(1) time complexity per point. Since computing a point in ScdcCT
requires to decode a codeword, the times for each returned point take roughly the
same amount of time.

In the remaining queries of Figure 9.19(a) (TimeSlice, TimeInterval, and Knn),
the time is divided by the dataset size in MB. In all the structures, the queriy times
tend to grow linearly with the data size. Notice that, as the dataset grows, the
number of object candidates increases. GraCT is the most penalized technique in
TimeSlice and Knn because of decompressing larger parse trees. In ScdcCT the
number of read entries from the log is limited to d in all the datasets, thus the
time reduces faster from 1GB to 5GB. Instead, in ContaCT and RCT-50 the times
per input size are between 15–22 microseconds in both queries for the datasets of
5GB, 10GB, and 20GB. Regarding TimeInterval, Figure 9.19(a) shows a similar
behavior for GraCT and ScdcCT, but there is a larger difference between ContaCT
and RCT-50. Those latter structures use the same binary search through the MBRs
to solve TimeInterval, but, as we pointed above, computing a MBR with RCT-50 is
4–7 times slower than in ContaCT. This overhead is extrapolated to TimeInterval
making the response times of RCT-50 around 66%–98% slower than ContaCT.

9.5 Comparison with a spatio-temporal index
The structures that, in general, obtain the best compression ratios (GraCT) and the
one with the best performance (ContaCT) with the snapshots based on R-trees are
compared with a spatio-temporal index, the MVR-tree [TP01b]. As we explained
in Section 3.1, the MVR-tree is composed of several R-trees, called versions. Each
version corresponds with an interval of time. Since two consecutive versions have
similar (or identical) nodes, the MVR-tree reduces the space by sharing common
nodes between consecutive versions. This structure is focused on solving TimeSlice,
TimeInterval, and Knn queries by traversing the R-trees or versions involved in the
queried time interval. That traversal consists in going from the root down to the
nodes by following those nodes that intersect the spatial point or region of the query.
These structures do not support ObjectPosition and ObjectTrajectory, because it
would require to traverse all the nodes of the versions involved on the query until
obtaining the desired object.

In our experimental setup, we built MVR-trees on our two repetitive and real
datasets, Ships and Planes, with sizes of 17.16 GB and 9.31 GB, respectively.
Although MVR-tree was designed for residing on disk, for a reliable comparison, we
configured it to run entirely in main memory. ContaCT and GraCT were configured
with the same settings used in the previous experiments, fixing d = 60. Note that
even using this maximum-space configuration (i.e. faster) of ContaCT, it still uses

136 Chapter 9. Experimental evaluation

Ships Planes
Datasets

0

100

200

300

400

500

600

Ti
m

e
(µ

s)

ContaCT-Small
GraCT-Small
MVRTree-Small
ContaCT-Large
GraCT-Large
MVRTree-Large

(a) TimeSlice

Ships Planes
Datasets

0

10 1

100

101

102

103

104

105

Ti
m

e
(m

s)

ContaCT-Small
GraCT-Small
MVRTree-Small
ContaCT-Large
GraCT-Large
MVRTree-Large

(b) TimeInterval

Ships Planes
Datasets

0

100

200

300

400

500

600

Ti
m

e
(µ

s)

ContaCT
GraCT
MVRTree

(c) Knn

Figure 9.20: Query time comparison of ContaCT and GraCT that use
snapshots based on R-tree with the MVR-tree, running in main memory.

260 times less space on Ships, and 90 times less space on Planes, than MVR-tree.
Figure 9.20 shows the times for the queries supported by the MVR-tree, comparing

it with the maximum-space configuration of ContaCT and GraCT using the snapshots
based on R-trees. TimeSlice and Knn queries are the most efficient queries for the
MVR-tree, because it needs to traverse only one R-tree. However, the speed of
querying the snapshots with an R-tree and the ability of ContaCT and GraCT to
efficiently traverse the log allow both structures to outperform the MVR-tree in both
types of queries. In Ships, our structures are 2–8 and 2–3 times faster in TimeSlice
and Knn, respectively. With respect to Planes, the MVR-tree is surpassed by our
structures, which are around 16–30 and 6–7 times faster in TimeSlice and Knn.

TimeInterval queries involve a larger interval of time, and thus MVR-tree needs
to traverse multiple versions. These are the queries where ContaCT and GraCT

9.6. Conclusions 137

0 50 100 150 200
Length of interval

 0

 1

 2

 3

 4

 5

Ti
m

e
(m

s)

ContaCT
GraCT
MVRTree

Figure 9.21: Growing TimeInterval queries on Ships where GraCT and
ContaCT use snapshots based on k2-tree.

outperform MVR-tree more sharply. Our structures can compute this query in
around 40 and 400 microseconds with small and large regions, respectively. Instead,
the MVR-tree needs 1–4 and 15–95 milliseconds to solve these queries, that is, the
MVR-tree is around two orders of magnitude slower.

Regarding the structures that use k2-trees as a part of the snapshot, we observed
that TimeSlice and Knn queries are slower than in MVR-tree, but TimeInterval is
faster. Notice that the difference between TimeSlice and TimeInterval is the span of
the queried interval of time. In order to study the turning point of TimeInterval
queries with small regions on Ships, we run queries varying the span of their time
interval (see Figure 9.21). Despite both structures slow down as the length of
the interval grows, the times of MVR-tree increase faster. Indeed, both ContaCT
and GraCT with the snapshots based on k2-trees outperform MVR-tree when the
length of the time interval surpasses 170 and 210 time instants. Therefore, both
compact data structures are less dependent on the span of the queried time interval,
outperforming MVR-tree on long intervals.

9.6 Conclusions
In the experimental evaluation we can observe that the MVR-tree is slower than our
combination of logs and snapshots based on R-trees. We can also see that if we uuuse
snapshots based on k2-trees, our structures are faster on TimeInterval queries when
the span of the queried interval of time is large. Therefore, our structures obtain
competitive and even better time performance than the MVR-tree and requiring
around 90–260 times less space.

Although the snapshots based on k2-trees were the first variant we designed,
comparing the structures that use snapshots based on either k2-trees or R-trees, we

138 Chapter 9. Experimental evaluation

can observe that the latter ones are clearly faster to perform all the queries. The
two main causes are that the snapshots based on R-trees can obtain the absolute
position of an object in constant time, and provide a more accurate selection of the
candidates in spatio-temporal range queries. Thus, we highly recommend using the
snapshots based on R-trees.

Regarding the logs, GraCT obtains the best compression ratios except in Ciconia,
which is not repetitive. In that case, the best compression is obtained with ScdcCT,
which usually is the second structure that requires less space. Therefore, GraCT
and ScdcCT are the most compressible logs. On the other side, we can observe
that RCT uses the same or slightly less amount of space of ContaCT, which is the
most-space consuming structure.

In time performance, ContaCT excels on object queries, where it obtains the
best performance. RCT is the second best structure in ObjectPosition and MBR,
where it is around by twice slower than RCT. GraCT is the third structure in those
two queries, closely followed by ScdcCT. With respect to ObjectTrajectory, GraCT
and ScdcCT outperform RCT because of the need for RCT to synchronize every
phrase involved in the queried interval of time. On the other hand, the results of
spatio-temporal range queries are similar for all the structures when d = 60. In case
of increasing the value of d, the results get worse in ScdcCT and GraCT faster than
in ContaCT, which is considered the best option in time performance when d is
greater than 60.

Choosing the best log structure depends on the requirements of the domain.
To summarize, the use of ContaCT and GraCT obtain the best time- and space-
efficient structures, respectively. An intermediate option that provide a good space-
time tradeoff is RCT. Instead, ScdcCT produces a good baseline that gets a good
compression and time performance on those data that are not highly repetitive.

Chapter 10

Summary of contributions

During the development of this thesis, different works related with the compact data
structures were done. Most of those works are based on the representation of moving
object trajectories, which is the main topic of this thesis. However, other works that
cover different lines of the compact data structures area were done and published
in different conferences. Note that they are not included in the main discussion of
this thesis because of coherence reasons. In the following sections, we reflect our
contributions of three main domains: moving objects, two-dimensional block trees,
and successor and predecessor problem.

10.1 Moving objects

10.1.1 Motivation
In the last years, the number of devices that track GPS information has increased
considerably; we can find them in smartwatches, smartphones, cars, planes, ships,
etc. Consequently, the amount of information about trajectories has increased
exponentially. As these data grow, more applications have an interest in storing and
exploiting these data, e.g., with data mining purposes. However, the large amount of
data makes it difficult to manage this kind of applications, so finding new techniques
for storing and accessing data efficiently is needed.

The classical research line is focused on spatio-temporal databases, that is,
databases that store the data in the disk and keep an index on main memory to
speed up the queries. However, they do not take advantage of the memory hierarchy.
Therefore, we focus on exploiting that hierarchy by using compact data structures
to represent moving object trajectories. As the space required of those structures is
small, the entire structure can reside in the main memory and becomes faster in
operations to access the information. Consequently, in some cases, answering queries

139

140 Chapter 10. Summary of contributions

on the compact data structure is even faster than performing that query over the
plain representation.

In state of the art there are no compact data structures designed to store
information about trajectories of moving objects and solve the queries of interest in
that domain. For this reason we focus on the design and development of compact
data structures of moving objects.

10.1.2 Description
We have designed different compact data structures to represent moving object
trajectories, but all of them have two common goals:

• Storing in a reduced space the huge amount of data about spatio-temporal
information, which describe moving object trajectories. Reducing the size of
those structures allows us to take advantage of the memory hierarchy.

• Exploiting the stored information by supporting queries of two types: (i) object
queries, which given an object and an interval of time retrieve information
about the location or trajectory of an object during a period of time; (ii)
spatio-temporal range queries, which given a region of space and an interval
of time compute the objects that are within that region during the given
interval of time. Solving both types of queries using the same structure was
not supported for any structure of the state of the art.

To achieve those two goals, we assume a raster representation of the space
and a discretization of the time, where the parameters that decide about the
levels of normalization in space and time can be adjustable depending on the
domain. Assuming that normalization, the trajectories are represented with different
structures, but all of them, as a common nexus, use the same two elements:

• Snapshots: they work as a spatial index that are periodically distributed
along time (e.g. every 1 minute). They can store the absolute position of
the object or the area which covers the trajectory where the object is moving
between two snapshots (MBR). Depending on the implementation, they store
the absolute position or the MBR. In the case of the snapshots based on
k2-trees the structure stores the absolute position, and with the snapshots
based on R-trees, they store the MBRs. The snapshots are used to speed up
spatio-temporal range queries.

• Logs: each log corresponds with an individual object and stores the relative
movements of that object, that is, the displacements on the space every two
time instants. With the help of this structure we can retrieve the cumulative
movement between two time instants, i.e. they allow us to retrieve the actual
trajectory of the object. We have designed and implemented four different log
structures: ScdcCT, GraCT, ContaCT, and RCT. Each one uses a different

10.1. Moving objects 141

compression strategy: statistical compression, grammar compression, bitmaps
and relatitve compression, respectively.

The combination of those two elements, which includes two variants for snapshots
and four for logs, gives us a total of eight different structures that permit the
representation of moving object trajectories. All of them were experimentally
evaluated, and they show good compression ratios and competitive time performance
when compared with classical spatio-temporal indexes. In addition, our structures
allow us to support the two kind of queries at a same structure, something impossible
for the indexes in state of the art. Apart from that, we can obtain different space-
time tradeoffs and a better adaptation to the application domain by choosing the
implementations that compose our structure.

10.1.3 Conclusions
We have built eight structures for representing moving objects trajectories, and
we have achieved the two proposed goals: storing the data in reduced space and
exploiting that information by supporting object and spatio-temporal range queries.

After evaluating all the eight structures we have observed that our structures
obtain competitive times in spatio-temporal range queries when we compare them
with a spatio-temporal index like the MVR-tree. Indeed, comparing them we
conclude the following:

• We have presented two different representations of snapshots, one based on
k2-trees, and another one based on R-trees. In the experimental evaluation,
we show that those structures that use the second type of snapshot obtains the
best performance in all the queries. For example, the structure with snapshots
based on R-trees can solve TimeSlice queries 16–55 times faster, than the other
type of snapshot.

• We have proposed four representations of the logs. The first structure is
ScdcCT, which compresses the movements by using a statistical zero-order
compressor that assigns shorter codewords to small movements. ScdcCT can
be considered a good option to compress trajectories when they are not highly
repetitive. GraCT is the second type of log, and it was designed to exploit the
repetitiveness of movements between trajectories. Therefore, it turns into the
log that obtains the best compression ratios and competitive times with the
other structures. The third log is ContaCT, which is compressed by using a
partial-sums structure, making it possible to compute the position of an object
in constant time. It is the option that obtains the best time performance. The
last variant of the log is RCT, which is based on relative compression and tries
to take the advantages of the most compressible structure, GraCT, and the
time performance of ContaCT.

142 Chapter 10. Summary of contributions

10.1.4 Future work
Although these structures were completely implemented and tested, there are some
extensions that can improve this thesis’s contribution. Future research lines include:

• We plan to extend the supported queries of our structures. As we show, we
can solve all the queries of a classical spatio-temporal index, but in the state
of the art, there are other sets of queries focused on data mining. Supporting
queries like moving together patterns, which obtain those objects that are
moving through the same locations at the same time; or trajectories clustering,
which look for the representative patterns of a set of trajectories. The use of
the MBR query can be the basis to solve those queries.

• Since RCT is not as close as we expected to GraCT, we plan to study different
ways of building the reference in order to obtain better compression ratios.
One interesting point is to build the reference from the grammar tree obtained
from compressing the union of trajectories with any grammar compression
technique.

• Notice that using a raster model, we are assuming some loss of precision. In
some domains, that loss is not important, for example, we do not need to know
the location with a precision of meters in trajectories of planes. However, in
some cases storing the location of the objects in full-precision is required, thus
we plan to use this type of indexes as an in-memory cached index. That index
can solve the queries with a loss of precision, and a disk-based structure refines
the final result.

• We observed that the trajectories could be considered as temporal series where
the value of each time instant is a location. Therefore, we believe that these
structures can be extended to other domains like the stock-market.

10.2 Two-Dimensional Block Trees
10.2.1 Motivation
In many applications, image collections contain identical sub-images, for example
two-dimensional slices of three-dimensional scans, video frames, and periodical
sky surveys. This is an important source of redundancy that can be exploited
for compression. Such an approach is found in two-dimensional Lempel-Ziv[LZ86]
(2D-LZ), which stores only the first occurrence of each sub-image on the dictionary
and the others are represented as pointers to the reference. However, 2D-LZ does
not support efficient random access to individual images or arbitrary regions thereof.
This is a relevant problem when storing large image collections in compressed form.
Some proposals [PW96, AF00] provide direct access by splitting the image into

10.2. Two-Dimensional Block Trees 143

different partitions, and solving range queries by decompressing only those parts
that intersect with the queried region. This induces, however, a tradeoff between
extraction time and compression ratio, driven by the size of those partitions.

Other data like matrices, maps, and graphs, are also modeled as images and
may contain similar areas. A particular case of repetitive two-dimensional data are
Web graphs, which are directed graphs of pages pointing to other pages on the Web.
The adjacency matrix of a Web graph can be seen as a bilevel image, where the
link between pages a and b is represented with a 1 at position (a, b), which has a 0
otherwise. Web graphs are sparse, so this matrix has large zones of 0s and a few 1s.

Since the adjacency matrix is huge and needs efficient random access, the design
of compact data structures to represent Web graphs is a relevant topic. A well-known
such structure is the k2-tree [BLN13]. The k2-tree is very efficient at representing
large zones of 0s of the adjacency matrix and supporting direct and reverse neighbor
queries. While there are other representations that exploit other properties of Web
graphs (locality, similarity of adjacency lists, etc.) [HN14, GB11, BV04], the k2-tree
offers the best space-time tradeoff when considering both direct and reverse neighbor
queries. However, the k2-tree does not directly exploit repetitiveness.

10.2.2 Description
A recent compact data structure called Block Tree (BT) [BGG+15] compresses
repetitive collections of (one-dimensional) strings. It obtains compression ratios close
to Lempel-Ziv [ZL77] while supporting efficient direct access to any substring. The
BT overcomes the inability of Lempel-Ziv in providing direct access by imposing a
regular structure to the targets of string copies. The BT reduces the size of repetitive
collections by orders of magnitude.

In order to apply the features of BT to images and matrices, we extend the BT
to two dimensions. The result is called Two-Dimensional Block Tree (2D-BT). It is
designed to compress two-dimensional elements like matrices, images, or graphs. We
presented a general 2D-BT structure and a specific 2D-BT variant to compress Web
graphs. This is a hybrid with the k2-tree that exploits the clustering of 0s and, at
the same time, the repetitiveness of the adjacency matrix.

Given a matrix M of size |M | = n2 over an alphabet [1..σ], the matrix is
subdivided into k2 submatrices of size n2/k2. Each of these submatrices is called a
block and represents a node of the 2D-BT. The nodes can be classified into internal or
leaves. Consider any submatrix order, such as the row-major one used by the k2-tree.
Then nodes whose submatrix overlaps the first occurrence of a block (including
themselves) are internal nodes; the others are leaves. The submatrix of any leaf node
is said to be the target of a copy, whose source is its first occurrence. A source may
overlap up to four adjacent blocks. Each leaf stores a pointer ptr to the top-left block
that includes its source and two offsets Ox and Oy, one by axis, where the source
starts in that block. Once the first level is built, we split the internal nodes into
k2 new nodes, and add them as children of the corresponding internal node. This

144 Chapter 10. Summary of contributions

step is repeated recursively until storing a pointer and its offsets is more expensive
than storing the submatrix of a node. At this point, the submatrix content is stored
verbatim. The 2D-BT has a maximum height of height = logk n.

To handle, in particular, Web graphs, we specialize this general 2D-BT structure
so as to exploit clustering and sparseness, not only repetitiveness. We regard the
adjacency matrix as a binary image. We define a new kind of leaf called empty node,
which represents a block of all 0s. Therefore, leaves in this 2D-BT may be empty
nodes, pointers to sources, or last-level nodes storing individual cells.

10.2.3 Conclusions
We have proposed a new structure that extends Block Trees to two dimensions, and
combined them with k2-trees to handle in particular Web graphs. In the experimental
evaluation, where we compare the Two-Dimensional Block Tree with the k2-tree on
web graphs, we conclude the following:

• We obtained up to 50% of the space of k2-trees, the best structure that allows
navigating the graph in both directions.

• The price is that we are 3–6 times slower. This price can be irrelevant when
the lower space allows fitting the whole graph in a faster memory (e.g., RAM
vs disk).

10.2.4 Future work
Our most immediate future work is to improve the construction, in order to handle
full Web graph adjacency matrices. The current construction takes too much space
and time because of using 2D signatures stored in a large matrix. We plan to replace
the 2D signature based scheme by a randomized method based on sampling positions
in the submatrix.

We also plan to explore other application areas where the values of the matrix
display a good deal of repetitiveness like three-dimensional scans, bi-level images or
periodical sky surveys.

10.3 Successor and predecessor problem
10.3.1 Motivation
One of the main computational tasks in a search engine is to look for those documents
that contain a set of words. In order to speed up that search, those engines use
inverted lists. Each inverted list corresponds to a word and stores as an increasing
sequence the document identifiers of the documents where that word occurs. Most
of the time, the query received by a search engine carries more than one word, to

10.3. Successor and predecessor problem 145

know where all the words appear together, the search engine needs to intersect
various inverted lists. The optimal intersection of two lists can be easily solved by
iterating over both of them in alternate form [CM10] (merge-wise intersection). In
each iteration, the search engine looks for a value in the second list, v2, equal to
or higher than the value from the first list, v1. If they are identical, v1 is part of
the solution and iterates to the next value in the first list. Otherwise, the iterator
of the first list skips those values lower than v2. Therefore, it needs an efficient
mechanism that can find an equal or higher value in the other list, which is known
as the successor problem.

Let us formalize the successor and predecessor problem, considering a set of
integers S = {x1 < x2 < · · · < xm}, the successor (succ(x) = xi) of a given value
x returns the minimum value xi ≥ x of S. Analogously, the predecessor of x
(pred(x) = xi) returns the maximum value xi ≤ x of S. Assuming n = xm and
m = |S|, both problems can be modeled by using a bitmap B[1, n] which contains
m 1s located at positions xi for all 1 ≤ i ≤ m, and solved in O(1) time with the two
classical operations on bitmaps: rank and select [Jac89, Mun96, Cla96].

In some scenarios, the bitmap B can contain the set bits clustered together in
k runs; hence B contains k runs of 1s and k ± 1 runs of 0s. There is a structure,
oz-vector [Nav16], which compresses the bitmaps exploiting its runs. The oz-vector
transforms the input bitmap into two sparse bitmaps O and Z, which mark the
lengths of the runs of 1s and 0s, respectively. Since those bitmaps are sparse, they
are very compressible, and the oz-vector can obtain good compression ratios in
practice. However, for solving succ and pred, it requires O(log k) time.

10.3.2 Description
We have proposed a new structure, zombit-vector, which compresses bitmaps with
runs and supports succ and pred in O(1) time. The main idea is to divide the input
into blocks in such a way that most of the blocks are uniform (all 0s or all 1s).
With this approach, our structure only needs to store the information contained by
non-uniform blocks.

Given a bitmap B of size |B| = n with k runs of 1s and k ± 1 runs of 0s, zombit-
vector defines a size of block β which splits B into dnβ e partitions, obtaining a set of
blocks {X1, X2, . . . , Xdnβ e}. Each block Xi can be classified into three different sets
of blocks depending on its data: uniform blocks full of 0s (Z), uniform blocks full of
1s (O), and mixed blocks, those which contain both bits (M). As a consequence,
the structure contains u = |{Z ∪ O}| uniform and t = dnβ e − u mixed blocks. The
classification of each block can be represented by using two plain bitmaps: U and
O. The bitmap U [1, dnβ e] marks which Xi is uniform by setting U [i] = 1 when
Xi ∈ {Z ∪O}. Then, we use the bitmap O[1, dnβ e] to represent which block contains
at least one 1-bit, it means O[i] = 1 when Xi ∈ {O ∪M}. Additionally to this
classification, we need to store the data of every mixed block. For that purpose,

146 Chapter 10. Summary of contributions

we use a bitmap M [1, t × β] which appends the information of each mixed block
together, preserving the order in B. In total, we need O(kβ + n

β) bits, and since the
optimal β =

√
n
k , we can reduce the space to O(

√
kn) bits.

10.3.3 Conclusions
We have proposed a structure, zombit, which compresses bitmaps with large runs
and can solve access, rank and, successor/predecessor queries in O(1) time. In the
experimental evaluation, where we evaluate the compression and time performance
over bitmaps with different length of runs, we conclude the following:

• We obtained a compression ratio of 0.04%− 26.33%, when the length of runs
is larger than 100 and we can handle successor queries 3 − 12 times faster
than our immediate competitor. Consequently, zombit gets a good trade-off in
terms of space and time on bitmaps with runs.

• A variant of our structure to obtain better compression was introduced, but in
practice, it is 5−12 times slower than zombit, and it reduces to 68.25%−87.06%
the space of our first proposal.

10.3.4 Future work
As future work, since we do not beat the space of our competitors in shorter runs,
we will focus on improving the compression in that scenario. We plan to solve select
operations on zombit efficiently by using o(n) extra-space.

Also, we will explore other areas where the successor and predecessor problem is
relevant.

Appendix A

Publications and other
research results

Publications
Journals

• Brisaboa, N. R.; Gagie, T.; Gómez-Brandón, A.; Navarro, G.; Paramá,
J. R.: An index for moving objects with constant-time access to
their compressed trajectories. Submitted to International Journal of
Geographical Information Science.

• Brisaboa, N. R.; Gómez-Brandón, A.; Navarro, G.; Paramá, J. R.: GraCT:
A Grammar-based Compressed Index for Trajectory Data. In
Information Sciences, 483, Elsevier, New York (Estados Unidos), 2019, pp.
106-135.

International conferences

• Gómez-Brandón, A.: Bitvectors with runs and the succes-
sor/predecessor problem. In Proceedings of the 2020 Data Compression
Conference (DCC 2020) IEEE Computer Society, Snowbird, Utah (United
States), 2020, pp. 133-142.

• Brisaboa, N. R.; Fariña, A.; Gómez-Brandón, A.; Navarro, G.; Varela
Rodeiro, T.: Dv2v: A Dynamic Variable-to-Variable Compressor. In
Proceedings of the 2019 Data Compression Conference (DCC 2019), IEEE
Computer Society, Snowbird, Utah (United States), 2019, pp. 83-92.

• Brisaboa, N. R.; Gagie, T.; Gómez-Brandón, A.; Navarro, G.: Two-
Dimensional Block Trees. In Proceedings of the 2018 Data Compression

147

148 Appendix A. Publications and other research results

Conference (DCC 2018), IEEE Computer Society, Snowbird, Utah (United
States), 2018, pp. 227-236.

• Brisaboa, N. R.; Gómez-Brandón, A.; Martínez Prieto, M.A.; Paramá, J.
R.: 3DGraCT: A Grammar based Compressed representation of 3D
Trajectories. In Proceddings of the 25th International Symposium on String
Processing and Information Retrieval (SPIRE 2018) - LNCS 11147, Springer,
Lima (Perú), 2018, pp. 102-116.

• Brisaboa, N. R.; Gagie, T.; Gómez-Brandón, A.; Navarro, G.; Paramá, J. R.:
Efficient Compression and Indexing of Trajectories. In Proceddings
of the 24th International Symposium on String Processing and Information
Retrieval (SPIRE 2017), LNCS 10508, Springer, Palermo (Italy), 2017, pp.
103-115.

• Brisaboa, N. R.; Gómez-Brandón, A.; Navarro, G.; Paramá, J. R.: GraCT:
A Grammar based Compressed representation of Trajectories. In
Proceddings of the 23rd International Symposium on String Processing and
Information Retrieval (SPIRE 2016) - LNCS 9954, Springer , Beppu (Japan),
2016, pp. 218-230.

• de Bernardo, Guillermo; Casares, R.; Gómez-Brandón, A.; Paramá, J. R.: A
new method to index and store spatio-temporal data. In Proceddings
of the 20th Pacific Asia Conference on Information Systems (PACIS 2016),
AIS Electronic Library (AISeL), Chiayi (Taiwan), 2016.

International research stays
• 6th March, 2016 - 6th June, 2016. Research stay at Universidad de Chile,

Departamento de Ciencias de la Computación (Santiago, Chile).

• 12th October, 2016 - 11th November , 2016. Research stay at Universidad de
Chile, Departamento de Ciencias de la Computación (Santiago, Chile).

• 9th April, 2018 - 8th July, 2018. Research stay at University of Melbourne,
School of Computing and Information Systems (Melbourne, Australia).

• 11th October, 2019 - 12th December, 2019. Research stay at University of
Kyushu, Department of Informatics (Kyushu, Japan).

• 6th March, 2020 - 13th March, 2020. Research stay at Universidad de Chile,
Departamento de Ciencias de la Computación (Santiago, Chile).

Appendix B

Resumen del trabajo
realizado

En este capítulo se presenta un resumen del trabajo realizado durante la tesis. En
la sección B.1 se presenta una breve introducción y la motivación para la realización
de esta tesis. Además, se resume brevemente la área donde se desenvuelve la
tesis, indicando cada uno de los principales problemas que tratamos de solucionar
mediante nuestras contribuciones. En la sección B.2 se exponen y discuten cada
una de las estructuras y algoritmos desarrollados. En la sección B.3 se presentan
las conclusiones a las que se llegaron tras el desarrollo de la tesis. Finalmente,
este capítulo se cierra con la sección B.4, donde se abordan diferentes líneas de
investigación para mejorar y ampliar en un futuro nuestras contribuciones aquí
expuestas.

B.1 Introducción
Durante los últimos años, con la introducción de sensores GPS en todo tipo de
dispositivos personales, (móviles o relojes) y en medios de transporte (coches,
aviones o buses) la cantidad de información sobre trayectorias de objetos móviles ha
crecido exponencialmente. Al mismo tiempo que estos datos crecen, nacen nuevas
aplicaciones que necesitan almacenar el histórico de cada una de las trayectorias y
analizarlas de una forma eficiente, por lo que son considerados parte de un nuevo
campo denominado Big Data. De estos problemas de almacenamiento y explotación
de abundantes cantidades de datos surgen nuevos retos, ya que las estructuras de
datos y los algoritmos convencionales no están diseñados para tratar el gran volumen
de información. El objetivo principal de esta tesis es proporcionar nuevas estructuras
de datos y algoritmos que puedan reducir el tamaño necesario para guardar estos

149

150 Appendix B. Resumen del trabajo realizado

datos y, sin la necesidad de incrementar ese tamaño, poder explotar su información
de manera eficiente.

En la actualidad, para la explotación de los datos de trayectorias móviles,
existen las bases de datos espacio-temporales. Estas bases de datos surgieron
para almacenar datos sobre posiciones de objetos en diferentes instantes de tiempo y
poder consultarlos de forma eficiente. Tanto estas bases de datos como los sistemas
de información geográfica han sido muy estudiados y son hoy una tecnología madura
tanto a nivel académico como industrial. Pero, la investigación en estas bases de datos
ha renacido por la proliferación de dispositivos con GPS. Por otro lado, con el avance
de la tecnología y la aparición de nuevos sistemas que se centraban en la distribución
y paralelización de los procesos, aparecen un nuevo tipo de estructuras y algoritmos
con un enfoque completamente diferente al convencional. Entre ellas destaca una
nueva línea de investigación que se centra en mantener los datos en memoria principal
de forma comprimida y acceder a ellos sin la necesidad de descomprimirlos, es lo
dominado, estructuras de datos compactas.

Las estructuras de datos compactos surgieron dentro del campo de la compresión
de datos, cuyo principal objetivo era reducir el tamaño destes datos y el
ancho de banda usado para su transmisión. Sin embargo, esas técnicas de
compresión tradicionales, no permiten consultar esos datos cuando están comprimidos.
Descomprimir esos datos es costoso, tanto en tiempo como en espacio de
almacenamiento. Las estructuras compactas surgen para cambiar la idea clásica
de compresión, ya que permiten el acceso y la ejecución de consultas complejas
directamente sobre los datos comprimidos, sin la necesidad de recuperar los datos
originales mediante un proceso de descompresión. Al reducir su tamaño, estas
estructuras están pensadas para residir en memoria principal, aprovechando la
ventaja de acceso que ésta le ofrece, mucho más rápido que en almacenamiento
secundario. Como consecuencia, muchas de las estructuras de datos compactas son
más rápidas que su representación sin compresión.

B.1.1 Motivación
La principal motivación de esta tesis es el diseño, implementación y evaluación
experimental de estructuras de datos compactas para la representación de trayectorias
de objetos móviles. En el mundo de la representación de trayectorias, podemos
distinguir dos tipos: trayectorias en espacios abiertos y trayectorias restringidas
a redes, como puede ser la red de carreteras. EN nuestro caso nos centramos
en el primer tipo de representación, por lo que la trayectoria es considerada el
camino realizado por un objeto a lo largo del tiempo. Debido a los requisitos
de almacenamiento y las limitaciones de los dispositivos GPS que adquieren esas
posiciones, el movimiento continuo de esos objectos se aproxima guardando la
localización del objeto en intervalos regulares de tiempo.

En la actualidad, el medio para almacenar las trayectorias de objetos móviles
son las bases de datos espacio-temporales. Estas bases de datos guardan todos los

B.1. Introducción 151

datos en almacenamiento secundario y sobre ellos se construyen índices que permiten
acelerar la explotación de su información. Aunque hay estructuras que mantienen el
índice en disco junto a los datos, lo más común es que los índices se mantengan en
memoria principal. Estas estructuras se conocen como índices espacio-temporales
y se centran en resolver consultas del tipo: rango espacio temporal y de objetos
cercanos a un punto dado. La primera se centra en obtener todos los objetos que
están dentro de una región en un intervalo de tiempo y la última obtiene los objetos
más próximos a un punto del espacio. Sin embargo, estos índices no puede recuperar
la trayectorias completas de los objetos de forma eficiente y requiere el uso de espacio
adicional.

Ninguna de las técnicas anteriormente presentadas considera el uso de compresión.
Sin embargo, existen algunas técnicas de compresión usadas usadas en trayectorias,
pero que no permiten su indexación, como puede ser la simplificación de trayectorias
o compresión de diferencias. La simplificación de trayectorias es una técnica que
solamente guarda aquellos puntos de la trayectoria que considera necesario y descarta
el resto, es decir, es una técnica de compresión con pérdida. Por lo tanto, existe una
pérdida de información al comparar la trayectoria descomprimida con la trayectoria
real. La técnica más común para comprimir las trayectoria es la basada en diferencias,
es decir, cada nueva posición es almacenada como la diferencia con la posición previa.
Esta idea explota el hecho de que de dos posiciones consecutivas de una trayectoria se
espera que estén cerca y que las diferencias sean pequeñas. Cuando las diferencias son
pequeñas, menos cantidad de bits son necesarios guardar, mejorando la compresión.
Recuperar la trayectoria completa se puede realizar eficientemente recorriendo todas
las diferencias, pero para acceder a un elemento de la trayectoria sin reducir el
rendimiento necesita guardar información adicional.

Este estado actual, tanto en indexación como en compresión de trayectoria, nos
presenta dos retos principales: debemos reducir el tamaño requerido para almacenar
colecciones de objetos y, al mismo tiempo, proporcionar un índice que soporte
tanto recuperar las trayectorias originales como realizar las consultas soportadas por
los índices espacio-temporales. Hasta donde sabemos, no existen antecedentes de
estructuras de datos compactas diseñadas específicamente para tratar trayectorias
de objetos móviles.

Ante este escenario los objetivos de esta tesis son los que siguen:
• Diseñar estructuras de datos compactas que reduzcan el tamaño de la

representación de los objetos y los algoritmos necesarios para poder recuperar
las trayectorias originales sin ningún tipo de pérdida de información.

• Diseñar los algoritmos necesarios para poder resolver de una forma eficiente
las consultas relacionadas con los índices espacio temporales: (i) time-slice,
computar los objetos dentro de una región en un instante de tiempo; (ii)
time-interval obtener los objetos dentro de una región en algún instante de
tiempo de un intervalo de tiempo; (iii) knn, obtener los objetos más próximos
a un punto del espacio.

152 Appendix B. Resumen del trabajo realizado

• Evaluación de las estructuras y los algoritmos para resolver las consultas. En
esa evaluación uno de los objetivos es ver como escalan las estructuras según
se incrementa el tamaño de la colección de datos.

• Mostrar que las estructuras de datos compactas aportan un nuevo enfoque al
mundo de representación de trayectorias, que les hace ser competitivas con los
índices espacio-temporales clásicos.

B.2 Contribuciones
En esta tesis nos hemos centrado en la representación compacta y eficiente de
colecciones de datos de trayectorias de objetos que se mueven en un espacio abierto
sin restricciones. El conjunto de estas nuevas estructuras compactas y algoritmos
buscan completar los objetivos presentados en el apartado anterior. Esta sección
resumen las contribuciones más importantes de esta tesis.

Todas las estructuras presentadas representan las trayectorias en un modelo
raster, es decir, las coordenadas que indican la localización donde está un objeto
en un instante de tiempo se representan como celdas que dividen el espacio en
partes iguales. El tamaño de estas celdas es ajustado en función del dominio al
que pertenecen las trayectorias. Nótese que al reducir el tamaño de las celdas la
representación de las trayectorias es más fina. Por lo tanto se entiende que una
trayectoria es una lista de celdas e instantes de tiempo, que indican por donde ha
pasado el objeto a lo largo del tiempo. Para su representación, todas las estructuras
presentadas parten de los dos componentes básicos:

• Snapshot. Este componente se encarga de guardar la información espacial sobre
los objetos a intervalos regulares de tiempo, lo que permite que se resuelvan
una serie de operadores espaciales que nos dan una orientación por donde ha
estado moviendose el objeto.

• Logs. Cada log pertenece a un objeto y guarda todos los puntos por donde éste
ha pasado. Cada uno de esos puntos es representado como el desplazamiento
entre el nuevo punto y el anterior. En los logs se poden resolver lo que
denominamos operaciones de log.

Para cada uno de estos componentes, esta tesis propone diferentes estructuras,
cada una con sus ventajas y desventajas. En el caso de la snapshot, se han diseñado
dos estructuras:

• Snapshots basadas en k2-trees. Este tipo de estructura considera el modelo
raster y transforma la matriz que representa el espacio en una matriz binaria,
donde las celdas que contienen un objeto son marcadas con un 1 y el resto
con un 0. Consecuentemente se obtiene una matriz donde la mayoría de las

B.2. Contribuciones 153

celdas están vacías. Esta matriz es comprimida con un k2-tree y con ayuda de
estructuras compactas auxiliares, se guarda que objetos están en cada una de
las celdas marcadas con un 1.

• Snapshots basadas en R-trees. A diferencia con el tipo de snapshot anterior,
en estas snapshots se guarda para cada objeto, el rectángulo mínimo que cubre
su trayectoria entre dos snapshots consecutivas. Para guardar esa información
de forma compacta, se utiliza una variante compacta de un índice espacial
denominado R-tree.

Con respecto al log, se han diseñado cuatro estructuras, donde cada una de ellas
explota diferente características para la compresión de los mismos.

• ScdcCT, es una representación del log que explota el hecho de que los
movimientos pequeños son más frecuentes que los desplazamientos grandes.
Para ello usa un compresor denominado (s,c)-Dense Codes, que asigna códigos
más cortos a los valores más pequeños.

• GraCT utiliza una compresión basada en gramáticas llamada Re-Pair. Es decir,
considera el log como una sequencia de valores que comprime en una sequencia
final donde no hay ningún par idéntico repetido. Básicamente busca patrones
de movimiento idénticos y cada uno de esos patrones son representados con
un único código. Esto permite explotar la repetividad de movimientos entre
todas las trayectorias, aumentando la compresión. Para agilizar las consultas,
se guarda información adicional para cada uno de estos códigos.

• ContaCT a diferencia de las dos estructuras de log anteriores, esta estructura
está más centrada en poder realizar las consultas sobre el log de forma eficiente
que en la compresión. Los movimientos del log son representados usando varios
bitmaps, que usando sumas parciales, pueden calcular en tiempo constante el
desplazamiento de un objeto para un intervalo dado.

• RCT, en este caso todos los movimientos del log son representados usando
compresión relativa. Hay un log artifical de referencia que contiene los
movimientos más comunes de la colección y el resto de logs se codifican
con respecto a esa referencia. Su principal objetivo es poder mantener la
eficiencia de ContaCT y acercarse a la compresión de GraCT.

Por lo tanto, en total existen ocho posibles estructuras de datos compactas
para la representación de trayectorias, fruto de la combinación de las estructuras
diseñadas para cada componente. Cada una de esas combinaciones, gracias a las
operaciones espaciales y de log, soportan tanto operaciones relacionadas con la
trayectoria (ObjectPosition ObjectTrajectory, MBR) como operaciones relacionadas
con los índices espacio-temporales (TimeSlice, TimeInterval, Knn). Las consultas
soportadas son las siguientes:

154 Appendix B. Resumen del trabajo realizado

• ObjectPosition: calcular la localización de un objeto en un instante de tiempo
dado

• ObjectTrajectory: se cansulta la trayectoria de un objeto completa o bien
limitada por un intervalo de tiempo.

• MBR: esta operación calcula el mínimo rectángulo que envuelve la trayectoria
seguida por un objeto entre dos instantes de tiempo.

• TimeSlice: dada una región espacial y un instante de tiempo, se calculan los
objetos que están dentro de esa región.

• TimeInterval: a partir de un intervalo de tiempo y una región espacial se
computan los objetos que han estado

• Knn: dada una localización en el espacio, un instante de tiempo y un parámetro
k, se obtienen los k-ésimos objetos más cercanos a esa localización del espacio
en el instante de tiempo dado.

Es importante notar que muchas veces la información de que contienen las
colecciones de datos es errónea o debido a circunstancias externas existen períodos
se falta de información. Aunque los errores pueden ser fáciles de detectar y se
pueden eliminar, la falta de información es algo que la estructura debe tratar. Por
esta razón nuestras estructuras usan diferentes estrategias dependiendo del tipo de
log para manejar este tipo de incertidumbre. En el caso de ScdcCT y GraCT se
añaden nuevos códigos que representan períodos sin información y la duración de
los mismos. Sin embargo en ContaCT y RCT se añade una marca individual para
cada instante de tiempo, que señala si la localización del objeto en ese instante de
tiempo es conocida o no.

Para evaluar las ocho posibles estructuras, se han usado cuatro colecciones de
datos y sobre ellos se han construido los diferentes índices con distintos parámetros.
En esas comparaciones pudimos observar que aquellas estructuras cuyas snapshots
se basan en R-trees obtienen una compresión similar a las basadas en k2-trees, pero
son más eficientes a la hora de resolver las consultas. En general, si comparamos
el espacio de las distintas estructuras de log, aquellas configuraciones que usan
GraCT obtienen le mejor compresión y en el otro extremo se encuentra ContaCT.
ScdcCT suele estar cerca de GraCT cuando la distancia entre snapshots es corta,
pero a medida que ésta crece, ScdcCT comprime peor. RCT mejora un poco el
espacio de ContaCT, pero no llega a acercarse. En cuanto al tiempo, ContaCT
muestra su superioridad y GraCT se ve penalizado por la necesidad de descomprimir
ciertas partes del log. Para probar la escalabilidad de estas estructuras a medida
que los datos van creciendo, evaluamos su funcionamiento con distintos tamaños
de una mismo colección de datos. En esa experimentación pudimos observar que
aquellas estructuras formados por los logs RCT y ContaCT son las más rápidas
y, como esperábamos, el tiempo requerido para calcular la posición de los objetos

B.3. Conclusiones 155

se mantiene constante a medida que la colección de datos va creciendo. En otro
experimento de la evaluación experimental se comparan las estructuras contra
un índice espacio temporal, configurado para residir en memoria. Los resultados
demuestran la capacidad de estas estructuras para resolver las consultas más rápido
que dicho índice, usando mucha menos cantidad de espacio.

B.3 Conclusiones
Como se puede observar, en esta tesis se han diseñado las primeras estructuras
compactas para la representación de trayectorias en espacios abiertos, es decir,
movimientos sin ningún tipo de restricción. Añadiendo más valor al estado de arte
actual de la representación de trayectorias de objetos móviles.

Todas estas estructuras se enfocan en mantener la estructura comprimida en
memoria de tal forma que se pueda acceder a súa información sin la necesidad de
descomprimirla. Para ello, cada una cuenta con dos componentes: snapshots y
logs. En cuanto a las snapshots, está claramente demostrado que aquellas basadas
en R-tree consiguen una mejora sustancial en tiempo y ocupan lo mismo que las
basadas en k2-tree.

En cuanto a las técnicas usadas para representar el log, cada una de ellas goza de
unas ventajas y desventajas, que permite al usuario decantarse por una o por otra
en función del dominio y ámbito a tratar. Por ejemplo, según nuestra evaluación
experimental, si lo que se prima es la compresión y la colección es altamente repetitiva,
GraCT sería la mejor opción. En caso de tener que tratar con movimientos cortos
no repetitivos y prime la compresión, ScdcCT podría ser una buena opción. Por
otro lado, si lo que se busca es la velocidad para responder a las consultas ContaCT
y RCT serían las dos mejores opciones. Además, para cada una de las estructuras se
realizó un estudio de escalabilidad, que demostró la buen hacer de todas ellas ante
colecciones de datos grandes.

En la comparación de las estructuras con el índice espacio temporal clásico,
se puede observar que las estructuras propuestas en esta tesis pueden obtener
mucho mejor rendimiento ocupando mucho menos espacio. Mostrando así que las
estructuras de datos compactas aportan un enfoque tan válido, como el de los índices
espacio-temporales, al mundo de la representación de objetos móviles.

B.4 Trabajo futuro
En esta sección proponemos varias consideraciones que pueden ser interesantes
para un futuro de cara a mejorar la aplicabilidad y el rendimiento de nuestras
contribuciones. Entre ellas podemos destacar las siguientes líneas de investigación:

• Aumentar las consultas soportadas. Aunque las consultas que las estructuras
propuestas pueden resolver son las más comunes de la representación

156 Appendix B. Resumen del trabajo realizado

de trayectorias, hay otras consultas que podrían ser de interés. Por
ejemplo, detectar movimientos de objetos que viajan juntos, buscar patrones
representativos de trayectorias o las trayectorias más parecidas entre si, como
estas tres operaciones tratan de buscar similitudes entre movimientos, se
podrían implementar de forma eficiente a partir de varias consultas de MBR.

• Mejorar la compresión de RCT. Como se puede observar en la evaluación
experimental, RCT reduce el tamaño de la estructura si la comparamos con el
ContaCT, pero esta mejora es mínima. La causa principal de este problema
es que la referencia no es lo suficientemente buena para generar una buena
compresión. Una propuesta interesante para mejorar dicha referencia es
construirla a partir de una gramática, lo que añadiría a la referencia las partes
más habituales entre las trayectorias.

• Precisión total. Las estructuras presentadas se basan en un modelo ráster,
es decir, el espacio es dividido en celdas de un tamaño fijo. A pesar de que
ese tamaño de celda se puede ajustar en función de la aplicación, se puede
producir una falta de precisión no deseada. Una buena propuesta para estas
estructuras sería utilizarlas como una estructura en memoria principal, que
permita resolver las consultas con un cierto error de precisión y que esos
resultados se refinen mediante el uso de índices basados en disco que indexen
la información con la precisión total.

• Aplicar estas estructuras a otros ámbitos. Aunque estas estructuras representan
la trayectoria de objetos, esto no es más que una serie temporal en la que
los valores varían en función de donde está el objeto. Una opción interesante,
sería evaluar estas estructuras en otros ámbitos relacionados con las series
temporales, como puede ser el mercado bursátil.

Bibliography

[Abr63] N. Abramson. Information Theory and Coding. McGraw-Hill, 1963.

[AF00] Eugene Ageenko and Pasi Fränti. Lossless compression of large binary
images in digital spatial libraries. Computers & Graphics, 24(1):91–98,
2000.

[BDM+05] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S.
Rao. Representing trees of higher degree. Algorithmica, 43(4):275–292,
2005.

[BFCP+05] Michael A Bender, Martín Farach-Colton, Giridhar Pemmasani,
Steven Skiena, and Pavel Sumazin. Lowest common ancestors in
trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–94,
2005.

[BFNP05] N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá. Efficiently
decodable and searchable natural language adaptive compression.
page 234, 2005.

[BFNP07] N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá. Lightweight
natural language text compression. Information Retrieval, 10(1):1–33,
2007.

[BFNP10] N. Brisaboa, A. Fariña, G. Navarro, and J. Paramá. Dynamic
lightweight text compression. ACM Transactions on Information
Systems, 28(3):article 10, 2010.

[BGG+15] Djamal Belazzougui, Travis Gagie, Pawel Gawrychowski, Juha
Kärkkäinen, Alberto Ordónez, Simon J Puglisi, and Yasuo Tabei.
Queries on LZ-bounded encodings. In Proc. Data Compression
Conference (DCC), pages 83–92, 2015.

[BHMR07] J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct indexes
for strings, binary relations and multi-labeled trees. In Proc. 18th

157

158 Bibliography

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 680–689, 2007.

[BINP03] N. R. Brisaboa, E. L. Iglesias, G. Navarro, and J. R. Paramá. An
efficient compression code for text databases. In Proc. 25th European
Conference on Information Retrieval Research (ECIR), pages 468–481,
2003.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The r*-tree: an efficient and robust access method for points
and rectangles. In Acm Sigmod Record, volume 19, pages 322–331.
Acm, 1990.

[BLN13] N. Brisaboa, S. Ladra, and G. Navarro. DACs: Bringing direct access
to variable-length codes. Information Processing and Management,
49(1):392–404, 2013.

[BLN14] N. R. Brisaboa, S. Ladra, and G. Navarro. Compact representation
of web graphs with extended functionality. Information Systems,
39(1):152–174, 2014.

[BLNS13] Nieves R Brisaboa, Miguel R Luaces, Gonzalo Navarro, and Diego
Seco. Space-efficient representations of rectangle datasets supporting
orthogonal range querying. Information Systems, 38(5):635–655, 2013.

[BM77] R. S. Boyer and J. S. Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):762–772, 1977.

[BMNS08] Viorica Botea, Daniel Mallett, Mario A. Nascimento, and Jörg Sander.
Pist: An efficient and practical indexing technique for historical
spatio-temporal point data. GeoInformatica, 12(2):143–168, 2008.

[Bry86] Randal E Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, 100(8):677–691,
1986.

[BV93] Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data
structure. SIAM Journal on Computing, 22(2):221–242, 1993.

[BV04] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I:
Compression techniques. In Proc. 13th International Conference on
World Wide Web (WWW), pages 595–602, 2004.

[CEP03] V. Prasad Chakka, Adam Everspaugh, and Jignesh M. Patel. Indexing
large trajectory data sets with SETI. In Proc. Conference on
Innovative Data Systems Research (CIDR), 2003.

Bibliography 159

[CFWF19] Yachang Cheng, Wolfgang Fiedler, Martin Wikelski, and Andrea
Flack. “closer-to-home” strategy benefits juvenile survival in a long-
distance migratory bird. Ecology and evolution, 9(16):8945–8952,
2019.

[Cla96] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo,
Ontario, Canadá, 1996.

[CLL05] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with
applications. SIAM Journal on Computing, 34(4):924–945, 2005.

[CM10] J Shane Culpepper and Alistair Moffat. Efficient set intersection
for inverted indexing. ACM Transactions on Information Systems
(TOIS), 29(1):1, 2010.

[CMWM10] P. Cudre-Mauroux, E. Wu, and S. Madden. Trajstore: An adaptive
storage system for very large trajectory data sets. In Proc. 26th
IEEE International Conference on Data Engineering (ICDE), pages
109–120, 2010.

[dMNZBY00] E. Silva de Moura, G. Navarro, N. Ziviani, and R. A. Baeza-Yates. Fast
and flexible word searching on compressed text. ACM Transactions
on Information Systems, 18(2):113–139, 2000.

[DP73] D. H. Douglas and T. K. Peuker. Algorithms for the reduction of the
number of points required to represent a line or its caricature. The
Canadian Cartographer, 10(2):112–122, 1973.

[DRR06] O. Delpratt, N. Rahman, and R. Raman. Engineering the louds
succinct tree representation. In Proc. 5th International Workshop on
Experimetal Algorithms (WEA), pages 134–145, 2006.

[Eli75] Peter Elias. Universal codeword sets and representations of the
integers. IEEE Transactions on Information Theory, 21(2):194–203,
1975.

[Fan71] Robert Mario Fano. On the number of bits required to implement an
associative memory. Memorandum 61, Computer Structures Group,
MIT, 1971.

[FFW16] A Flack, W Fiedler, and M Wikelski. Data from: Wind estimation
based on thermal soaring of birds, 2016.

[FH11] Johannes Fischer and Volker Heun. Space-efficient preprocessing
schemes for range minimum queries on static arrays. SIAM Journal
on Computing, 40(2):465–492, 2011.

160 Bibliography

[FLMM05] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan.
Structuring labeled trees for optimal succinctness, and beyond. In
Proc. 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 184–196, 2005.

[FM08] A. Farzan and J. I. Munro. A uniform approach towards succinct
representation of trees. In Proc. 11th Scandinavian Workshop on
Algorithm Theory (SWAT), pages 173–184, 2008.

[FN17] H. Ferrada and G. Navarro. Improved range minimum queries. Journal
of Discrete Algorithms, 43:72–80, 2017.

[GB11] Szymon Grabowski and Wojciech Bieniecki. Merging adjacency lists
for efficient Web graph compression. In Man-Machine Interactions 2,
pages 385–392. Springer, 2011.

[GBMP14] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to
practice: Plug and play with succinct data structures. In Proc.
13th International Symposium on Experimental Algorithms (SEA),
pages 326–337, 2014.

[GBT84] Harold N Gabow, Jon Louis Bentley, and Robert E Tarjan. Scaling
and related techniques for geometry problems. In Pro. 16th ACM
symposium on Theory of computing, pages 135–143. ACM, 1984.

[GGG+07] A. Golynski, R. Grossi, A. Gupta, R. Raman, and S. S. Rao. On the
size of succinct indices. In Proc. 15th Annual European Symposium
on Algorithms (ESA), pages 371–382, 2007.

[GLW08] Joachim Gudmundsson, Patrick Laube, and Thomas Wolle. Movement
patterns in spatio-temporal data. Encyclopedia of GIS, 726:732, 2008.

[GMR06] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on
large alphabets: a tool for text indexing. In Proc. 17th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 368–373,
2006.

[GNR+05] G. Gutiérrez, G. Navarro, A. Rodríguez, A. González, and J. Orellana.
A spatio-temporal access method based on snapshots and events. In
Proc. 13th ACM International Symposium on Advances in Geographic
Information Systems (GIS), pages 115–124, 2005.

[GRR04] R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with
level-ancestor queries. In Proc. 15th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1–10, 2004.

Bibliography 161

[GRRR04] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple
optimal representation for balanced parentheses. In Proc. 15th Annual
Symposium on Combinatorial Pattern Matching (CPM), pages 159–
172, 2004.

[GRRR06] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal
representation for balanced parentheses. Theoretical Computer
Science, 368(3):231–246, 2006.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial
searching. In Proc. ACM International Conference on Management
of Data (SIGMOD), pages 47–57, 1984.

[HAE+15] James N Hughes, Andrew Annex, Christopher N Eichelberger,
Anthony Fox, Andrew Hulbert, and Michael Ronquest. Geomesa:
a distributed architecture for spatio-temporal fusion. In Geospatial
Informatics, Fusion, and Motion Video Analytics V, volume 9473.
International Society for Optics and Photonics, 2015.

[HMR07] M. He, J. Ian Munro, and S. S. Rao. Succinct ordinal trees based on
tree covering. In Proc. 34th International Colloquium on Automata,
Languages and Programming (ICALP), pages 509–520, 2007.

[HN14] C. Hernández and G. Navarro. Compressed representations for Web
and social graphs. Knowledge and Information Systems, 40(2):279–313,
2014.

[Huf52] D. A. Huffman. A Method for the Construction of Minimum-
Redundancy Codes. In Proc. I.R.E. (Institue of Radio Engineers
Inc.), volume 40, pages 1098–1101, 1952.

[HWZ+14] S. Huang, B. Wang, J. Zhu, G. Wang, and G. Yu. R-HBase: A multi-
dimensional indexing framework for cloud computing environment.
In Proc. IEEE International Conference on Data Mining Workshop,
pages 569–574, 2014.

[Jac89] G. Jacobson. Space-efficient static trees and graphs. In Proc.
30th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 549–554, 1989.

[JSS07] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct
representation of ordered trees. In Proc. 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 575–584, 2007.

[KCHP01] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for
segmenting time series. In Proc. 2001 IEEE International Conference
on Data Mining (ICDM), pages 289–296, 2001.

162 Bibliography

[KPZ10] S. Kuruppu, S. J. Puglisi, and J. Zobel. Relative Lempel-Ziv
compression of genomes for large-scale storage and retrieval. In Proc.
17th International Symposium on String Processing and Information
Retrieval (SPIRE), LNCS 6393, pages 201–206, 2010.

[KY00] John C Kieffer and En-Hui Yang. Grammar-based codes: a new class
of universal lossless source codes. IEEE Transactions on Information
Theory, 46(3):737–754, 2000.

[KYNC00] John C Kieffer, En-Hui Yang, Gregory J Nelson, and Pamela Cosman.
Universal lossless compression via multilevel pattern matching. IEEE
Transactions on Information Theory, 46(4):1227–1245, 2000.

[LM00] N. J. Larsson and A. Moffat. Off-line dictionary-based compression.
Proceedings of the IEEE, 88(11):1722 –1732, 2000.

[LMZ+17] Xuelian Lin, Shuai Ma, Han Zhang, Tianyu Wo, and Jinpeng Huai.
One-pass error bounded trajectory simplification. Proceedings of the
VLDB Endowment, 10(7):841–852, March 2017.

[LPMW16] Kewen Liao, Matthias Petri, Alistair Moffat, and Anthony Wirth.
Effective construction of relative lempel-ziv dictionaries. In
Proceedings of the 25th International Conference on World Wide
Web, pages 807–816. International World Wide Web Conferences
Steering Committee, 2016.

[LS89] David Lomet and Betty Salzberg. Access methods for multiversion
data, volume 18. ACM, 1989.

[LY08] H.-I. Lu and C.-C. Yeh. Balanced parentheses strike back. ACM
Transactions on Algorithms, 4(3):28:1–28:13, 2008.

[LZ86] Abraham Lempel and Jacob Ziv. Compression of two-dimensional
data. IEEE Transactions on Information Theory, 32(1):2–8, 1986.

[MdB04] Nirvana Meratnia and Rolf A. de By. Spatiotemporal compression
techniques for moving point objects. In Proc. 9th International
Conference on Extending Database Technology, (EDBT), pages 765–
782, 2004.

[MNW95] A. Moffat, R. Neal, and I.H. Witten. Arithmetic coding revisited.
Proc. Data Compression Conference (DCC), 16(3):256–294, 1995.

[MOH+14] Jonathan Muckell, Paul W. Olsen, Jeong-Hyon Hwang, Catherine T.
Lawson, and S. S. Ravi. Compression of trajectory data: A
comprehensive evaluation and new approach. GeoInformatica,
18(3):435–460, 2014.

Bibliography 163

[MR01] J. I. Munro and V. Raman. Succinct representation of balanced
parentheses and static trees. SIAM Journal on Computing, 31(3):762–
776, 2001.

[MR04] J. I. Munro and S. S. Rao. Succinct representations of functions. In
Proc. 31th International Colloquium on Automata, Languages and
Programming (ICALP), pages 1006–1015, 2004.

[MRR01] J. I. Munro, V. Raman, and S. S. Rao. Space efficient suffix trees.
Journal of Algorithms, 39(2):205–222, 2001.

[MRRR12] J Ian Munro, Rajeev Raman, Venkatesh Raman, and Srinivasa Rao.
Succinct representations of permutations and functions. Theoretical
Computer Science, 438:74–88, 2012.

[Mun96] J. I. Munro. Tables. In Proc. 16th Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS),
pages 37–42, 1996.

[MYQZ09] Qiang Ma, Bin Yang, Weining Qian, and Aoying Zhou. Query
processing of massive trajectory data based on mapreduce. In Proc.
1st International Workshop on Cloud Data Management (CloudDB),
pages 9–16, 2009.

[Nav16] Gonzalo Navarro. Compact Data Structures – A practical approach.
Cambridge University Press, 2016. ISBN 978-1-107-15238-0. 570
pages.

[NDAEA13] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr
El Abbadi. MD-HBase: design and implementation of an elastic
data infrastructure for cloud-scale location services. Distributed and
Parallel Databases, 31(2):289–319, 2013.

[NH15] A. Nibali and Z. He. Trajic: An effective compression system
for trajectory data. IEEE Transactions on Knowledge and Data
Engineering, 27(11):3138–3151, 2015.

[NM96] Craig G Nevill-Manning. Inferring sequential structure. PhD thesis,
University of Waikato, 1996.

[NMW97a] Craig G Nevill-Manning and Ian H Witten. Compression and
explanation using hierarchical grammars. The Computer Journal,
40(2_and_3):103–116, 1997.

[NMW97b] Craig G Nevill-Manning and Ian H Witten. Identifying hierarchical
structure in sequences: A linear-time algorithm. Journal of Artificial
Intelligence Research, 7:67–82, 1997.

164 Bibliography

[NR02] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings -
Practical on-line search algorithms for text and biological sequences.
Cambridge University Press, 2002.

[NR07] J. Ni and C. V. Ravishankar. Indexing spatio-temporal trajectories
with efficient polynomial approximations. IEEE Transactions on
Knowledge and Data Engineering, 19(5):663–678, 2007.

[NS98] Mario A. Nascimento and Jefferson R. O. Silva. Towards historical
R-trees. In Proc. ACM Symposium on Applied Computing (SAC),
pages 235–240, 1998.

[OS07] D. Okanohara and K. Sadakane. Practical entropy-compressed
rank/select dictionary. In Proc.of the 9th Workshop on Algorithm
Engineering and Experiments (ALENEX), 2007.

[Pag99] R. Pagh. Low redundancy in static dictionaries with O(1) worst case
lookup time. In Proc. 26th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 595–604, 1999.

[PJT00] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. Novel
approaches to the indexing of moving object trajectories. In Proc.
26th International Conference on Very Large Data Bases (VLDB),
pages 395–406, 2000.

[PPS06] M. Potamias, K. Patroumpas, and T. Sellis. Sampling trajectory
streams with spatiotemporal criteria. In Proc. 18th International
Conference on Scientific and Statistical Database Management
(SSDBM), pages 275–284, 2006.

[PW96] Renato Pajarola and Peter Widmayer. Spatial indexing into
compressed raster images: how to answer range queries without
decompression. In Proc. International Workshop on Multimedia
Database Management Systems (MDBMS), pages 94–100, 1996.

[RRR02] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In Proc.
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 233–242, 2002.

[Sad07] K. Sadakane. Compressed suffix trees with full functionality. Theory
of Computing Systems, 41(4):589–607, 2007.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27:370–423,623–656, 1948.

Bibliography 165

[SK64] E. S. Schwartz and B. Kallick. Generating a canonical prefix encoding.
Communications of the ACM, 7(3):166–169, 1964.

[SN10] K. Sadakane and G. Navarro. Fully-functional succinct trees. In Proc.
21th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 134–149, 2010.

[SRL09] Falko Schmid, Kai-Florian Richter, and Patrick Laube. Semantic
trajectory compression. In Proc. 11th International Symposium on
Spatial and Temporal Databases (SSTD), pages 411–416, 2009.

[TCS+06] Goce Trajcevski, Hu Cao, Peter Scheuermann, Ouri Wolfson, and
Dennis Vaccaro. On-line data reduction and the quality of history in
moving objects databases. In Proc. 5th ACM International Workshop
on Data Engineering for Wireless and Mobile Access, pages 19–26,
2006.

[TLCF16] Na Ta, Guoliang Li, Bole Chen, and Jianhua Feng. Semantic-aware
trajectory compression with urban road network. In Proc. 17th
International Conference (WAIM), Part I, pages 124–136, 2016.

[TLN12] Haoyu Tan, Wuman Luo, and Lionel M. Ni. CloST: A hadoop-
based storage system for big spatio-temporal data analytics. In Proc.
21st ACM International Conference on Information and Knowledge
Management (CIKM), pages 2139–2143, 2012.

[Tob70] Waldo R Tobler. A computer movie simulating urban growth in the
detroit region. Economic geography, 46(sup1):234–240, 1970.

[TP01a] Yufei Tao and Dimitris Papadias. Efficient historical R-trees. In
Proc. International Conference on Scientific and Statistical Database
Management (SSDBM), pages 223–232, 2001.

[TP01b] Yufei Tao and Dimitris Papadias. MV3R-tree: A spatio-temporal
access method for timestamp and interval queries. In Proc. 27th
International Conference on Very Large Data Bases (VLDB), pages
431–440, 2001.

[VTS98] Michalis Vazirgiannis, Yannis Theodoridis, and Timos K. Sellis.
Spatio-temporal composition and indexing for large multimedia
applications. ACM Multimedia Systems Journal, 6(4):284–298, 1998.

[Vui80] Jean Vuillemin. A unifying look at data structures. Communications
of the ACM, 23(4):229–239, 1980.

[Wel84] T. A. Welch. A technique for high-performance data compression.
IEEE Computer, 17(6):8–19, 1984.

166 Bibliography

[WNC87] I. Witten, R. Neal, and J. Cleary. Arithmetic Coding for Data
Compression. Communications of the ACM, 30:520–541, 1987.

[Wor05] Michael F. Worboys. Event-oriented approaches to geographic
phenomena. International Journal of Geographical Information
Science, 19(1):1–28, 2005.

[WZ99] H. E. Williams and J. Zobel. Compressing Integers for Fast File
Access. The Computer Journal, 42(3):193–201, mar 1999.

[WZX+14] Haozhou Wang, Kai Zheng, Jiajie Xu, Bolong Zheng, Xiaofang Zhou,
and Shazia Sadiq. SharkDB: An in-memory column-oriented trajectory
storage. In Proc. 23rd ACM International Conference on Conference
on Information and Knowledge Management (CIKM), pages 1409–
1418, 2014.

[WZXM08] Longhao Wang, Yu Zheng, Xing Xie, and Wei-Ying Ma. A flexible
spatio-temporal indexing scheme for large-scale GPS track retrieval. In
Proc. International Conference on Mobile Data Management (MDM),
pages 1–8, 2008.

[XHL90] Xiaomei Xu, Jiawei Han, and Wei Lu. RT-tree: An improved R-
tree index structure for spatiotemporal databases. In Proc. 4th
International Symposium on Spatial Data Handling, volume 2, pages
1040–1049, 1990.

[YHC18] Shengxun Yang, Zhen He, and Yi-Ping Phoebe Chen. GCOTraj: A
storage approach for historical trajectory data sets using grid cells
ordering. Information Sciences, 459:1 – 19, 2018.

[YK00] En-Hui Yang and John C Kieffer. Efficient universal lossless data
compression algorithms based on a greedy sequential grammar
transform. IEEE Transactions on Information Theory, 46(3):755–
777, 2000.

[ZJM+17] Zhigang Zhang, Cheqing Jin, Jiali Mao, Xiaolin Yang, and Aoying
Zhou. TrajSpark: A scalable and efficient in-memory management
system for big trajectory data. In Proc. 1st International Joint
Conference APWeb-WAIM, Part I, pages 11–26, 2017.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on information theory,
23(3):337–343, 1977.

[ZL78] Jacob Ziv and Abraham Lempel. Compression of individual sequences
via variable-rate coding. IEEE transactions on Information Theory,
24(5):530–536, 1978.

Bibliography 167

[ZZ11] Yu Zheng and Xiaofang Zhou, editors. Computing with Spatial
Trajectories. Springer, 2011.

[ZZS+05] Panfeng Zhou, Donghui Zhang, Betty Salzberg, Gene Cooperman,
and George Kollios. Close pair queries in moving object databases.
In Proc. 13th Annual ACM International Workshop on Geographic
Information Systems (GIS), pages 2–11, 2005.

	Introduction
	Motivation
	Contributions
	Compact representation of trajectories
	Solving queries efficiently
	Object queries
	Spatio-temporal range queries

	Structure of the Thesis

	Basic Concepts
	Information Theory and Data Compression
	Basic concepts on Information Theory
	Data Compression: basic concepts
	Classification of compression techniques

	Encoding Integer Numbers
	Statistical compressors
	Huffman codes
	Canonical Huffman
	Plain Huffman and Tagged Huffman Codes
	End-Tagged Dense Code and (s,c)-Dense Code

	Dictionary-based compressors
	Lempel-Ziv family
	Grammar Compression: Re-Pair

	Compact data structures
	Rank and select over bit-vectors
	Compressed bit-vector representation
	Partial sums
	Compressed tree representations
	Fully Functional Succinct Tree

	Permutations
	Range Minimum Queries
	k2-tree
	Direct Addressable Codes

	Previous work
	Indexing trajectories
	Spatio-temporal indexes based on R-trees
	Multi-version R-tree

	Grid-based indexes
	Other spatio-temporal indexes

	Compression of trajectories
	Trajectory compression and indexing
	Conclusions

	Basic structure
	Introduction
	Snapshots
	Snapshots based on k2-trees
	Snapshots based on R-trees

	Logs
	Spiral encoding representation
	Coordinates representation

	Queries
	Types of queries
	Object queries
	Spatio-temporal range queries

	Solving object queries
	Object Position
	Object Trajectory
	Minimum Bounding Rectangle

	Solving spatio-temporal range queries
	Time Slice
	Time Interval
	K-Nearest Neighbor

	Snapshots
	Snapshot based on k2-tree
	Data structure
	Queries
	Object queries: obtaining the absolute position
	Time Slice and Time Interval: choosing the candidates
	K-Nearest Neighbor: prioritizing the objects

	Snapshot based on R-tree
	Data structure
	Queries
	Object queries: obtaining the absolute position
	Time Slice and Time Interval: choosing the candidates
	K-Nearest Neighbors: prioritizing the objects

	Logs
	ScdcCT
	Data structure
	Object queries
	Object Position
	Object Trajectory
	Minimum Bounding Rectangle

	Spatio-temporal range queries
	Time Slice
	Time Interval
	K-Nearest Neighbors

	GraCT
	Data structure
	Object queries
	Object Position
	Object trajectory
	Minimum Bounding Rectangle

	Spatio-temporal range queries
	Time Slice
	Time Interval
	K-Nearest Neighbors

	ContaCT
	Data structure
	Object queries
	Object Position
	Object Trajectory
	Minimum Bounding Rectangle

	Spatio-temporal range queries
	Time Slice
	Time Interval
	K-Nearest Neighbors

	RCT
	Data Structure
	Object queries
	Object Position
	Object Trajectory
	Minimum Bounding Rectangle

	Spatio-temporal range queries
	Time Slice
	Time Interval
	K-Nearest Neighbors

	Using real data
	Data preprocessing
	Missed data
	Events of missed data
	Setting marks of missed data
	The effect of missed data on selecting the candidates

	Experimental evaluation
	Datasets
	Compression
	Query times
	ObjectPosition
	ObjectTrajectory
	Minimum Bounding Rectangle
	TimeSlice S and TimeSlice L
	TimeInterval S and TimeInterval L
	K-Nearest Neighbor

	Scalability
	Comparison with a spatio-temporal index
	Conclusions

	Summary of contributions
	Moving objects
	Motivation
	Description
	Conclusions
	Future work

	Two-Dimensional Block Trees
	Motivation
	Description
	Conclusions
	Future work

	Successor and predecessor problem
	Motivation
	Description
	Conclusions
	Future work

	Publications and other research results
	Resumen del trabajo realizado
	Introducción
	Motivación

	Contribuciones
	Conclusiones
	Trabajo futuro

	Bibliography

