
Representation and Exploitation
of Event Sequences

Autor: Tirso Varela Rodeiro
Tesis doctoral UDC / 2020

Directores:
Antonio Fariña Martínez
Miguel Rodríguez Luaces

Representation and Exploitation
of Event Sequences

Autor: Tirso Varela Rodeiro
Tesis doctoral UDC / 2020

Directores:
Antonio Fariña Martínez
Miguel Rodríguez Luaces

PhD thesis supervised by
Tesis doctoral dirigida por

Antonio Fariña Martínez
Departamento de Computación y Tecnologías de la Información
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 1352
Fax: +34 981 167160
fari@udc.es

Miguel Rodríguez Luaces
Departamento de Computación y Tecnologías de la Información
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 1254
Fax: +34 981 167160
luaces@udc.es

Miguel Rodríguez Luaces y Antonio Fariña, como directores, acreditamos que esta
tesis cumple los requisitos para optar al título de doctor internacional y autorizamos
su depósito y defensa por parte de Tirso Varela Rodeiro cuya firma también se
incluye.

iii

iv

A Víctor Solís,

seguimos yendo, amigo; seguimos yendo.

v

vi

Para el niño, enamorado de mapas y
estampas, el universo es igual a su
vasto apetito.

Charles Pierre Baudelaire

El mapa no es el territorio.

Alfred Korzybski

No creo que el mundo haya
mejorado gracias a nosotros,
tampoco creo que nadie llore
nuestra muerte, no hemos realizado
muchas buenas acciones... pero,
¿cuánta gente ha viajado lo que
nosotros y visto lo que nosotros?

Peachy Carnehan / Michael Caine

Beati hispani quibus vivere est
bibere.

Julius Caesar Scaliger

vii

viii

Acknowledgements

I cannot begin this thesis without making a brief aside to remember all
those people who have contributed to such an event. I feel compelled to
share the credit (or blame) of this big step for man and insignificant
leap for mankind.

Following the footsteps of Proust, I’ll start from the beginning. The
doctoral diploma will also belong to María de los Ángeles and José
Antonio; authors of my days, and consequently, as authors of this
research as I am.

Obviously, acknowledgements extend to the different branches —and
twigs (Mael and Catalina)— of my lush family tree, paying special
attention to the linage of Grandal and the D’Vinte dynasty. There are
three gentlemen whose role during this long journey deserve a special
mention: Francisco Rodeiro, source of inspiration during the process;
José Vasco, provider of a reliable steed when my chores took me to the
green meadows of Pocomaco and doctor Lorenzo Varela, family pioneer
in the study of users flow in public transport and permanently exiled
on the Scandinavian coasts because of it.

Once the blood ties are dispatched I must speak of the spinal cord of
that brief period of time where everything had a golden glow under the
protection of a rubber fortress. The names of the heroes and heroines of
those deeds still echo between the walls of my heart: Noa, Dani, Iván,
Gonzalo, Patri, Víctor, Anxo, Ana. . .

The next point is a sneak peek of the research introduced in this
thesis, an exercise on aggregated compression of subjects that should not
be forgotten: liceists, vallisoletanos, marines, australians, the IT crowd

ix

x

and people from Canterbury. In addition to Rebeca Vegara, because of
that issue that cannot be named.

Of course, I am grateful to the Databases Lab for supporting me
along the path, highlighting the support of Miguel Luaces, Antonio
Fariña and Nieves Brisaboa since without them this thesis would have
never been possible. Besides them, every member of the clan deserves to
be on this page, from Carlos and the Enxenio Football Team to Daniil;
with special mention to the actors of the Caceres cabin: Fernando, the
idyll from Tenerife; David, the apostate; Álex, the inca explorer and
Adrián, from the Anxeriz party commission.

I would also like to thank Diego Seco, María Andrea Rodríguez-
Tastets, Hideo Bannai and Andrew Turpin who opened the gates of
their kingdoms, gave me the keys to their cities and allowed me to
establish a base camp where I could feel safe in the ends of the world.
Other important international mentions are: Gonzalo Navarro, Nicola,
Gilberto, Carlos, Claudio, Pedro, Isyed, Jose, Diego Díaz and —mainly—
Sindy (still my wife within the glorious state of Nevada).

An allusion to the Polish command is mandatory: Emilio, Toni,
Zas and Montesquieu The Rascal. With them I achieved that aura of
invincibility that governed this journey from Szewska Street in Krakow
to that hangar on the outskirts of Melbourne.

Last, and therefore most important, appreciation for the usual gang:
Borja, outgoing and womanizer; Cristina and Souto, honest dancers;
Luís, spider-man; Felipe and Dani, the Fuji-san advocates; Jose and Fai,
the pirate kings; Canedo and Martín, spark plug mechanics; Money and
Quel, the flying dutchwomen and Castellanos, the poet. Nevertheless,
from this last group there are five people who deserve to top this long
list of supporters:

• Eva V. F., the sibyl able to read polylactic acid phalanges.
• Andrea F. A., the voice of reason during this Odyssey.
• Pablo R. P., the man who finally walked the 1000 miles.
• Ana M. X., the sister who drowned her twin in the Danube.
• Armando C. P., the light that illuminated my route worldwide.

Agradecimientos

No puedo comenzar esta publicación sin pararme un breve momento
a recordar a todas aquellas personas que han contribuido a tal evento,
sintiéndome obligado a compartir el mérito (o la culpa) de este gran
paso para el hombre e insignificante paso para la humanidad.

Siguiendo los pasos de Proust, comenzaré por el principio. El diploma
doctoral pertenecerá honoríficamente a María de los Ángeles y José
Antonio, autores de mis días; y en consecuencia, tan autores de esta
investigación como yo mismo.

Evidentemente, los agradecimientos se extienden a las diferentes ra-
mas —y ramitas (Mael y Catalina)— de mi frondoso árbol genealógioco,
prestando especial atención al linaje de los Grandal y la dinastía D’Vinte.
De entre todos ellos, me gustaría hacer destacar tres caballeros que
marcaron una pequeña diferencia durante este arduo camino. El primero,
Franciso Rodeiro, fuente de inspiración durante este proceso. El segundo,
José Vasco, proveedor de un fiable corcel cuando mis quehaceres me
llevaron hasta los verdes prados en los aledaños de Pocomaco. Por
último, el doctor Lorenzo Varela, pionero familiar en adentrarse en el
estudio del flujo de usuarios en transporte público y exiliado por ello de
forma permanente en las costas escandinavas.

Una vez despachados los lazos de sangre debo hablar de la médula
espinal de aquel breve lapso de tiempo donde todo tenía un resplandor
dorado al amparo de una fortaleza de caucho. Los nombres de los héroes
y heroínas de aquellas gestas aún retumban entre las paredes de mi
cabeza: Noa, Dani, Iván, Gonzalo, Patri, Víctor, Anxo, Ana. . .

Lo siguiente es un avance forzoso de la investigación aquí presentada,
un ejercicio de compresión agregada de sujetos que no deben caer en el

xi

olvido: liceistas, vallisoletanos, militares, australianos, informáticos y
gentes de Canterbury. Amén de Rebeca Vegara, por lo de aquella vez.

Por supuesto, debo agradecer al Laboratorio de Base de Datos el
haber permitido esta hazaña, destacando el apoyo de Miguel Luaces,
Antonio Fariña y Nieves Brisaboa sin el que esta tesis nunca hubiese
sido posible. Además de ellos, cada miembro del clan merece estar en
esta página, desde Carlos y el Enxenio F.C. hasta Daniil; con mención
especial a los actores del camarote cacereño: Fernando, el idilio tinerfeño;
David, el apóstata; Álex, el inca y Adrián, de la comisión de fiestas de
Anxeriz.

Gracias también a Diego Seco, Maria Andrea Rodríguez-Tastets,
Hideo Bannai y Andrew Turpin que me abrieron las puertas de sus
reinos, me entregaron las llaves de sus ciudades y me permitieron
establecer un campamento base donde sentirme seguro en los confines
del mundo. Otras menciones internacionales de importancia son:
Gonzalo Navarro, Nicola, Gilberto, Carlos, Claudio, Pedro, Isyed, Jose
y —principalmente— Sindy (todavía mi mujer en el estado de Nevada).

Es obligatoria la mención al comando polaco: Emilio, Toni, Zas y
el bribón de Montesquieu. Con ellos alcancé ese halo de invencibilidad
que rigió esta andanza desde la calle Szewska de Cracovia hasta aquel
hangar en las afueras de Melbourne.

Por último, y por ello más importante, reconocer a los de siempre:
Borja, sociable y mujeriego; Cristina y Souto, danzarines y honrados;
Luís, el hombre araña; Felipe y Dani, amigos de Fuji-san; Jose y Fai, los
reyes del pirata; Canedo y Martín, mecánicos de bujías; Money y Quel,
las holandesas errantes y Castellanos, el poeta. No obstante, de este
último grupo son cinco las personas que merecen rematar esta larga
lista de simpatizantes a la causa:

• Eva V. F., la sibila capaz de leer falanges de ácido poliláctico.
• Andrea F. A., la voz de la razón durante (casi) toda esta odisea.
• Pablo R. P., el hombre que finalmente caminó las 1000 millas.
• Ana M. X., la hermanísima que ahogó a su gemelo en el Danubio.
• Armando C. P., la luz que iluminó mi ruta alrededor del mundo.

xii

Abstract

The Ten Commandments, the thirty best smartphones in the market and
the five most wanted people by the FBI. Our life is ruled by sequences:
thought sequences, number sequences, event sequences. . . a history book
is nothing more than a compilation of events and our favorite film is
just a sequence of scenes. All of them have something in common, it
is possible to acquire relevant information from them. Frequently, by
accumulating some data from the elements of each sequence we may
access hidden information (e.g. the passengers transported by a bus
on a journey is the sum of the passengers who got on in the sequence
of stops made); other times, reordering the elements by any of their
characteristics facilitates the access to the elements of interest (e.g. the
publication of books in 2019 can be ordered chronologically, by author,
by literary genre or even by a combination of characteristics); but it
will always be sought to store them in the smallest space possible.

Thus, this thesis proposes technological solutions for the storage
and subsequent processing of events, focusing specifically on three
fundamental aspects that can be found in any application that needs
to manage them: compressed and dynamic storage, aggregation
or accumulation of elements of the sequence and element sequence
reordering by their different characteristics or dimensions.

The first contribution of this work is a compact structure for the
dynamic compression of event sequences. This structure allows any
sequence to be compressed in a single pass, that is, it is capable of
compressing in real time as elements arrive. This contribution is
a milestone in the world of compression since, to date, this is the
first proposal for a variable-to-variable dynamic compressor for general

xiii

xiv

purpose.
Regarding aggregation, a data warehouse-like proposal is presented

capable of storing information on any characteristic of the events in a
sequence in an aggregated, compact and accessible way. Following the
philosophy of current data warehouses, we avoid repeating cumulative
operations and speed up aggregate queries by preprocessing the
information and keeping it in this separate structure.

Finally, this thesis addresses the problem of indexing event sequences
considering their different characteristics and possible reorderings. A new
approach for simultaneously keeping the elements of a sequence ordered
by different characteristics is presented through compact structures.
Thus, it is possible to consult the information and perform operations
on the elements of the sequence using any possible rearrangement in a
simple and efficient way.

Resumen

Los diez mandamientos, los treinta mejores móviles del mercado y las
cinco personas más buscadas por el FBI. Nuestra vida está gobernada
por secuencias: secuencias de pensamientos, secuencias de números,
secuencias de eventos. . . un libro de historia no es más que una sucesión
de eventos y nuestra película favorita no es sino una secuencia de
escenas. Todas ellas tienen algo en común, de todas podemos extraer
información relevante. A veces, al acumular algún dato de los elementos
de cada secuencia accedemos a información oculta (p. ej. los viajeros
transportados por un autobús en un trayecto es la suma de los pasajeros
que se subieron en la secuencia de paradas realizadas); otras veces, la
reordenación de los elementos por alguna de sus características facilita
el acceso a los elementos de interés (p. ej. la publicación de obras
literarias en 2019 puede ordenarse cronológicamente, por autor, por
género literario o incluso por una combinación de características); pero
siempre se buscará almacenarlas en el espacio más reducido posible sin
renunciar a su contenido.

Por ello, esta tesis propone soluciones tecnológicas para el al-
macenamiento y posterior procesamiento de secuencias, centrándose
concretamente en tres aspectos fundamentales que se pueden encontrar
en cualquier aplicación que precise gestionarlas: el almacenamiento
comprimido y dinámico, la agregación o acumulación de algún dato
sobre los elementos de la secuencia y la reordenación de los elementos
de la secuencia por sus diferentes características o dimensiones.

La primera contribución de este trabajo es una estructura compacta
para la compresión dinámica de secuencias. Esta estructura permite
comprimir cualquier secuencia en una sola pasada, es decir, es capaz

xv

xvi

de comprimir en tiempo real a medida que llegan los elementos de la
secuencia. Esta aportación es un hito en el mundo de la compresión ya
que, hasta la fecha, es la primera propuesta de un compresor dinámico
“variable to variable” de carácter general.

En cuanto a la agregación, se presenta una propuesta de almacén
de datos capaz de guardar la información acumulada sobre alguna
característica de los eventos de la secuencia de modo compacto y
fácilmente accesible. Siguiendo la filosofía de los actuales almacenes de
datos, el objetivo es evitar repetir operaciones de acumulación y agilizar
las consultas agregadas mediante el preprocesado de la información
manteniéndola en esta estructura.

Por último, esta tesis aborda el problema de la indexación de
secuencias de eventos considerando sus diferentes características y
posibles reordenaciones. Se presenta una nueva forma de mantener
simultáneamente ordenados los elementos de una secuencia por diferentes
características a través de estructuras compactas. Así se permite
consultar la información y realizar operaciones sobre los elementos
de la secuencia usando cualquier posible ordenación de una manera
sencilla y eficiente.

Resumo

Os dez mandamentos, os trinta mellores móbiles do mercado e as
cinco persoas máis buscadas polo FBI. As secuencias gobernan a nosa
vida: secuencias de pensamentos, secuencias de números, secuencias de
eventos. . . un libro de historia non é máis que unha sucesión de eventos
e o noso filme favorito só é unha secuencia de escenas. Todas elas teñen
algo en común, pódese extraer información relevante de todas elas. Ás
veces, é posíbel acceder a información oculta acumulando algún dato (p.
ex. os viaxeiros transportados por un autobús nun traxecto son a suma
dos pasaxeiros que se subiron na secuencia de paradas realizadas); outras
veces, a reordenación dos elementos por algunha das súas características
facilita o acceso a elementos de interés (p. ex. a publicación de obras
literarias no 2019 pode ordenarse cronoloxicamente, por autor, por
xénero literario ou incluso por unha combinación de características);
pero sempre se buscará almacenalas no espacio máis reducido posíbel.

Por iso, esta tese propón solucións tecnolóxicas para o almacenamento
e posterior procesamento de secuencias, centrándose en tres aspectos
fundamentais que se poden atopar en calquera aplicación que precise
xestionalas: o almacenamento comprimido e dinámico, a agregación
ou acumulación de algún dato sobre os elementos da secuencia e
a reordenación dos elementos da secuencias polas súas diferentes
características ou dimensións.

A primeira contribución deste traballo é unha estrutura compacta
para a compresión dinámica de secuencias. Esta estrutura permite
comprimir calquera secuencia nunha soa pasada, é dicir, é capaz de
comprimir en tempo real a medida que van chegando os elementos da
secuencia. Esta achega é un fito no mundo da compresión xa que, ata a

xvii

data actual, é a primeira proposta dun compresor dinámimco �variable
to variable� de carácter xeral.

En canto á agregación, preséntase unha proposta de almacén de datos
capaz de gardar a información sobre algunha característica dos eventos
da secuencia de modo compacto e sinxelamente accesible. Seguindo
a �losofía dos almacéns de datos actuais, o obxectivo é evitar repetir
operacións de acumulación e axilizar as consultas agregadas mediante o
preprocesado da información manténdoa nesta estrutura.

Por último, esta tese aborda o problema da indexación de secuencias
de eventos considerando as súas diferentes características e posíbles
reordenacións. Preséntase unha nova forma de manter simultáneamente
ordenados os elementos da secuencia por diferentes características a
través de estruturas compactas. Permítese así consultar a información
e realizar operacións sobre os elementos da secuencia usando calquera
ordenación posíbel dunha forma sinxela e e�ciente.

xviii

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Contributions . 6
1.3 Structure of the Thesis 9

2 Basic concepts and technologies 11
2.1 Basic structures . 12

2.1.1 Bitvectors . 12
2.1.2 LOUDS . 13

2.2 Text compression . 14
2.2.1 End-Tagged Dense Code 15
2.2.2 Dynamic End-Tagged Dense Codes 17
2.2.3 Semi-static variable-to-variable compression . . . 19

2.3 Index structures . 21
2.3.1 FM-index . 21
2.3.2 Wavelet Tree . 24

2.4 Data aggregation . 27
2.4.1 Data Warehouses 27
2.4.2 OLAP . 30
2.4.3 Summed Area Tables 33
2.4.4 CMHD . 34

3 Application contexts 37
3.1 Text compression . 38
3.2 Public transportation . 41
3.3 Mobile Workforce Management 45

xix

xx Contents

4 Dynamic variable-to-variable compression (D-V2V) 51
4.1 Dynamic variable-to-variable compressor 52

4.1.1 Parsing algorithm 53
4.1.2 Encoding procedure 56
4.1.3 Receiver procedure 60

4.2 Experiments . 63
4.2.1 Space requirements and memory usage 64
4.2.2 Compression and decompression times 65

4.3 Conclusions . 66

5 Total matrices (T-Matrices) 69
5.1 General-purpose accumulative matrices 69
5.2 T-Matrices in public transportation 73

5.2.1 Data structures 73
5.2.2 Experimental evaluation 76

5.2.2.1 Experimental dataset 76
5.2.2.2 Space requirements 78
5.2.2.3 Performance at query time 79

5.3 T-Matrices in mobile workforce management 80
5.3.1 Data structures 80
5.3.2 Experimental evaluation 84

5.3.2.1 Experimental datasets 85
5.3.2.2 Space requirements 86
5.3.2.3 Performance at query time 86

5.4 Conclusions . 87

6 Event sequence indexing 89
6.1 Introduction . 89
6.2 Indexing with Wavelet Trees 91
6.3 Reducing the space . 94
6.4 Experimental evaluation 96

6.4.1 Problem setup . 97
6.4.2 Baseline representation 98
6.4.3 Experiments and results 99

6.5 Conclusions . 102

Contents xxi

7 Conclusions and future work 103
7.1 Conclusions . 103
7.2 Future work . 106

A Publications and other research results 109

B Resumen del trabajo realizado 113
B.1 Introducción . 113
B.2 Motivación . 116
B.3 Contribuciones . 117
B.4 Trabajo futuro . 119

Bibliography 122

xxii Contents

List of Figures

1.1 Snow's map of cholera deaths in the Broad Street
area. The water pump is located at the intersection
of Broad and Cambridge Street. Black bars
re�ect the number of deaths. 1854. (Source:
https://johnsnow.matrix.msu.edu/book_images12.php) . 3

2.1 A bitvector and its three operations:Rank, Selectand
Access. 12

2.2 A hierarchy tree coded as a LOUDS bitvector. 14

2.3 BWT and FM-Index example: Given the text �abra-
cadabra$� we show the cyclical shifts of theBTW matrix
and highlight F and L. Also, we show how to �nd all the
occurrences of the pattern �bra� using backward search. . 23

2.4 Wavelet tree for sequenceS = h6 3 5 4 0 1 5 2 7 6 7 0 6 3i . . . 25

2.5 Picture from a 1962 internal General Electric
document explaining the idea of random access
storage using pigeon holes as a metaphor. (Source:
https://wp.sigmod.org/?p=688) 29

2.6 Sales information of a clothing enterprise characterized by
three dimensions (product, region and time) represented
using a data cube (left) and a classic table (right). 32

2.7 Common Data Warehouse structure [VZ13]. 32

xxiii

xxiv List of Figures

2.8 Summed Area Tablesdetailed geometrical explanation:
Figure2.8(b) represents the aggregated matrix built over
the simple matrix depicted in Figure 2.8(a). The non-
aggregated matrix needs to compute each cell within the
submatrix individually in order to calculate the total sum
of the area shaded in blue. The aggregated representation
can solve the operation in constant time using the greater
value of the submatrix minus the non selected areas (left
and top) plus the small area that was subtracted twice. . 34

2.9 CMHD example storing the amount of products sold
attending the region and type of product. Left �gure
represents the conceptual model of the structure, the gold
tree serves as the conceptual information saved and the
vectors are the actual data stored. 35

3.1 Entity-Relationship diagram modeling the elements of a
public transportation network and user trips made along
it. 43

3.2 Network example where two di�erent lines share stops
along their routes. 44

3.3 Trajectory annotated with semantic activities. [BLPP17] 48

4.1 Non-terminal creation example. 53

4.2 Sequence of events during the parsing of a text with
D-V2V. KS stores the words and phrases that appeared
previously in the text while RS is a bu�er trying to obtain
the largest known sequence for the incoming text. 54

4.3 Tree used during compression when processing the
sentence: �the more I know about you the more I
know about me�. The black branches in the tree rep-
resent its stage after processing the word �you�. 55

List of Figures xxv

4.4 Structures used during compression when processing
the sentence: �the more I know about you the more
I know about me�. left and right are either pointers to
previous occurrences or containers of a new word and a
void pointer, freq is the frequency of each symbol,voc
represents the codes to be sent whilepos and top are
auxiliary structures to simplify updates and insertions. . 57

4.5 Structures used during decompression when processing
the sentence: �the more I know about you the more
I know about me�. It is simpler than the sender as it
only has to be synchronized with it keeping the table
ordered by frequency. 61

5.1 T-Matrix applied to a generic sequenceS of bi-
dimensional events. 70

5.2 An example of how aT-Matrix and a Di� T-Matrix are
binded. In this representation, central column (B) values
remain the same and the other columns are calculated as
additions (right side columns) or subtractions (left side
columns). For instance,A� = 11 - 5 = 6 and C� = 11 +
4 = 15. 71

5.3 An example of how to sample aT-Matrix . Rows� and
� remain unchanged in both matrices and all the other
rows in Blocks T-Matrix are calculated di�erentially with
respect to them. For instance, C� = 3 + 2 = 5. 72

5.4 Public transport information stored into the three T-
Matrices �avors: the original accumulative matrix (Sum),
the relative matrix (Di�) and the sampled matrix (Blocks). 74

5.5 T-Matrices comparison. Logarithmic scale measured in
nanoseconds. 79

5.6 Naive matrix representation with appearing activities
described. 81

5.7 Structures involved insemantrix. 82
5.8 Baseline+ example. 85
5.9 Space measurements. 86
5.10 Times for pattern queries (left), and times for aggregation

queries (right). 87

xxvi List of Figures

6.1 Reordering multidimensional events throughstacked
wavelet trees. Highlighted sequences are the resulting
sequence after a dimensional reorganization. Vertical
dotted lines mark the corresponding area to each value
of the dimension (remaining within it the previous order
as secondary). 92

6.2 Schema of thewtmap solution for a sequence of 2 days, 2
employees, 4 activities and 10 time instants per day.
The current WT orders the input attending activity
lexicographical order. Highlighted elements are those
visited to count the time-instants devoted bye2 to activity
A during d2, which are 4. 95

B.1 Mapa de las muertes por cólera del doctor Snow. La
bomba de agua está localizada en la intersección de Broad
Street con Cambridge Street. Las barras negras re�ejan
el número de muertos en cada zona. 1854. (Fuente:
https://johnsnow.matrix.msu.edu/book_images12.php) . 115

List of Tables

2.1 ETDC distributes words in blocks according to their
frequency. Shorter codes are assigned to symbols on
higher blocks. 17

2.2 Auxiliary array C for column L in the matrix of Figure 2.3. 23
2.3 Auxiliary structure to compute the number of occurrences

of character c in the pre�x L[1..k] (Occ(c,k)) in constant
time. 24

4.1 D-V2V parsing process step by step for the text �the
more I know about you the more I know about me�.RS
is a bu�er trying to obtain the largest known sequence,
KS is the symbol dictionary and last column re�ects what
the receiver gets. 59

4.2 D-V2V decompressing step by step the sentence �the
more I know about you the more I know about me�.
It is important to note how the column �Received� is
synchronized with the column �Sent� in Table 4.1. 62

4.3 Compression ratio (%) with respect to the size of the
plain text dataset. 64

4.4 Memory usage (in MiB) at compression and decompression.65
4.5 Compression and decompression times (in seconds). . . . 66

5.1 Space requirements for the common structures. 78
5.2 Space requirements for each T-Matrices variant. 78

6.1 Example of reorderings with dimensionsDay, Employee
and Activity . 93

xxvii

xxviii List of Tables

6.2 Space required by all the datasets (sizes in MB) 100
6.3 Query times for access (Acc) and counting queries. Times

in � s/query . 101

Chapter 1

Introduction

A long time ago, long before the advent of Kindles and iPads, mankind
managed to bend space and time with the invention of clay tablets.
This little gadget allowed to enclose an abstract thought in a physical
and easily transportable medium. We all know, or at least imagine,
the impact caused by this invention in the societies of our ancestors:
education, treaties, accounting, letters, legends. . . Tablets improved over
time, from the use of di�erent materials (wood, metal, etc.) to the
inclusion of a spatula on the back of the stylus1 to erase what was written.
However, this excellent tool had one signi�cant drawback: very limited
writing space. Even if it was written on both sides, long texts could
not �t. Therefore, the longer the text to be written, the more tablets
were necessary, with the corresponding complications that this entails
(prize, weight, more likely to lose any of the tablets leaving a disjointed
text. . .). It would take centuries for the invention of a new mechanism
to deal with these obstacles: papyrus. These plant �ber constructions
were thin, �exible, light and, despite having only one usable face, a
single roll of usual dimensions could contain a complete Greek tragedy.
Besides, papyrus can be rolled up, storing a large amount of text in
little space. Just like writing has evolved to store more information
in less space, the proposals in this thesis continue to battle against
spatial limitations by storing data in �exible, thin and compact �virtual
papyri� that have additional functionalities such as querying, ordering

1The needle used to write over clay tablets.

1

2 Chapter 1. Introduction

and aggregating its contents.

The incorporation of papyri into society also brought new dilemmas
to be solved; for example, in the Great Library of Alexandria there were
so many papyri stored that it was impossible to �nd a speci�c work. To
solve this problem it was necessary to establish an order and organize
somehow the chaotic library. Zenodotus, �rst director of the library of
Alexandria, contributed to the resolution of this problem by naming each
part of Homer's poems using alphabetically arranged letters for the �rst
time. A little later, Callimachus, Zenodotus' successor, would invent
the �rst book catalogs, labeling them as �Pinakes�. The Callimachus
system divided works into six literary genres and �ve types of prose, and
within each category, the works were arranged alphabetically by author.
The impact of this small reorganization was such that variations of the
original �Pinakes� continued to be used until the 19th century. Following
the ideas of the power in reorganization by di�erent dimensions, this
thesis uses a similar approach to improve query and search times. Like
the work of the librarians of Alexandria, if the information is organized
by the appropriate dimensions it will be really simple to �nd what we
are looking for. Thus, we provide a new indexing structure that allows
to rearrange information according to the particular needs of di�erent
queries and di�erent contexts easing the search.

Centuries later, a cholera outbreak occurred in England in the autumn
of 1848, causing great mortality. At that time, the mode of transmission
of this disease was not known, confronting two theoretical currents. On
the one hand, there were those who argued that cholera was acquired
by contact with the patient or with their belongings. On the other
hand, there were those who thought that certain atmospheric conditions,
especially the winds, transmitted toxic fumes from one place to another.
Dr. John Snow, who did not trust any of these theories, set out to �nd
the real cause of the infection; this is how the idea of the popularly
known as the �cholera map� arose (Figure 1.1). Following the trail of
a severe outbreak in the south of the city, Dr. Snow made a map of
the sector, in which he marked the points corresponding to deaths from
cholera and the di�erent existing drinking water pumps, graphically
demonstrating the spatial relationship between cholera deaths and the

1.1. Motivation 3

Figure 1.1: Snow's map of cholera deaths in the Broad Street area.
The water pump is located at the intersection of Broad and Cambridge
Street. Black bars re�ect the number of deaths. 1854. (Source:
https://johnsnow.matrix.msu.edu/book_images12.php)

Broad Street pump. Finally, the study of the pump showed that 20
feet underground, a sewer pipe passed very close to the water source
of the pump and that leaks existed between the two water courses.
Thus, in the wake of doctor Snow, systems in charge of gathering and
aggregating data to provide hidden information in the individual events
are common nowadays. This thesis introduces new approaches to tackle
this same problem focusing on aggregating large amounts of data without
compromising query speed.

1.1 Motivation

As the introduction implied, this thesis addresses three of the main
problems that can be found in the exploitation of general sequences
and, particularly, in event sequences: dynamic compression, indexing
by multiple dimensions and aggregated data exploitation. An event se-
quence can be described conceptually as a one-dimensional arrangement

4 Chapter 1. Introduction

of a series of elements, each of which represents an event that generally
occurs at a particular time. In addition to time, we can usually �nd
other dimensions, characteristics or attributes with di�erent values for
each event.

Consider, as an example of event sequences, the publications of
literary works written in Spain during the Golden Age (16th and 17th
centuries). The publication of each work constitutes an event that, in
addition to the temporal parameter, has other relevant characteristics
such as author or literary genre. This event sequence does not have
repeated elements, but it could happen in other types of elements.
Another example is the case of a sequence of words in a text to be
transmitted, each word can be seen as an event with a transmission
time beside other characteristics such as size, syntactic category, etc.
Generalizing, an event sequence is an ordered list of elements as:

E 1
a;i;:::x ; E 2

b;j;:::y ; E 3
a;k;:::z ; E 4

c;i;:::y ; : : :

Where the superscript identi�es the event and the subscriptsa, b, c
identify its values for characteristic 1, valuesi, j, k for characteristic 2
and valuesx, y, z for characteristic n. The previous examples show a
property of the sequences, they can have a high degree of repetition that
could be exploited by compression techniques. For example, existing
compressors for English texts can exploit that some words appear much
more often than others reducing the size of the original text to a third
part of its size.

Although chronological order in event sequences is always useful,
alternative organizations often suit better. Considering the Spanish
Golden Age publications, the obvious order is chronologically by date
of publication, but it could be also useful to order them by author and
then by time or by literary genre and author or a combination of these
or other characteristics. This combination of dimensions allows an order
hierarchy such as �rst novels, next plays and last poems; then, within
each genre, alphabetical order by authors and, �nally, chronological
order in a third level. Also, it could be possible to rearrange the hierarchy
for other exploitation interests in any combination of dimensions: author
in the �rst level and then order by genre; date in �rst place, next author
and last genre, etc. A system able to handle this varying con�gurations

1.1. Motivation 5

of the same data would be really useful.
On the other hand, some applications that work on event sequences

may need a quantitative analysis, that is, they need the count of
how many events with certain characteristic exist during an interval
(temporal or from any other dimension). For example, an application
that needs to solve queries like �How many plays Lope de Vega wrote?�
or �How much the amount of works published by Cervantes is?�.
Obviously, in these short sequences it could be a�ordable to sequentially
count the works that match the criteria, but for most other cases it
might be necessary to precalculate the data and store it separately as
it is done by data warehouses. Therefore, there is a need of a solution
able to compete against classic data warehouse techniques considering
space compression at the same time. Besides, those classic solutions
do not save the original order of the information limiting the possible
range of queries. There is a lack of aggregated solutions in the state
of the art capable of handling queries of the form �How many times a
poem from Quevedo was published right after a poem of Gongora?�.

Ultimately, a considerable amount of events may have among their
characteristics some with spatial nature (e.g. the sequence of street
segments2 traveled every day by a �eet of taxis). Namely, adding space-
time dimensions to the event sequences let us use aggregation procedures
to extract accumulative space-time knowledge easily. In such context,
an event could be the movement of a particular taxi through a segment
and the associated characteristics could be date and time, driver license
and the identi�er of the particular street segment. It is important to
note that in this case the considerations on the compression needs of
the sequence apply as well as its reorganization and accumulation for
solving complex queries. For example, ordering the event sequence
chronologically could be useless, but reordering the sequence by driver
�rst with a chronological order on a second level would allow us to
recover the trajectory of each taxi trivially. It could be also interesting
to have a �rst level order by days and within each day an order by driver
to rebuild the routes of each day. Again, it could be really convenient to
precalculate the aggregation of events with common characteristics (e.g.
segment identi�er) in order to quickly solve queries as �How many times

2Considering a street segment as the section between two road crossings with no entrances or
exits.

6 Chapter 1. Introduction

the street segment X has been traversed in the last month?� or �How
many times has driver #47 passed through segment Y in the last week?�.
Given that the set of street segments is constant, its sequence grows
with a high repetition rate. Thus, it would be extremely advantageous
to have a method to compress the sequence of street segments traversed
by a driver each day.

1.2 Contributions

This thesis de�nes strategies and e�cient technologies to represent
general event sequences in order to take care of some exploitation needs
that are not satis�ed in the state of the art. These three needs are:

ˆ Dynamic Compression. We designed and implemented a
dynamic variable-to-variable compressor (D-V2V) that can be
used in real-time transmission scenarios where it is not possible to
preanalyze the sequence as in other static approaches.

Sequence compression is an active research �eld where many
strategies have been devised (typically classi�ed into statistical
and dictionary based). Nevertheless, most of them are static or
semi-static compressors (they need at least two passes over the
sequence to calculate symbol frequencies and build a model). There
are a few dynamic statistical compressors ([Fal73, Gal78, Far05])
but those compressors are focused on symbol frequency and
do not take advantage of recurring sequences of symbols as
grammar-based compressors do ([ZL77, ZL78, LM99]). Namely,
statistical compressors assign variable-length codes to input
symbols (e.g. each word) exploiting frequency distribution while
dictionary-based compressors assign �xed length codes to variable
length symbol sequences, hence, taking advantage of repeated
sequences. Therefore, these compressors are called�xed-to-variable
compressorsand variable-to-�xed compressorsrespectively.

This thesis introduces a variable-to-variable compressor that takes
advantage not only of variable-length event sequence repetitions but
also of their frequency distribution. There is already a semi-static
variable-to-variable compressors [BFL+ 10]. However, this work

1.2. Contributions 7

introduces the �rst general-purpose dynamic variable-to-variable
compressor able to exploit the existence of subsequences of co-
occurring elements while still assigning variable-length codewords
that will be shorter (following a statistical approach) for the most
frequent symbols. In order to compare the e�ciency of this proposal
with other state of the art solutions, we have used word sequences
since other competitors were not able to handle generic event
sequences.

ˆ Aggregation of preprocessed values. In this research line we
proposed and tested a general-purpose compact structure (Total
Matrices) which is able to solve multidimensional aggregated queries
in constant time.

Our work is based on a technique presented 35 years ago [Cro84] to
improve texture-map computations with the help of an aggregated
matrix representation. In our research, we have generalized this
technique to accumulate the number of event occurrences with
characteristics matching a particular dimensional criteria. Namely,
our proposal can e�ciently handle multidimensional range queries
without degrading performance. Besides, as part of the space
reduction concern of this thesis, several compressed options for
Total Matrices are introduced.

To demonstrate the general character of our approach, this method
was used to solve aggregated queries in two di�erent relevant
application domains: public transportation and mobile workforce
management.

In the former scenario, events of the non-aggregated sequence
represent the passenger boardings (or alightings) on a particular
bus in a particular stop and time. Total Matrices allow to answer
queries about how many passengers boarded (or alighted) on a
range of consecutive stops of a particular line during the journeys of
a given time interval (e.g. rush hour) or on a range of consecutive
stops (e.g. suburban stops). Thus, public transportation decision-
makers can easily exploit demand information for each line or stop
during any time interval.

On the other hand, we introduced drivers' matrices on logistics in

8 Chapter 1. Introduction

order to exploit truck drivers activities (e.g. driving in slow tra�c,
driving o� planned route, visiting a customer's facility, etc.). It is
important to note that these activities are semantic annotations for
the trajectory performed by each truck. In this context, the events
of the sequences are the activities, i.e. the semantic label for each
segment of the truck trajectory. Besides the activity label, these
events have other dimensions of interest such as worker identi�er,
start time, duration, etc.

ˆ Multiple indexing of event sequences. We have created an
indexing method (Stacked Wavelet Trees) based on concatenating
several indexing trees such as the output of one tree is the input
of another, each one reorganizing the data based on a di�erent
dimension.

As it has been previously stated, the order of event sequences may
change depending on the exploitation needs that we are aiming to
solve, even being necessary several di�erent orders depending on
the domain. For instance, if the goal is to retrieve the trajectory
of a taxi driver during a particular day, the best approach would
be to order the sequence of street segments traversed by taxi
drivers during a year �rst by day and, within each day, order the
elements by driver. Yet, if we aim to know which drivers traversed
a particular street during the evening, the best order would be to
sort those segments �rst by street segment and a second level order
by time. Note that it is only possible to create an index for the
event sequence once the sequence is ordered. Our approach, based
on wavelet trees, enables to index event sequences in a �exible way
allowing their exploitation by the order that best suits each query.

In addition to study compression, aggregation and indexation of
event sequences, this thesis has faced real problems that can be solved
with these techniques. Thus, an additional contribution of the thesis is
the modeling of real problems as sequences of events and their solution
using the techniques proposed in the thesis.

1.3. Structure of the Thesis 9

1.3 Structure of the Thesis

The structure of the thesis is as follows. First, in Chapter 2 some
state of the art technologies used for this thesis are presented (e.g.
bitvectors, wavelet trees, etc). Highlighting the practical approach
of this work, Chapter 3 describes the application domains where
our proposals were employed and the obstacles they can overcome.
Chapter 4 introduces our dynamic variable-to-variable compressor and
its experimental evaluation on texts written in natural language. Our
technique based on aggregation and its applications are explained in
Chapter 5 along with the experimental results obtained in the �elds
of public transportation and mobile workforce management. Chapter
6 covers the novel indexing approach based onwavelet treesand its
evaluation, also in the mobile workforce management domain. Finally,
this manuscript concludes with two appendices: Appendix A lists the
relevant works published during the development of this thesis and
Appendix B includes a brief summary of this text in Spanish as it is
required by the current regulations of the PhD program this work is
submitted to.

10 Chapter 1. Introduction

Chapter 2

Basic concepts and
technologies

This chapter brie�y describes some state of the art knowledge and some
structures that were used as building blocks of our work and will be
mentioned in the following sections. These previous contributions may
be classi�ed into four main categories:

ˆ Basic structures. In Section 2.1, we focus in two basic components
such asbitvectors, that are present in most compact data structures,
and a compressed representation of trees namedLOUDS, that are
of interest in further sections to represent hierarchies of elements.

ˆ Text compression. The most relevant ancestors of our dynamic
variable-to-variable compressor are detailed in Section 2.2.

ˆ Index structures. Section 2.3 takes care of two self-indexing
structures that will be of great interest in Chapter 5 and Chapter 6.

ˆ Data aggregation. Finally, Section 2.4, provides a general overview
of classic data warehouses as well as some interesting aggregated
structures.

All these popular proposals will converge in future chapters of this
thesis either as part of a new contribution or as a baseline to test our
results against a robust well-known adversary.

11

12 Chapter 2. Basic concepts and technologies

2.1 Basic structures

This section contains a brief explanation of two basic tools such as
bitvectors, which not only permit to represent a sequence of binary
events but also to e�ciently perform some basic operations that make
them a fundamental part of many compact data structures, andLOUDS,
a bitvector-based compact representation of ordered trees that not only
yield optimal space, but also supports navigation.

2.1.1 Bitvectors

Bitvectors are the basic components of many compact data structures
and, also, a keystone along this thesis. A bitvectorB [1; n] is a sequence
of zeroes and ones of lengthn. The following operations are expected
to be supported:

ˆ rank1(B; i) returns the number of set bits inB [1::i]. Alternatively,
rank0(B; i) = i � rank1(B; i) and also B[i] = rank1(B; i) �
rank1(B; i � 1).

ˆ select1(B; i) returns the position in 1::n where the i th 1 occurs.
Therefore,rank1(B; select1(B; i)) = i .

ˆ access(B; i) returns the original valueB[i].

Figure 2.1: A bitvector and its three operations: Rank, Select and Access.

Rank and Select can be supported in constant time by usingo(n)
extra bits [Jac89, Mun96]. There also exist compressed bitvector
representations ofB [RRR02, RRS07, OS07, GGG+ 07, Nav16, Góm20]
with support to the three operations de�ned.

2.1. Basic structures 13

Among them, the compressed representation due to Raman, Raman,
and Rao (RRR) [RRS07] exploits zero-order compression and permits
to store a bitvector B in total spacenH 0(B)+ o(n) bits, while providing
constant-time access, rank and select operations. Other compressed
representations exploit bitvector sparseness to further reduce space
needs [OS07] or even are tailored to deal with bitvectors containing long
runs of zeros and ones [Nav16, Góm20].

2.1.2 LOUDS

Level Order Unary Degree Sequence(LOUDS) [Jac89] introduced a new
e�ective approach to encode ordered trees achieving the asymptotic
optimum of two bits per node. The tree structure is represented by
drawing the degree of each node in (left-to-right) level-order. Unary
codes [Sal07] are used to encode the degree sequence, i.e. a degree is
represented by the string 1r0, beingr a repetition of degree - 1ones.
An example can be seen in Figure 2.2 where it is depicted a hierarchy
tree and its LOUDS representation in bitvector D. The root level of
the tree contains only one (10 in unary) node, the root node, and has
not to be explicitly stored. In the �rst level we have 3 entries (1110in
unary), for each of them, we have two children in the next level (which
translates in the unary code to110� 110� 110) and so on.

As each node is represented as a 1 at its parent encoding it will
be necessaryn � 1 ones (excluding the root node); besides, as all the
unary sequences that encode the degree of each node end with a0
(there are n 0s) the total length of the encoded sequence of degrees
would be 2n � 1 bits for a tree with n nodes. This encoding procedure
based on a bitvector that contains unary codes brings the capability of
using supportsrank and selectoperations to enable the basic navigation
through the tree. As an example, it would be simple to calculate in the
bitvector of Figure 2.2 the position of the �rst child of �Desserts� (4-th
node counting the root) asselect0(D; rank 1(D; 4)) + 1 = select0(D; 4) +
1 = 11 + 1 = 12 .

In Section 2.4.4 we will show howLOUDS is used as a main
component of theCMHD, a state of the art solution for data aggregation.

14 Chapter 2. Basic concepts and technologies

Figure 2.2: A hierarchy tree coded as a LOUDS bitvector.

2.2 Text compression

Text compression is an important subarea of data compression that has
traditionally faced two main interest. On the one hand, it pursued the
target of reducing the size of the source text as much as possible, even
at the expense of sacri�cing compression and decompression e�ciency
([Shk02, Wel84]). On the other hand, the raise of text retrieval systems
([WMB94, BYRN08]) showed that it could become interesting to trade
some loss of compression e�ectiveness by the capability of being able
to handle a text database in compressed form. Therefore, the new
requirements were to be fast at both compression and decompression and
also to allow direct searches to perform e�ciently within the compressed
text (without the need for a prior decompression). This lead to the
development of new semi-static word-based text compressors such as
Word-based Hu�man [Mof89], Tagged Hu�man [dMNZB00] and, �nally,
End-Tagged Dense Code(ETDC) [Far05, BFNP07] which become the
most suitable compressor for text databases.

All of them were word-based semi-static compressors that parsed the
source text to gather the di�erent input words and their frequency, that
allowed to encode them using a variable-length coding that assigned

2.2. Text compression 15

shorter codewords to the most frequent words. Since the codeword
given to a word did not vary along the database, direct searches were
possible by compressing the searched pattern and then searching for
such compressed pattern within the compressed text.

To improve the compression ratios ofETDC, while still retaining
some searching capabilities and decompression performance, avariable-
to-variable compressor(V2Vc) [BFL+ 10] was created based on the idea
of compressing not only words (as inETDC) but also phrases of words.

In a di�erent scenario, targeting at real-time compression, new
dynamic compressors based onETDC were also developed [Far05,
BFNP10]. Even though we will discuss text compression scenario later
on Section 3.1, we will present hereETDC, DETDC and V2Vc as the
ancestors of the dynamic compressor that makes up one of the main
contributions of this thesis and will be presented in Chapter 4.

2.2.1 End-Tagged Dense Code

As stated above,End-Tagged Dense Code(ETDC) [Far05, BFNP07] is
a semi-static word-based compression technique. Basically, it performs
a �rst pass over the input text to gather the di�erent words (vocabulary
of words) and their number of occurrences. Then, it sorts the words of
the vocabulary decreasingly by frequency and, following a dense-coding,
it assigns shorter codewords to the more frequent words. Finally, in
a second pass over the source text it replaces the input words by the
corresponding codeword, hence obtaining compression.

The main contribution of ETDC was the de�nition of a dense coding
to create byte-oriented codewords (i.e. codewords are sequences of bytes
rather than sequences of bits), despite previous alternatives such as
Plain Hu�man or Tagged Hu�man, that used Hu�man algorithm [Huf52]
to obtain pre�x-free1 encodings. The advantage of thedensecoding
scheme ofETDC came from the idea of marking the �rst bit of the last
byte of a codeword with a1, whereas the �rst bits of the remaining
bytes were set to0. This madeETDC a pre�x coding without the need
for using Hu�man coding (as in TH) and provided synchronization

1A pre�x-free encoding ensures that no codeword is a pre�x of a longer codeword, which is an
useful property to support e�cient decoding, as no look-aheads are required because each symbol
is uniquely decodable.

16 Chapter 2. Basic concepts and technologies

capabilities that enabled both direct access to the compressed text (and
consequently random decompression from any o�set) and the possibility
of performing fast compressed text searches by using Boyer-Moore-
type searches [Hor80]. In addition, the coding schema ofETDC no
longer depends on the actual number-of-occurrences of a word (as in
Hu�man coding) but only on the rank of each word in the decreasingly-
sorted vocabulary, what makes it simple and fast. Below, we show
how byte-wise codewords are assigned to each word, assuming such a
decreasingly-sorted vocabulary of words.

ˆ The �rst 128 words from the vocabulary (i.e. words ranked from
position 0 to 127) are sequentially assigned 1-byte codewords from
10000000 (byte value128) to 11111111 (byte value255). Note that
the �rst bit of the (unique) last byte is set to 1. This is depicted
in Table 2.1.

ˆ Words ranked from 27 = 128 to 27 + 2 7 � 27 � 1 = 16511 are
sequentially assigned two-byte codewords from 000000000:10000000
(word ranked 128); 000000000:10000001 (word ranked 129);... to
011111111:11111111 (word ranked 16511). The �rst byte of each
codeword has a value in the range[0; 127] (i.e. with the �rst bit
set to zero) and the second byte contains values within[128; 255]
(i.e. with the �rst bit set to one).

ˆ Word ranked 27 + 2 7 � 27 = 16512 is assigned the �rst tree-byte
codeword 000000000:000000000:10000001, and so on.

The simple encoding schema introduced byETDC and the fact of
depending on the rank of the symbols within the sorted vocabulary
rather than on their actual frequency values, allowed also the de�nition
of on-the-�y encoding and decoding algorithms such that:

ˆ ci encode(i) receives the word ranki and returns the assigned
codeword in time proportional to jci j = O(log8 i).

ˆ i decode(ci) receives a codewordci and, again in time proportional
to jci j, returns the rank i of the corresponding symbol within the
sorted vocabulary.

2.2. Text compression 17

Word rank Codeword assigned # Bytes # Words

0
1
2
...
27 � 1 = 127

10000000
10000001
10000010
...
1111111

1 27

27 = 128
129
130
...
27 � 27 + 2 7 � 1 = 16511

00000000:10000000
00000000:10000001
00000000:10000010
...
01111111:11111111

2 27 � 27

27 � 27 + 2 7=16512
16513
16514
...
(27)3 + (2 7)2 + 2 7 � 1

00000000:00000000:10000000
00000000:00000000:10000001
00000000:00000000:10000010
...
01111111:01111111:11111111

3 (27)3

...

Table 2.1: ETDC distributes words in blocks according to their frequency.
Shorter codes are assigned to symbols on higher blocks.

As stated above, ETDC become the most suitable compressor
for text databases [BYRN08] due to its rather good compression
e�ectiveness (compression ratio2 around 32%), and mainly due to
its fast decompression and the ability to e�ciently perform direct
searches within the compressed text. In addition, the simple encoding
and decoding algorithms opened the door to creating new dynamic
compressors (tailored for real-time transmission) as we will show in the
next section.

2.2.2 Dynamic End-Tagged Dense Codes

When pursuing the target of creating e�cient text compressors that
could match real-time constraints, i.e. a word can be compressed and

2We show compression ratio as 100 � compressed text size
size of original text ; i.e. the percentage of the compressed

size with respect to the plain text size.

18 Chapter 2. Basic concepts and technologies

sent to a receiver as soon as it is read, dynamicone-passcompression
is required. Despite semi-static compression, a one-pass statistical
compressor must dynamically compute the model of the text (gathering
words and their number of occurrences) as words are being read, instead
of waiting for the whole text, or a large block of it, to become available.
Therefore, using such varying model, each input word can be assigned a
rather-optimal codeword. The decoder/receiver performs symmetrically
to the encoder/sender by decoding the received codewords and recreating
the same model held on the compressor from the decoded codewords.

Dynamic end-tagged dense code(DETDC) [Far05, BFNP08,
BFNP10] takes advantage of the simple on-the-�yencodeand decode
algorithms from ETDC and permits both sender|compressor and
receiver|decompressor to remain synchronized by simply keeping the
same vocabulary of words sorted by frequency.DETDC algorithm
is not complex, basically, assuming that, at a given moment, the
vocabulary of the sender containsn words, when the sender inputs the
next word w it could �nd it in its vocabulary at position i , so it simply
sendsci encode(i) to the receiver. Otherwise, ifw is a new word, it
sendscn encode(n) (used as an escape codeword) followed byw in
plain form. In any case, the encoder increases the frequency counterf
of w to f + 1 and runs a simpleupdatealgorithm that swapsw with the
�rst word that has frequency equal to f . This updatealgorithm keeps
the vocabulary of words sorted by frequency and runs inO(1) time.

The receiver is also very simple. It receives a codewordci and decodes
it as i decode(ci). Then, if i < n it has decoded the wordwi at the
i -th entry of the vocabulary. Otherwise, if i = n (escape codeword)
it receives a new word in plain form and adds it at the end of the
vocabulary. Finally, a similar updateprocedure to that of the sender is
run to increase the frequency of that word and to keep the vocabulary
sorted. Suchupdatealgorithm runs also inO(1) time.

DETDC became the �rst word-based dynamic compressor matching
real-time constraints. As the dynamic counterpart ofETDC, it obtained
rather identically compression ratios and faster (one-pass) compression.
Yet, due to the need of running the update algorithm each time a word
is decoded, decompression speed and searching capabilities worsened.

2.2. Text compression 19

2.2.3 Semi-static variable-to-variable compression

In 2010 the best option for building searchable compressed texts were
Tagged Hu�man [dMNZB00] and ETDC. Although, those compressors
could not achieve compression ratios below 30% in natural language
English text; i.e. searchable compressed text could not compete against
strong compressors such as dictionary-based compressors (e.g. Lempel-
Ziv family [ZL77, ZL78, Wel84]) or k-order statistical compressors (e.g.
PPM [CW84, Shk02]). Thereby, it was necessary a compressor able
to mix the best of both worlds, having strong compression ratios and
fast searching capabilities within the compressed text. This is how
Variable-to-variable compressor(V2Vc) [BFL + 10] was born.

This novel solution uses the same encoding schema asETDC but
it considers not only words as the input symbols to encode but also
sequences of words (phrases). Therefore, it combines both, the idea of
processing variable-length input symbols (as usual in dictionary-based
compressors) and the assignment of variable-length codewords to the
symbols (as typical from statistical compressors). These madeV2Vc
the �rst variable-to-variable compressor of the state of the art. The key
concept in this approach is to select �good� phrases. To achieve that,
V2Vc follows these steps:

ˆ Parsing and selection of candidate phrases . V2Vc uses
auxiliary structures to handle all the possible word sequences in a
text, their frequency and the number of words that compose each
of them (phrase length). In particular, it uses a word-basedsu�x
array [MM93] built over the source text, that basically consists
of an array of pointers to each word beginning that keeps all the
possible su�xes from any word position to the end of the source
text sorted lexicogrpahically. It also uses alongest common pre�x
(LCP) [MM93] structure that permits V2Vc to gather the actual
number of occurrences of any phrase pointed from thesu�x array .
In order to select the best phrases, two heuristic techniques have
been used:

� H1: Select all the longest phrases that has at least a given
frequency threshold.

� H2: Compare the pro�t obtained between two similar phrases.

20 Chapter 2. Basic concepts and technologies

Therefore, in this �rst phase the compressor becomes acquainted
of which words appear in the original text (as inETDC) and,
immediately afterwards, it adds the chosen candidate phrases to
the word vocabulary (phrase-book). Thus, V2Vc treats equally
words and sequences of words as the source symbols that will later
be encoded.

ˆ Gathering the �nal phrase-book and producing a phrase-
tokenized representation of the text . Since each word can be
either encoded individually or inside a phrase, it is important to
discern which alternative will be used for each word. Using the
auxiliary structures mentioned before it is possible to build an
intermediate representation of the original text where each word
(or phrase) is replaced by an identi�er associated to its position in
the phrase-book.

ˆ Coding and codeword replacement . In this phase, each
identi�er of the intermediate representation is replaced by a variable-
length ETDC codeword usingCi d ETDC:encode(id) and
considering thephrase-bookordered by frequency. This makes
up the �nal compressed sequence.

Once the compressed text is obtained, it is mandatory to follow a
common communication protocol between compressor and decompressor
so that the decompressor can know the contents of thephrase-bookused
by the compressor. Therefore, we have to include a header (as inETDC)
with all the words in the phrase-bookin plain form, and also the phrases.
To represent phrases in a compact way the �rst time a phrase is encoded
in the compressed �le, it is represented (compressed) as the sequence
of all the codewords associated to its individual words. Namely, if
the �rst occurrence of a particular phrase starts at positioni in the
compressed text, we only have to store in the corresponding entryx
of the phrase-book. A pair (i; k) indicating that the de�nition of the
words of that phrase appear compressed from positioni on within the
compressed �le and the number of wordsk it contains. Subsequent
occurrences of the phrasex will be encoded asCx ETDC:encode(x)

On the other hand, the decompression process rather is identical
to decompression inETDC. Although, each time the �rst position of

2.3. Index structures 21

an encoded phrasex is reached, the decompressor recovers the plain
representation (string) of the phrase. Afterwards, that phrase is inserted
in the phrase-bookat the x-th entry so next time the codewordCx is
decoded for the compressed text, it is handled as the codeword of any
single word, i.e. output string at positionphrase-book[x].

Following this strategy, V2Vc reaches competitive compression ratios
(around 22%) even when compared with strong compressors such asp7zip.
V2Vc has a slow compression process due to the complex candidate
phrase detection procedure but it owns a fast decompression (analogous
to ETDC thanks to having decompress a smaller compressed �le). In
addition, it is able to search over compressed text even faster than
ETDC.

2.3 Index structures

The possibility of retrieving the desired information faster is one of the
main concerns in computer science. Luckily, at this point the state of
the art have provided some clever solutions that may apply to a very
wide range of contexts. This section describes two of them as basic
indexing engines in the contributions of this research and in many other
compact structures.

2.3.1 FM-index

The Burrows-Wheeler Transform(BTW) [BW94] is a data transforma-
tion algorithm that creates a matrix whose rows are cyclical shifts of
the same text/sequence that are kept sorted in alphabetical order. The
key idea is to build blocks enhancing the locality of repetitions ergo
improving the compression. Since all rows are cyclical, it is possible to
traverse/recover each element of the original sequence in reverse order
just using the �rst (F) and the last (L) columns of the matrix. Figure 2.3
displays an example of the matrix containing all the cyclical shifts of
the sequenceS = habracadabra$i . Note that BWT (S) is de�ned as
the last column L of that matrix. Yet, since F is a permutation of L
that contains the same symbols but sorted lexicographically considering
the cyclical string starting on them, we can map any symbolc = L[i]

22 Chapter 2. Basic concepts and technologies

into its corresponding positionj in F by just counting the number of
times (k) character c occurs inL[1; i] (i.e. we know that L[i] contains
the k-th occurrence ofc). Therefore, j can be easily obtained as the
initial position of the range of symbolc within F added to k � 1. This
is called theLF mapping of theBWT .

Therefore, we know that the cyclical shift ofS starting at L[i] is
identical to the one starting at F [j]. Since the rowj is also cyclical, if
we accessL[j] we will obtain the entry precedingL[i] = F [j] in S. By
repeating this operation, we can recover all the entries ofS, in reverse
order. For example, if we start at rowi = 4 (which contains the original
string S) we see thatL[4] contains the �rst occurrence of `$', which is
found at position j = 1 in F . Consequently,L[1] contains `a' and we
have recoveredS[11; 12] =�a$�. Since L[1] holds the �rst occurrence
of `a' in L, which is found at F [2], we accessL[2] and recoverS[10] =
`r'. Now, it is the �rst occurrence of `r' in L, which is found at F [11].
Consequently,L[11] recovers `b' and we have already recovered the
substring S[9 12] =�bra$�. We can continue the process until recovering
the whole source sequenceS. The LF mapping and the fact that all
the cyclical shifts ofS appear sorted inF has led to the raise of a large
family of self-indexing structures based on theBWT , whose best-known
component is theFM-index [FM00].

Given a sequenceS[1; n] built on an alphabet � = [1 ; �], the FM-index
[FM00] provides a self-indexed representation ofS based on theBWT
of S and the use of backward search for identifying pattern occurrences.
Figure 2.3 shows how this index is able to �nd the occurrences of the
pattern P[1; p] = �bra� within S through backward search. It starts
looking for the range inL containing the last symbol of the pattern
(`a') and traverses the matrix by navigating fromF to L until either it
retrieves a range with the occurrences of the whole pattern or it runs
out of results. In practice, this operation is performed usingL and two
auxiliary matrices (C and Occ) in order to achieveO(p) time. Array C
(see Table 2.2) stores, for each symbolc 2 � , the amount of occurrences
in S of all the symbols that are lexicographically smaller thanc (i.e.
the starting o�set of the range associated to symbolc in F). Matrix
Occ(c; q) (see Table 2.3) keeps the amount of occurrences of characterc
in the pre�x L[1::k].

2.3. Index structures 23

Figure 2.3: BWT and FM-Index example: Given the text �abracadabra$�
we show the cyclical shifts of theBTW matrix and highlight F and L . Also,
we show how to �nd all the occurrences of the pattern �bra� using backward
search.

Continuing with the example of Figure 2.3, the �rst step to �nd the
pattern �bra� is to retrieve the range in F of the last character of the
pattern `a' as [C[`a'] + 1; C[`a'+1]] = [2; 6]. To calculate the range of
all the su�xes containing �ra� we need to compute [C[`r'] + Occ[`r'; 2 �
1] + 1; C[`r'] + Occ[`r'; 6]] = [10 + 0 + 1 ; 10 + 2] = [11; 12]. Finally,
the last step to �nd all the occurrences of pattern �bra� is to calculate
[C[`b']+ Occ[`b'; 11� 1]+1; C[`b']+ Occ[`b'; 12]] = [6+0+1 ; 6+2] = [7 ; 8].
Thus, there are2 occurrences of the sought pattern in this text.

This structure requires5nH k(S) + o(n) bits of space and permits to
search for the occurrences of a patternP[i; m] in time O(m+ occ log1+ � n)
(occbeing the number of occurrences ofP within S). Several variants
of this scheme exist [FM01, FM05, FMMN07, MN05] which induce
di�erent time/space tradeo�s for the counting, locating, and extracting
operations that respectively counts the number of occurrences ofP in

c $ a b c d r

C[c] 0 1 6 8 9 10

Table 2.2: Auxiliary array C for column L in the matrix of Figure 2.3.

24 Chapter 2. Basic concepts and technologies

a r d $ r c a a a a b b
1 2 3 4 5 6 7 8 9 10 11 12

$ 0 0 0 1 1 1 1 1 1 1 1 1

a 1 1 1 1 1 1 2 3 4 5 5 5

b 0 0 0 0 0 0 0 0 0 0 1 1

c 0 0 0 0 0 1 1 1 1 1 1 1

d 0 0 1 1 1 1 1 1 1 1 1 1

r 0 1 1 1 2 2 2 2 2 2 2 2

Table 2.3: Auxiliary structure to compute the number of occurrences of
character c in the pre�x L[1..k] (Occ(c,k)) in constant time.

S, locates the positions whereP occur in S and extracts/recovers any
substring S[i; j] from S.

Section 5.3 will use aFM-Index to search patterns over an auxiliary
structure in order to improve the performance and range of action in
one of our proposals.

2.3.2 Wavelet Tree

The wavelet tree(wt) is a data structure that, as theFM-index discussed
above, permits to represent any general sequence in a self-indexed way.
Given a sequenceS[1; n] over an alphabet�[1 ; �], a wavelet treeis built
as a balanced binary tree that subdivides the symbols in the sequence
represented within each node according to their position in the alphabet.
In particular, depending on whether those symbols either fall within
the �rst half of the alphabet (� L) or within the second half (� R).

Considering the whole source sequenceS, the root node of the tree
contains a bitvector B [1; n], such that B [i] = 0 () S[i] 2 � L , and
B[i] = 1 otherwise. Then, the sequence handled by the root node
S is divided into two subsequencesSL and SR that are represented
within its two children nodes. Basically,SL contains all the symbols
s 2 � L from S (in the same order they occurred inS) and SR all those
symbolss 2 � R . The process is repeated recursively, considering the
subsequenceSL in the left sub-tree, and the subsequenceSR in the right
sub-tree. The resulting tree hasdlog� e levels, and a total ofn bits per

2.3. Index structures 25

level, for a total size ofndlog� e bits. Pointers between nodes can be
greatly reduced using an implementation in which all the bitvectors of
the same level are concatenated [CN09], hence keeping total space as
ndlog� e+ O(n log�).

Figure 2.4: Wavelet tree for sequenceS = h6 3 5 4 0 1 5 2 7 6 7 0 6 3i .

Instead of considering the partitioning of� at each node, we could
also consider that each symbolsi 2 � is assigned a codewordci , so that
at the root node, we setB [i] = 0 () the �rst bit of the codeword
of S[i] is a 0, and B[i] = 1 otherwise. Then, we repeat the process
recursively as above, yet considering thek-th bit of the codeword of the
symbols represented within the nodes of thek-th level.

Assuming a binary encoding for the symbols, Figure 2.4 depicts the
wavelet tree associated to the sequenceS = h6 3 5 4 0 1 5 2 7 6 7 0 6 3i
where only grey shaded areas (the bitvectorsB1, B2:x and B3:x) are
stored. Note that each node at thek-th level represents all those symbols
from the original sequence that share the samek � 1 initial bits in their
encodings. For example, the node containingB3:3 contains only symbols

26 Chapter 2. Basic concepts and technologies

4 and 5, whose binary encodings start by bits1 0.
With this simple structure, wavelet treesare able to represent the

original sequenceS, while providing also support foraccess, rank, and
selectoperations over the symbols ofS. The two former roam the tree
from the top to the leaves whereas the latter does it in the opposite
direction as we will discuss below. Those operations are de�ned as:

ˆ rank c(i) returns the number occurrences ofc in S[1::i].

ˆ selectc(i) returns the position of thei -th occurrence of symbolc
within S.

ˆ access(i) returns the original valueS[i].

To solveaccess(i)operation, we start at positioni in the root level and
we only need to descend the tree considering the value of the bitvector
B [i] at each node. We check whether we have to move to either the left
or right child, and respectively, we track the corresponding position at
the next level asi rank0(B; i) or i rank1(B; i). Thus, the solution
for access(3) (the �rst 5 in the S) begins with a descent through the
right branch as B1[3] = 1. Sincerank1(B1; 3) = 2, we can locate our
target in the second level, in the2-nd position of B2:2. SinceB2:2[2] = 0,
we need to descend through the left branch this time. At the third level,
the sought solution is at positionB3:3[rank0(B2:2; 2)] = B3:3[1] = 1.
Since we have traversed the branches0 � 1 � 0, that correspond to the
(binary) encoding of symbolS[3], we conclude thataccess(3) = 101 = 5.

Operation rank c(i) would be solved in a similar way, performing
either a rank0 or a rank1 operation depending on the bit of the encoding
of c in the previous level. Yet, in this case, we only need to report the
�nal position within the corresponding leaf.

To solve selectc(i), a bottom-up traversal of the wavelet tree is
required. First, we locate the leaf corresponding to symbolc according
to its encoding. From there on, we track thei -th position from that leaf
(such leaf would be devoted only toc symbols) up to the corresponding
position at the root node. This is done usingselectoperations within the
bitvectors of the nodes traversed up to reaching the root. For example,
if we want to retrieve the position of the �rst occurrence of symbolc = 5
of S, we should begin in the �rst position of the leaf containing symbols

2.4. Data aggregation 27

c = 5. Since the last bit of the encoding of5 is a one, we would start
the bottom-up traversal at i select1(B3:3; 1). Now, as the bitvector
B3:3 is within the left child of B2:2, we should look for the �rst 0 of
B2:2, i.e. i select0(B2:2; 1) = 2. As B2:2 is within the right child of
B1, the position at the top bitvector we are looking for is obtained as
i select1(B1; 2) = 3.

In addition to plain wt representations, that essentially require the
same space as the original uncompressed sequenceS, several compressed
representations exists, yielding space proportional to the zero-order
entropy of S. Particularly, one approach to achieve this is to use
compressed bitvectors within thewt. By using the variant due to Raman,
Raman, and Rao (RRR) [RRS07] discussed in Section 2.1.1, we can store
a wt in total spacenH 0(S)+ o(n log�)+ O(� logn) bits, while operations
can still be solved inO(log�) time. An alternative compression strategy
for wavelet trees, where the binary encoding of the symbols seen above
is replaced by a pre�x-free variable-length encoding (using Hu�man
encoding), as in [FGNV08], leads to a Hu�man-shapedwavelet tree
where the overall size is reduced ton(H0(S) + 1) + o(n(H0(S) + 1)) +
O(� logn) and the operations are performed on average inO(H0(S))
time, whereas the worst-case complexity is stillO(log �).

Wavelet treeswill be used in Chapter 6 as building blocks of a
more complex structure created to index information attending di�erent
criteria.

2.4 Data aggregation

Despite that commercial data warehouses have gained the control of
the market, it is still possible to improve them from a spatial point of
view (among others). The following subsections fathom into how classic
ideas evolved until achieving this maturity level and how compression
techniques may open new paths in this �eld.

2.4.1 Data Warehouses

It was the best of times. It was the worst of times.Supported by
these words of Dickens, William H. Inmon began the defense of his

28 Chapter 2. Basic concepts and technologies

data warehouse model to settle the discussion once and for all [Inm11].
For decades, the data warehouses world has been divided between two
di�erent main approaches and this controversy is still in vogue nowadays.

The seminal idea for this great debate was established in 1958 by an
IBM employee called Hans Peter Luhn. Luhn was concerned about the
ine�cient communication and the human e�ort on the dissemination
of information. Therefore, he proposed a system to accommodate
all information problems of an organization [Luh58]. With a little
human help, his system was able to �nd the action-points (individuals,
departments, divisions. . .) and the activities that characterized each
of them. Once the hierarchy was established, the system was in charge
of the acquisition, storage and distribution of new information through
each action point. Taking advantage of the new improvements on the
automation of electronic devices, he managed to accomplish his goals in
a fast and e�cient way for that time. In addition, he coined a term that
would later name one of the most proli�c areas in information systems
research:Business Intelligence.

Having in mind that the arrival of Database Management Systems
(DBMS) did not occur until the '60s [Bac66] (Figure 2.5), it is
understandable the oblivion su�ered by the generation of business
knowledge during this period. The e�ort was focused on managing
the unstoppable �ow of information [WL64] or tackling the new data
retrieval problems [SL65, Cle67]. Nonetheless, this does not mean that
Luhn's pioneer approach was mistaken. Data generation was growing
exponentially year after year, to such an extent that the amount of
information generated only in 2007 was larger than all the information
created since the invention of writing [BvDD09]. The need for exploiting
all this data became clear again considerably later, when the foundation
of operational databases was settled.

It is at this point of history when Ralph Kimball and William H.
Inmon faded in. They both immersed in the information systems area
during the '80s [SIKH82, Inm86, IB86] but it was during the '90s when
the race for building a database-oriented to decision-making begun. Both
of them aimed to develop a system capable of managing information
in such a way that (following Luhn's goals) it could acquire, store,
disseminate, calculate and maintain huge amounts of di�erent data

	Introduction
	Motivation
	Contributions
	Structure of the Thesis

	Basic concepts and technologies
	Basic structures
	Bitvectors
	LOUDS

	Text compression
	End-Tagged Dense Code
	Dynamic End-Tagged Dense Codes
	Semi-static variable-to-variable compression

	Index structures
	FM-index
	Wavelet Tree

	Data aggregation
	Data Warehouses
	OLAP
	Summed Area Tables
	CMHD

	Application contexts
	Text compression
	Public transportation
	Mobile Workforce Management

	Dynamic variable-to-variable compression (D-V2V)
	Dynamic variable-to-variable compressor
	Parsing algorithm
	Encoding procedure
	Receiver procedure

	Experiments
	Space requirements and memory usage
	Compression and decompression times

	Conclusions

	Total matrices (T-Matrices)
	General-purpose accumulative matrices
	T-Matrices in public transportation
	Data structures
	Experimental evaluation
	Experimental dataset
	Space requirements
	Performance at query time

	T-Matrices in mobile workforce management
	Data structures
	Experimental evaluation
	Experimental datasets
	Space requirements
	Performance at query time

	Conclusions

	Event sequence indexing
	Introduction
	Indexing with Wavelet Trees
	Reducing the space
	Experimental evaluation
	Problem setup
	Baseline representation
	Experiments and results

	Conclusions

	Conclusions and future work
	Conclusions
	Future work

	Publications and other research results
	Resumen del trabajo realizado
	Introducción
	Motivación
	Contribuciones
	Trabajo futuro

	Bibliography

