

UNIVERSIDADE DA CORUÑA

DEPARTAMENTO DE COMPUTACIÓN

Formal Extension of the Relational
Model for the Management of

Spatial and Spatio-temporal Data

Tese Doutoral

 Doutorando: José Ramón Ríos Viqueira
 Director: Dr. Nikos A. Lorentzos
 Titora: Dra. Nieves Rodríguez Brisaboa

A Coruña, Xullo de 2003

 iii

Ph. D. Thesis supervised by
Tese doutoral dirixida por

Dr. Nikos A. Lorentzos
Informatics Laboratory
Science Department
Agricultural University of Athens
Iera Odos 75, GR 118 55 Athens Greece
Telf: +(01) 529 4175
Fax: +(01) 529 4199
lorentzos@aua.gr

Tutor
Titora

Dra. Nieves Rodríguez Brisaboa
Departamento de Computación
Facultade de Informática
Universidade da Coruña
15071 A Coruña (España)
Telf. +34 981 16 70 00 Ext. 1243
Fax: +34 981 16 71 60
brisaboa@udc.es

 v

Acknowledgements

I would like to thank my supervisor Dr. Nikos A. Lorentzos for his support,
dedication and patience during all these years of hard work. I do appreciate
very much his high degree of professionalism but, beyond that, I am
especially thankful for his being such human.

I would also like to thank my tutor in Spain Dr. Nieves Rodríguez Brisaboa,
for her support and advice in both research and, more generally, in life.

I am grateful to my fellows in the Laboratory of Databases at the Department
of Computer Science of the University of A Coruña, Fariña, Miguel Luaces,
Ángeles, Tony, Fran, José Paramá, Eva, Miguel Penabad and mon. They have
made my life much easy while working at the University A Coruña. I am also
much grateful to all the staff and fellows in the Informatics Laboratory of the
Agricultural University of Athens, Professor Alex Sideridis, Director of the
Laboratory, Thodoros, Costas, Ntina, Spyros, Costas Dondis, Yiannis,
Marios, Bader, Fani, Christina, Dimitris and Thanasis, for their help and
kindness during my stay in Athens.

Many thanks also go to my family, my parents Daniel and Clarisa, to my
sister Cristina, to my brother Jorge (alive in our heart), to my grandmother
Balbina and to my aunt Mª Carmen. Thank you for your care and your
patience.

Thank you Belen for your love and support in good and bad moments. Thank
you for your patience and understanding during my long periods of absence.

Thanks to all my friends at Kypseli, Athens, S & K Omadara, Kostas,
Stefanos, Vassilis, Andonis, Eirini, Panayiotis, Marios, Andreas, all those
with whom I had the pleasure to enjoy so many good moments. Many thanks
also go to Mr Panayiotis and Mrs Fani. I shall not forget their hospitality and
those delicious Sunday lunches. Thanks also to Victor for those unforgettable
games of tennis.

I would finally like to thank all the organizations that supported the work of
this thesis:

The European Union that funded my work via project “CHOROCHRONOS:
A Research Network for Spatiotemporal Database Systems”, A TMR
Research Network Project Nº ERB FMRX-CT96-0056, during the period
October 1998 – July 2000.

The University of A Coruña, which funded my research during the periods
January 2001 – October 2001 and January 2002 – October 2002.

 vi

Agradecementos

Gustaríame agradecer ó meu director de tese Dr. Nikos A. Lorentzos o seu
apoio, dedicación e paciencia durante todos estes anos de traballo duro. É
realmente de apreciar o seu alto grado de profesionalidade, pero sobre todo,
estou altamente agradecido pola súa grande cualidade humana.

Tamén me gustaría agradecer á miña titora en España Dra. Nieves Rodríguez
Brisaboa o seu apoio e bos consellos, tanto no traballo como na vida en xeral.

Estoulles altamente agradecido ós meus compañeiros do Laboratorio de Bases
de Datos do Departamento de Computación da Universidade da Coruña,
Fariña, Miguel Luaces, Ángeles, Tony, Fran, José Paramá, Eva, Miguel
Penabad e mon. Eles conseguiron que a miña vida no traballo na Universidade
da Coruña fose moito máis sinxela. Tamén lles estou agradecido ó persoal e
compañeiros do Informatics Laboratory da Agricultural University of Athens,
Profesor Alex Sideridis, Director do laboratorio, Thodoros, Costas, Ntina,
Spyros, Costas Dondis, Yiannis, Marios, Bader, Fani, Christina, Dimitris e
Thanasis, pola súa axuda e amabilidade durante as miñas estancias en Atenas.

Moitas gracias tamén á miña familia, ós meus pais, Daniel e Clarisa, á miña
irmá Cristina, ó meu irmán Jorge (vivo no noso corazón), á miña avoa Balbina
e á miña tía Mª Carmen. Gracias polos vosos coidados e paciencia.

Gracias Belén polo teu amor e apoio nos bos e malos momentos. Gracias pola
túa paciencia e comprensión durante os meus largos períodos de ausencia.

Gracias a todos os meu amigos de Kypseli, Atenas, S & K Omadara, Kostas,
Stefanos, Vassilis, Andonis, Eirini, Panayiotis, Marios, Andreas, todos
aqueles cos que tiven o pracer de desfrutar tantos bos momentos. Moitas
gracias tamén para o Sr. Panayiotis e a Sra. Fani. Nunca esquecerei a súa
hospitalidade e aquelas deliciosas comidas de domingo. Gracias tamén a
Víctor por aqueles inesquecibles partidos de tenis.

Por último, gustaríame agradecer a todas as organizacións que apoiaron o
traballo desta tese:

Á Union Europea que financiou o meu traballo a través do proxecto
“CHOROCHRONOS: A Research Network for Spatiotemporal Database
Systems”, A TMR Research Network Project Nº ERB FMRX-CT96-0056,
durante o período Outubro 1998 – Xullo 2000.

Á Universidade da Coruña, que financiou o meu traballo investigador durante
os períodos Xaneiro 2001 – Outubro 2001 e Xaneiro 2002 – Outubro 2002.

 vii

A Belén e Jorge

 ix

Contents

1. INTRODUCTION..1
1.1 BACKGROUND... 1
1.2 CONTRIBUTIONS OF THIS THESIS.. 4
1.3 OUTLINE OF THESIS.. 5

2. PREVIOUS WORK AND MOTIVATION..7
2.1 INTRODUCTION... 7
2.2 PREVIOUS RESEARCH ON SPATIAL APPROACHES.. 8

2.2.1 ROSE Algebra.. 8
2.2.2 Tomlin’s Map Algebra (TMA)... 10
2.2.3 Erwig and Schneider’s Spatial Partition Model (ESSPM)................................... 11
2.2.4 Hadzilacos and Tryfona’s GIS Approach (HTGIS).. 13
2.2.5 ESRI ArcInfo 8... 14
2.2.6 Intergraph Geomedia 5 ... 15
2.2.7 MapInfo Professional 7 ... 15
2.2.8 Bentley Microstation Geographics 7.2.. 15
2.2.9 Grid Based Commercial GIS Tools (GRIDGIS)... 16
2.2.10 Geosabrina... 17
2.2.11 Egenhofer’s Spatial SQL (ESSQL).. 18
2.2.12 Pictorial SQL (PSQL).. 18
2.2.13 Scholl and Voisard’s Relational Approach (SVRA).. 19
2.2.14 Gargano, Nardelli and Talamo’s Relational Model (GNTRM) 19
2.2.15 GeoSAL .. 20
2.2.16 Geo Relational Algebra (GRAL) ... 21
2.2.17 QLG.. 21
2.2.18 Dedale .. 22
2.2.19 CALG.. 23
2.2.20 van Roessel’s Conceptual Model (RCM) .. 23
2.2.21 Scholl and Voisard’s Thematic Map Model (SVTMM) .. 24
2.2.22 ISO SQL Multimedia Standard: Spatial (ISOSQLMM).. 24
2.2.23 OpenGis Simple Features Specification for SQL (OGISSQL).............................. 26
2.2.24 Oracle8i Spatial Cartridge (ORACLE)... 26
2.2.25 IBM Informix Spatial DataBlade (INFORMIX).. 27
2.2.26 IBM DB2 Spatial Extender (DB2)... 27
2.2.27 PostgreSQL.. 27
2.2.28 GEO++.. 28
2.2.29 GEUS.. 28
2.2.30 Object-Oriented Geographic Data Model (OOGDM) ... 28

2.3 PREVIOUS RESEARCH IN SPATIO-TEMPORAL APPROACHES30
2.3.1 Güting et al Spatio-temporal Model (G+STM) .. 30
2.3.2 Moreira, Ribeiro and Abdessalem’s Spatio-temporal Model (MRASTM)........... 31
2.3.3 Worboys’s Spatio-temporal Model (WSTM)... 32
2.3.4 Erwig and Schneider’s Spatio-temporal Partition Model (ESSTPM).................. 32
2.3.5 d’Onofrio and Pourabbas’s Temporal Map Model (OPTMM) 33
2.3.6 Tryfona and Hadzilacos’s Temporal GIS Approach (THTGIS)........................... 33

 x

2.3.7 Kemp and Kowalczyk’s Temporal GIS Approach (KKTGIS) 33
2.3.8 STSQL.. 34
2.3.9 SQLST.. 35
2.3.10 Dedale .. 36
2.3.11 Yeh and de Cambray’s Spatio-temporal Model (YCSTM).................................... 36
2.3.12 Informix Geodetic DataBlade (GEODETIC).. 36
2.3.13 ORParaDB... 37
2.3.14 Temporal Object-Oriented Geographic Data Model (TOOGDM)...................... 37
2.3.15 Tripod... 38
2.3.16 MOST ... 38

2.4 CLASSIFICATION OF SPATIAL APPROACHES...39
2.4.1 Discrete versus Continuous Change in Space .. 39
2.4.2 Raster-based versus Vector-based Representation of Space................................ 40
2.4.3 GIS-centric versus Database-centric Spatial Data Management 41

2.5 REMARKS ON SPATIAL APPROACHES..42
2.5.1 Informal Data Types and Operations for Space... 42
2.5.2 Spatial Data Types Deviating from Human Perception....................................... 46
2.5.3 Spatial Objects of Practical Interest Treated as Invalid Data.............................. 47
2.5.4 Lack of Spatial Data Validation Mechanisms... 48
2.5.5 Need to Support Non-connected Spatial Objects as Valid Data 48
2.5.6 Need to Support Complex Spatial Data Structures... 48
2.5.7 Limitations on Spatial Data Structures... 49
2.5.8 Data Loss in Spatial Operations ... 49
2.5.9 Limited Functionality of Spatial Operations... 50
2.5.10 Definition of Too Many Primitive Operations .. 51
2.5.11 Dimension Dependent Spatial Data Types and Operations 51
2.5.12 Availability of Implementation... 52

2.6 CLASSIFICATION OF SPATIO-TEMPORAL APPROACHES52
2.6.1 Discrete versus Continuous Change with Respect to Time 52
2.6.2 Valid Time versus Transaction Time Modelling... 52
2.6.3 Tuple versus Attribute Time Recording... 53

2.7 REMARKS ON SPATIO-TEMPORAL APPROACHES...54
2.7.1 Informal Data Types and Operations for Time... 54
2.7.2 Time Data Types Deviating from Human Perception .. 54
2.7.3 No Support of Various Granularities of Time... 54
2.7.4 Need to Support Spatio-temporal Data Types .. 55
2.7.5 Need to Support Complex Data Structures... 55
2.7.6 Non-Generic Support of Temporal Data .. 55
2.7.7 Limitations on Data Structures for Time... 55
2.7.8 Redefinition of Functionality of Conventional Operations................................... 56
2.7.9 No Support of Evolution of Spatial Operations with Respect to Time 56
2.7.10 Definition of Too Many Primitive Operations .. 56
2.7.11 Availability of Implementation... 57

2.8 THESIS OBJECTIVES..57
2.9 CONCLUSIONS...58

3. QUANTA AND DATA TYPES FOR SPACE..59
3.1 INTRODUCTION...59
3.2 SPATIAL QUANTA...59
3.3 DATA TYPES FOR SPACE..63

 xi

3.4 PREDICATES...65
3.5 FUNCTIONS..69
3.6 OPERATIONS..71
3.7 CONCLUSIONS...76

4. FORMALISM FOR SPATIAL DATA MANAGEMENT.........................77
4.1 INTRODUCTION...77
4.2 DATA STRUCTURES..77
4.3 RELATIONAL ALGEBRA OPERATIONS...78

4.3.1 Conventional Operations... 80
4.3.2 Additional Basic Operations ... 82
4.3.3 Quantum Operations ... 85
4.3.4 Pair-Wise Operations.. 89
4.3.5 Overlay Operations ... 91
4.3.6 Other Operations of Spatial Interest ... 92
4.3.7 Enhancement of the Functionality of Operations ... 96

4.4 CONCLUSIONS...100
5. TEMPORAL AND SPATIO-TEMPORAL DATA MANAGEMENT . 101

5.1 INTRODUCTION...101
5.2 QUANTA AND DATA TYPES FOR TIME ..102
5.3 PREDICATES AND FUNCTIONS FOR TIME...103
5.4 DATA STRUCTURES AND OPERATIONS FOR TIME ...104
5.5 APPLICATION OF OPERATIONS TO TEMPORAL DATA......................................108

5.5.1 Application of Quantum Operations to Temporal Data..................................... 108
5.5.2 Application of Pair-Wise Operations to Temporal Data.................................... 110
5.5.3 Application of Overlay Operations to Temporal Data 112
5.5.4 Application of Other Operations to Temporal Data... 113

5.6 EVOLUTION OF DATA WITH RESPECT TO TIME..115
5.7 APPLICATION TO SPATIO-TEMPORAL DATA...117

5.7.1 Spatio-temporal Unfold and Fold Operations.. 120
5.7.2 Spatio-temporal Quantum Operations.. 123
5.7.3 Spatio-temporal Pair-Wise Operations... 124
5.7.4 Spatio-temporal Overlay Operations.. 129
5.7.5 Other Interesting Spatio-temporal Operations... 130

5.8 CONCLUSIONS...133
6. SQL EXTENSION .. 135

6.1 INTRODUCTION...135
6.2 QUERY SPECIFICATION..136
6.3 QUERY EXPRESSION...139
6.4 NON-JOIN QUERY EXPRESSION..141
6.5 JOINED TABLE...147
6.6 UNARY QUERY EXPRESSION..149
6.7 CONCLUSIONS...151

 xii

7. COMPARISON WITH OTHER APPROACHES................................... 153
7.1 INTRODUCTION...153
7.2 CLASSIFICATION AND EVALUATION OF SPATIAL APPROACHES....................154

7.2.1 ROSE Algebra.. 154
7.2.2 Tomlin’s Map Algebra (TMA)... 159
7.2.3 Erwig and Schneider’s Spatial Partition Model (ESSPM)................................. 159
7.2.4 Hadzilacos and Tryfona’s GIS Model (HTGIS) ... 160
7.2.5 ESRI ArcInfo 8... 161
7.2.6 Intergraph Geomedia 5 ... 162
7.2.7 MapInfo Professional 7 ... 162
7.2.8 Bentley Microstation Geographics 7.2.. 162
7.2.9 Grid Based Commercial GIS Tools (GRIDGIS)... 163
7.2.10 Geosabrina... 163
7.2.11 Egenhofer’s Spatial SQL (ESSQL).. 164
7.2.12 Pictorial SQL (PSQL).. 164
7.2.13 Scholl and Voisard’s Relational Approach (SVRA).. 165
7.2.14 Gargano, Nardelli and Talamo’s Relational Model (GNTRM) 165
7.2.15 GeoSAL .. 166
7.2.16 Geo Relational Algebra (GRAL) ... 166
7.2.17 QLG.. 167
7.2.18 Dedale .. 167
7.2.19 CALG.. 168
7.2.20 van Roessel’s Conceptual Model (RCM) .. 168
7.2.21 Scholl and Voisard’s Thematic Map Model (SVTMM) 169
7.2.22 ISO SQL Multimedia Standard: Spatial (ISOSQLMM)...................................... 169
7.2.23 OpenGis Simple Features Specification for SQL (OGISSQL)............................ 170
7.2.24 Oracle8i Spatial Cartridge (ORACLE)... 170
7.2.25 IBM Informix Spatial DataBlade (INFORMIX).. 171
7.2.26 IBM DB2 Spatial Extender (DB2)... 171
7.2.27 PostgreSQL.. 171
7.2.28 GEO++.. 172
7.2.29 GEUS.. 172
7.2.30 Object-Oriented Geographic Data Model (OOGDM) 173

7.3 CLASSIFICATION AND EVALUATION OF SPATIO-TEMPORAL APPROACHES.173
7.3.1 Güting et al Spatio-temporal Model (G+STM) .. 177
7.3.2 Moreira, Ribeiro and Abdessalem’s Spatio-temporal Model (MRASTM)......... 177
7.3.3 Worboys’s Spatio-temporal Model (WSTM)... 178
7.3.4 Erwig and Schneider’s Spatio-temporal Partition Model (ESSTPM)................ 179
7.3.5 d’Onofrio and Pourabbas’s Temporal Map Model (OPTMM) 179
7.3.6 Tryfona and Hadzilacos’s Temporal GIS Approach (THTGIS)......................... 180
7.3.7 Kemp and Kowalczyk’s Temporal GIS Approach (KKTGIS) 180
7.3.8 STSQL.. 181
7.3.9 SQLST.. 181
7.3.10 Dedale .. 182
7.3.11 Yeh and de Cambray’s Spatio-temporal Model (YCSTM).................................. 183
7.3.12 Informix Geodetic DataBlade (GEODETIC).. 183
7.3.13 ORParaDB... 184
7.3.14 Temporal Object-Oriented Geographic Data Model (TOOGDM).................... 185
7.3.15 Tripod... 185
7.3.16 MOST ... 186

7.4 CLASSIFICATION AND EVALUATION OF THE PROPOSED MODEL186

 xiii

7.4.1 Classification and Evaluation with Respect to Spatial Properties 186
7.4.2 Classification and Evaluation with Respect to Spatio-temporal Properties 188

7.5 COMPARISON WITH FUNCTIONALITY OF OTHER APPROACHES190
7.5.1 Predicates and Functions.. 190
7.5.2 Relational Algebra Operations ... 190

7.6 ADDITIONAL CHARACTERISTICS..198
7.7 SIMILARITIES WITH OTHER APPROACHES ..199
7.8 CONCLUSIONS...200

8. SUMMARY AND FUTURE WORK ... 201
8.1 INTRODUCTION...201
8.2 SUMMARY ...201
8.3 FUTURE WORK ...203

8.3.1 Definition of Predicates and Functions .. 203
8.3.2 Investigation of Efficient Storage Structures... 204
8.3.3 Investigation of Optimisation Techniques... 204
8.3.4 Implementation .. 204
8.3.5 Modelling Continuous Change in Space and in Time .. 205

REFERENCES .. 207

APPENDIX A. IMPORTANT TAUTOLOGIES ... 229

APPENDIX B. BNF FOR SQL EXTENSION .. 231
B.1 GENERAL REMARKS...231
B.2 QUERY EXPRESSIONS...231
B.3 LITERALS..234
B.4 SEARCH CONDITIONS...235
B.5 VALUE EXPRESSIONS...237

APPENDIX C. IMPLEMENTATION ... 241
C.1 INTRODUCTION...241
C.2 ALGORITHMS ..242

 xiv

CHAPTER 1

INTRODUCTION

1.1 Background

A lot of research has been undertaking in recent years for the management of
spatial data related to applications like cartography and cadastral systems.
Geographic Information Systems (GIS), in particular, are fully dedicated to
this problem. As should be expected, however, initial approaches exhausted
their efforts in the precise geometric representation of spatial data and in the
implementation of operations between spatial objects. Subsequently, only
primitive effort was made on the association of spatial data with conventional
data such as numbers, indicating various measurements (height, depth, etc)
names (of cities, rivers, mountains etc), which make spatial data really
meaningful. As a consequence, the management of geographic data had to be
split into two distinct types of processing, one for the spatial data itself and
another for the attributes of conventional data and their association with
spatial data. Effort to define a formal and expressive query language for the
easy formulation of queries was almost missing and, therefore, too much
programming was required. Finally, even the processing of spatial data lacked
an underlying formalism.

Given that efficient processing of conventional data can only be achieved
from within a Database Management System (DBMS), a new research effort
was next undertaken in the area of spatial databases [SCR99, RSV02], that
covered various sectors such as the definition of data models and query
languages, the design of efficient physical data structures and access methods,
the investigation on query processing and optimisation techniques, visual
interfaces, etc. As a result of these efforts, the last generation commercial and
open-source DBMS include extensions of their models that enable the storage
and management of spatial data. At the same time, the last generation GIS
enable the storage of geographic data in spatially extended DBMS.

Another area, which attracted the interest of researchers, was that of temporal
databases. Work in it is concerned with the management of the changes of

 2

data with respect to time. Research in this area evolved in parallel with that in
spatial data management. Finally, a combination of these two efforts gave rise
to a new area, spatio-temporal databases, which is concerned with the
management of the changes of spatial data with respect to time.

Research has also been undertaken in the modelling of spatial and of spatio-
temporal data. However, the problems that appear are many and difficult to
overcome. They are outlined below.

One first problem is that operations between pieces of spatial data have much
individuality. If discussion is restricted to 2-dimensional spatial data, a typical
example of this individuality is that the spatial intersection of two surfaces
can give one out of many distinct results: It can be one surface (which can be
seen as an element) but it may also be many surfaces (which can be seen as a
set). It may also be the empty set, but clearly, it does not make too much sense
to consider an empty surface. Many other results are also possible, such as one
or more lines and one or more points. One case of particular interest is
obtaining a spatial object, which is neither a surface nor a line but a
combination of the two. In the most general case, the result is a set of
surfaces, lines, points and spatial objects that can be seen as combinations of
surfaces and lines. Similar observations can also be made for other spatial
operations such as spatial union and spatial difference. The problem becomes
even more complicated if such operations are considered between spatial
objects of intuitively distinct spatial type, such as between a surface and a
line, a surface and a point and so on. Although such operations do make sense
in the real world, they are still seen as operations between distinct types of
data. As a consequence, this problem has not yet been attacked satisfactorily
even in GIS-based approaches, which are fully dedicated to the management
of such data. The complexity of this problem has penalised all researchers and
has been explicitly recognised in [SV92]. In the simplest case, points, lines
and surfaces, which are the types adopted in daily practice, can be considered,
but the result of any of the above operations is, in the general case, a set.
Inversely, defining sets of spatial objects as data types deviates from daily
practice.

A second problem is determining the most appropriate data structures to
represent spatial data. The use of layers, borrowed from GIS-based
approaches, seems convenient on a first glance, but the problem is how to
associate spatial data with conventional data in an efficient way. Recording on
the other hand, spatial data in conventional data structures gives rise to a new
series of problems, which of these structures are the best. The immediate
indication is that a non-nested relational structure does not suffice for this
purpose. Hence, nested relational or object-oriented or combinations of the
two had to be considered, even combinations between conventional relational

 3

structures and layers. Definitely, however, such models lack the simplicity of
a non-nested relational model.

Another problem, fully associated with the previous two, is the definition of
appropriate operations between data structures. Considering only layers,
inherits the problems discussed earlier. Considering only conventional
relational structures gives rise to the question what is a proper set of
operations, since operations between data structures seem to be different than
those between spatial objects. Adopting on the other hand, two types of
operations, one between such structures and another between spatial data, the
question is how this can be achieved and whether the model defined this way
lacks simplicity.

As should be obvious, in spatio-temporal databases the addition of one more
dimension, time, increases further the complexity of the modelling problem,
given that the modelling of only temporal data is by itself a major research
problem, in which many diverse approaches have been proposed. This can be
witnessed by the fact that many survey papers on temporal databases have
appeared [SS88, AS93, Kl93, TT96, MS91].

Due to the above, many diverse spatial and spatio-temporal data modelling
approaches have also been proposed, which differ substantially in the data
types considered (simple or complex data types), the representation of spatial
data (nested relational structures, object-oriented, complex object, object
relational, combination of relations with layers, constraint-based relations)
and the operations on them, including many sorted algebras. Given also the
peculiarities of spatial data, many of the approaches restrict to only informal
presentations either of the data types or of the functionality of the operations.

The present thesis proposes a solution that overcomes all the problems
outlined above for the modelling of spatial and of spatio-temporal data for
applications like cartography and cadastral systems. Part of the research was
completed during a four-years (01/08/1996 - 31/07/2000) Training and
Mobility Research project, ‘CHOROCHRONOS: A Research Network for
Spatiotemporal Database Systems’, that was funded by the European Union
[FGG+99]. In this thesis three simple spatial data types are defined, matching
fully the human perception of point, line and surface. The simple non-nested
data structures of the pure relational data model are considered. The set of
relational operations achieves almost all of the functionality proposed in other
models. All the operations are defined in terms of a small set of kernel
operations. All types of data, spatial, spatio-temporal and conventional are
manipulated uniformly by this set of operations. An extension of SQL is also
proposed for the management of spatial and of spatio-temporal data, based on
a previous extension, IXSQL [LM97], for the management of temporal and,

 4

more generally, interval data. Contributions of this thesis and an outline of the
topics covered in the subsequent chapters are outlined below.

1.2 Contributions of this Thesis

The pieces of originality of the work in this thesis can be outlined as follows:

1. A discrete 2-dimensional (2-d) space is considered and formalism
for 2-d spatial quanta is developed. Based on them, three spatial
data types are defined, point, line and surface. An element of any
of these types is a connected, closed subset of R2. The empty set is
not a valid spatial type. The definition matches human perception.
Although the formalism considers a 2-d space, its generalization to
either a 3-d or an n-d, n ≥ 3, space is straightforward. Although the
formalism is closer to raster-based approaches, it is argued that it is
not restricted by the physical representation of spatial data. To the
best of this author’s knowledge, spatial quanta have not been
considered in any spatial data modelling approach.

2. An algebra is defined for the management of spatial data, recorded
in non-nested relational structures. The algebra inherits two
fundamental characteristics: Firstly, it consists of only a limited
number of kernel operations, the known operations of the relational
model and two more, originally defined for the management of
temporal data [LM97], Unfold and Fold. The remainder operations
can be defined in terms of the kernel operations. Secondly, the
management of spatial data actually reduces to the management of
relations. Subsequently, a map matches the geometric
representation of the contents of one or more relations. Although
the definition of the operations considers the management of 2-d
spatial objects, their extension, so as to apply to n-d spatial objects,
n ≥ 3, is again straightforward. It is also shown that operations of
general acceptance, which are defined in other approaches, can be
expressed in terms of the operations defined in this thesis. Due to
previous research work [LM97], all the operations are closed, in
that they can be applied to relations that contain any type of data.
Consequently, all types of data can be handled uniformly by a
unique set of relational algebra operations. As a direct
consequence, the management of spatio-temporal data is
straightforward, in that it can be seen only as one of the application
areas of the proposed model. Valid time is considered at the
temporal dimension, i.e. the time at which data is assumed to be

 5

true in the real world. To the best of this author’s knowledge, no
other data modelling approach satisfies such properties.

3. An earlier SQL extension [LM97], for the management of temporal
and interval data, has been extended further in a way that enables,
in addition, the management of spatial and of spatio-temporal data.

4. All the known spatial and spatio-temporal approaches, and the
model proposed in this thesis as well, are evaluated with respect to
a number of properties. The evaluation has shown that the
proposed model, though simple, overcomes limitations identified
in other, complicated in general, approaches.

Research results of this piece of work have been reported in [LTV99, LVT99,
LVT00, Vi00, VL01, VLT01, VL03a, LVT03].

1.3 Outline of Thesis

The remainder chapters of this thesis are organized as follows:

Previous research work on the management of spatial and of spatio-temporal
data is reviewed in Chapter 2. Based on a number of limitations encountered
in various approaches, a number of properties are identified, whose
satisfaction by a relevant data model is desirable. In this way, the detailed
objectives of this thesis are specified.

In Chapter 3 a discrete 2-d space is considered and a set of spatial quanta are
formalized, quantum point, pure quantum line, pure quantum surface,
quantum line and quantum surface. Based on quanta, a set of spatial data
types is also defined, POINT, PLINE (pure line), PSURFACE (pure surface),
LINE and SURFACE. Each of them consists of the union of relevant spatial
quanta. An element of any of these types is a spatial object. One spatial object
of particular interest is hybrid surface, composed of pure lines and pure
surfaces. Operations between spatial objects are also defined. Finally, some
spatial predicates and functions are defined.

In Chapter 4 non-nested relations with attributes of a spatial data type are
considered. A relational algebra is defined for the management of relations
containing spatial data. The kernel of the algebra consists of the known set of
relational algebra operations plus two more, Unfold and Fold. Based of them,
a series of practically useful operations is defined. It is shown that operations
on relations reduce to operations on spatial data.

The management of temporal and of spatio-temporal data are addressed in
Chapter 5. Initially, an alternative formalism for a temporal data model

 6

defined in [Lo88, LM97] is provided, based on time quanta. Discrete time is
considered and two generic time data types are defined, INSTANT and
PERIOD. Some predicates and functions for time are also defined. Again,
non-nested relations are considered for the representation of temporal data.
The application of operations Unfold and Fold to relations, on a time attribute,
is also defined. It is shown that it makes sense to apply to temporal relations
operations, which were originally defined specially for the management of
spatial data. In some cases it is shown that such an application has practical
interest. Next, non-nested relational structures are considered for the
representation of spatio-temporal data. It is shown that the management of
such data does not require the definition of new operations. Formalism is also
developed for the evolution of data with respect to time. Finally, relational
algebra expressions are given that enable obtaining the evolution of spatial
data with respect to time.

In Chapter 6 an SQL extension is defined for the management of spatial and
of spatio-temporal data. The SQL syntax is a further extension of previous
research work [LM97], aiming at the modelling of interval data. Of particular
interest is the extension of a <query expression> by a <unary query
expression> that enables incorporating in SQL a set of unary relational
algebra operations defined in Chapter 4. The functionality of the extension is
demonstrated by appropriate examples.

In Chapter 7 the spatial and spatio-temporal approaches described in Chapter
2 are evaluated with respect to the properties, which a relevant data model
should satisfy. The model formalized in this thesis is also evaluated with
respect to the same properties. This way, it is shown that it overcomes all the
limitations identified in other approaches. It is also shown that operations
defined in other approaches are not only expressible in terms of the operations
defined in this thesis but a more general functionality is also achieved.
Additional characteristics of the proposed model and similarities with other
approaches are finally discussed

The findings of the research undertaken in this thesis and issues of further
research are summarised in Chapter 8.

Finally, three appendices complete the thesis. Appendix A consists of some
properties of the operations defined in Chapter 4, which can be used in an
optimised implementation. Appendix B provides the syntax of the SQL
extension. Finally, Appendix C provides pseudo code for an implementation
of operations Unfold and Fold and of a predicate, conductive. Given that the
definition of the remainder relational algebra operations has been based on
them, it is shown that the model proposed in this thesis can be implemented.

CHAPTER 2

PREVIOUS WORK AND MOTIVATION

2.1 Introduction

A review of previous research work and of the functionality of commercial
products for the management of spatial and spatio-temporal data is undertaken
in this chapter. Comments on the various approaches are addressed, and the
motivation for this thesis is outlined. For ease of presentation, various
approaches are classified roughly with respect to their underlying data model
as follows:

− Spatial (Spatio-temporal) Object Models and Map (Temporal Map)
Models: The former provide formalisms for spatial (spatio-temporal)
data types and operations on them. The latter provide formalisms for
maps (evolution of a map with respect to time).

− GIS-centric approaches: They provide specialized data structures to
support Maps (Temporal Maps). These structures are usually based on
conventional data structures such as relations.

− Relational Approaches: Spatial, temporal and spatio-temporal data are
recorded in the attributes of relations. Relational algebra or SQL are
extended by new predicates, functions and relational operations.

− Nested Relational Models: They support either set-valued or relation-
valued attributes, i.e. they do not satisfy First Normal Form. Spatial,
temporal, and spatio-temporal predicates and functions can be applied
to set-valued attributes.

− Nested Constraint-Based Models: A spatial or spatio-temporal object is
conceptually represented by a (possibly infinite) relation whose
attributes are interpreted as the dimensions of an n-d space (time can be
one of these dimensions). At a lower level of abstraction, such an
infinite relation is represented by a finite set of constraints [KKR95].

− Complex Object Models: Their data structures are even more complex
than those of nested models [AB95]. Generally, they are defined

 8

recursively. Spatial operations are applied to specially defined spatial
data structures.

− Object Relational-Based Models: They support user-defined data types.
One such type includes a possibly complex data structure and a set of
methods. It can be incorporated in the model in two distinct ways: (i)
As the scheme of a table: A table of a user-defined type is the analogue
of a class in an object-oriented model. Tuples are instances of a class.
(ii) As any other conventional data type, in the definition of the scheme
of a table. Note that the object relational model inherits the
characteristics of the pure relational model and, at the same time, it
incorporates object-oriented capabilities. Spatial types are used defined
data types.

− Object-Oriented Models: Their data structures and methods are
combined in the definition of classes. A hierarchy of classes is provided
as a general tool for the design of spatial and spatio-temporal
applications.

The remainder of this chapter is outlined as follows: In Section 2.2 (2.3)
spatial (spatio-temporal) approaches are described, to the degree necessary, in
the above classification order. In Section 2.4 spatial models are classified with
respect to general characteristics. Comments on the various spatial approaches
are made in Section 2.5. Similarly, spatio-temporal models are classified with
respect to general characteristics in Section 2.6 and comments on the various
approaches are made in Section 2.7. Based on the above remarks, the
objectives of this thesis are outlined in Section 2.8. Conclusions are finally
drawn in the last section.

2.2 Previous Research on Spatial Approaches

Spatial data modelling issues have inevitably been addressed in almost all the
research areas of spatial databases, although it is not the primary research
objective. However, such issues are discussed in this section, for reasons of
completeness. Given that there are similarities between distinct research
efforts, only the most representative approaches are presented to the necessary
detail.

2.2.1 ROSE Algebra

The ROSE (RObust Spatial Extension) is a spatial object model for 2-d
spatial data [GS93, GS95]. The definition of a set of spatial data types is
based on a finite spatial structure called realm. An element of data type

 9

POINTS is a finite and possibly empty set of vector points (g1, g2, g3 in Figure
2.1(a)). An element of data type LINES is a finite and possibly empty set of
polylines, (g4, g5 and g6 in Figure 2.1(b)). An element of data type REGIONS
is a finite and possibly empty set of polygons and it may have holes (g7 and g8
in Figure 2.1(c)). AREA is a REGIONS type with an additional restriction,
that the intersection of two areas, which are recorded in the same attribute,
may not be a surface. A long set of primitive operations is formalized. Given
two values of some spatial type D, operation Union (Minus) yields that part of
the spatial union (spatial difference) of the input values that is also of type D.
Operation Intersection yields one of the following results: (i) Points which are
common to two elements of type POINTS, (ii) isolated points in the spatial
intersection of two elements of type LINES (only under certain conditions),
(iii) Surface components of the spatial intersection of two elements of type
REGIONS, (iv) line segments of an element of type LINES that are inside but
not on the boundary of an element of type REGIONS.

g1

g2

g3

g4

g5
g6

g7

g8

g1

g2

g3

g4

g5

g6

g7

g8

(d) Raster Representation of Spatial Objects

(a) Vector Points (b) Vector Polylines (c) Vector Polygons

g2

g3

g4 g5
g6

g7

g8
g4

g4 g4 g4 g4

g5
g5g5

g5
g5
g5

g5
g5

g5 g5

g5 g5

g5
g5

g5

g6

g6
g6

g6

g6

g6

g6

g6

g6

g6
g6

g6

g6

g6

g6 g6

g6 g6g6 g6

g6
g6

g6
g6

g6
g6

g6

g7

g7
g7
g7

g7
g7

g7

g7

g7
g7

g7
g7
g7

g7
g7
g7

g7
g7
g7 g7

g7 g7 g7

g7

g7 g7g7

g7g7
g7

g7 g7

g8
g8
g8
g8
g8
g8

g8
g8
g8
g8
g8
g8

g1

(e) Spatial Objects
Figure 2.1: Representation of spatial objects in various approaches.

 10

Operation Common_border gives one of the following results: (i) Line
segments in the spatial intersection of two elements of type LINES, (ii) line
segments in the spatial intersection of the boundaries of two elements of
REGIONS type, (iii) line segments in the spatial intersection of an element of
LINES type and the boundary of an element of type REGIONS. Operation
Vertices gives the set of points that are vertices of segments in an element of
either LINES or REGIONS data type. Operation Contour yields the boundary
(LINES data type) of an element of type REGIONS. Additional functionality
enables testing topological relationships, calculating distances, lengths, areas
and perimeters, constructing the element of type REGIONS that is enclosed
by an element of type LINES and obtaining the number of connected
components of a spatial object. Assuming the existence of an underlying
conventional data model, the following operations manipulate data structures
that combine spatial and conventional data. Operation Decompose
decomposes spatial objects into their connected components. Operation
Fusion computes the spatial union of all the spatial objects that share identical
conventional values. Finally, operation Overlay computes the spatial
intersection of every element of type AREA in one data structure with every
element of type AREA in another.

2.2.2 Tomlin’s Map Algebra (TMA)

A map model and a relevant map algebra, at a conceptual level of abstraction,
is described in [To90, To91, To94, To97]. The main objective is to propose a
classification of the operations required for the management of maps of any
kind. The set of operations that is proposed in each class does not intend to be
complete. Vector and raster representations can be used at the implementation
level. In this approach, a map is considered, in an informal way, as a spatial
representation of a given area. A map is composed of zones. Each zone is
composed of a set of locations (i.e. of points in the underlying 2-d space) and
has an associated numeric value. All the locations of a given map that have
the same associated value are automatically merged into a single zone. For
ease of subsequent presentation, the author of this thesis introduces some
notation: Characters m and p, possibly subscripted, denote maps and
locations, respectively. The value associated with a location p in a map m is
denoted as m(p). Zp,m denotes the set of locations in the same zone of a
location p in a map m. Np,m denotes the set of locations in the neighbourhood
of a location p in a map m. A neighbourhood can be defined in a variety of
ways. As an example, a location p1 is in the neighbourhood of location p2 in a
map m iff p1 and p2 are in the same zone. As another example, a location p1 is
in the neighbourhood of location p2 iff the distance of p1 from p2 is less than a
given threshold. The map operations can be classified into four types:

 11

1. Local Operations: Given a set of input maps mi, the value m(p) in
the output map m is obtained as a function of mi(p), for each
location p. A worth mentioning example is LocalCombination,
where m(p) is obtained as the combination of all mi(p) (it matches
the Overlay operation of other approaches).

2. Zonal Operations: Given two input maps m1 and m2, the value
m(p) of the output map m is obtained as a function of either one or
two of the following parameters: (i) the value m2(p) and (ii) the set
{m1(p1), .., m1(pn)}, where each pi is in Zp,m2. For example,
ZonalAverage computes the average of {m1(p1), .., m1(pn)}, and
ZonalRanking computes the number of elements in {m1(p1), ..,
m1(pn)} that satisfy m1(pi) < m2(p).

3. Focal Operations: Given an input map m1, the value m(p) of the
output map m is obtained as a function of the values in {m1(p1), ...,
m1(pn)}, where each pi is in Np,m1.

4. Incremental Operations: They extend the set of Focal operations.
They take into account the type of the zone at each location (point,
line or surface).

The set of operations is a potential standard [Ogis00, Ogis01b] and serves as a
basis of commercial tools (Subsection 2.2.9) for the manipulation of maps that
represent properties that change continuously in space. Further research
[KP90, EB95] is dedicated to the design of graphical user interfaces.

2.2.3 Erwig and Schneider’s Spatial Partition Model (ESSPM)

In [ES97, ES00] a conceptual model (map model) is presented for a special
type of maps, namely spatial partitions. Spatial partitions and primitive
operations on them are formalized. Informally, if A = A1×A2×...×An, n > 0, is
a Cartesian product of conventional data types, then a spatial mapping of type
A is defined as a total mapping SM: R2 → A ∪ Power(A), where Power(A)
denotes the powerset of A. Each subset of R2, whose points are mapped to the
same value, is called block. If a block is mapped to a single value it is a
region, otherwise it is a border. A spatial partition of type A is defined as a
spatial mapping of type A that satisfies the following two properties: (i) Each
region r is a regular open set, i.e. r = interior(closure(r)). (ii) Each border is
mapped to the set of values of its adjacent regions. Three primitive operations
are defined on spatial partitions. Informally, Intersection computes the
overlay of two spatial partitions (Figure 2.2(a)). If f is a function (f: A → B)
then Relabel enables applying f to each conventional value of the attribute of
a spatial partition of type A in order to obtain a spatial partition of type B.

 12

a1, b1

a1, b2
a2, b1

a2, b2

a1

a1
a2

a2

(c) [A]Projection(b) Fusion[A]

a1

a1
a2

a2

a1

a2

a1, b1

a1, b2
a2, b1

a2, b2

(h) Selection[A = a1]

(f) Cover

a1, b1

a1, b2

a1, b1

a1, b2
a2, b1

a2, b2

(a) Overlay*

a1

a2
b1 b2

a1, a1, a1, a1,

a2, a2 a2, a2

b1 b2

, ,
-

- -

-

-,

b1

b1

-, -,

-,
b1 b2

b2

b2

(d) Superimposition

a1

a2
a3

(g) Windowing
* Overlay is proposed only for maps of the same cover in [SV89].

a1

a2

a3

a2

a3

wind
ow

a1

a2

a3

a2
a3wind

ow

(e) Clipping

a1

a2

a3

Figure 2.2: Representative operations on maps proposed in [SV89].

Note that regions in the result partition with the same B value are
automatically merged (Figure 2.2(b)). Refine assigns a different identification
number to each surface (connected component of a region) in a partition. A

 13

representative functionality for map management, originally proposed in
[SV89] (Figure 2.2), can be achieved by these last three operations.
Categorical coverage, presented in [VE93, FVM97], resembles that of spatial
partition. Note however that categorical coverages are not formalized in
[VE93, FVM97]and operations between them are not provided.

2.2.4 Hadzilacos and Tryfona’s GIS Approach (HTGIS)

This piece of research [HT96, DHT94, HT92] combines the map model and
the relational model, into a single GIS approach for the management of spatial
and conventional data.

The Map Model and a relevant map algebra for 2-d spatial data are described
in [DHT94]. The approach formalizes the concept of layer, and proposes a
primitive set of operations on layers. Only few of the operations are
formalized. A POINT data type consists of R2 points. An element of type
ARC is a simple polyline (g4 in Figure 2.1(b)). An element of type REGION
is a connected subset of R2 that is defined by a polygon and it may have holes
(g7 and g8 in Figure 2.1(c)). Any combination of these spatial data types is
also a spatial data type. A set of primitive spatial predicates and functions is
given. It includes functions union, difference and intersection whose result is,
in the general case, a set of spatial objects of any spatial data type. A layer L
is defined as a mapping from a set of spatial values G to the Cartesian product
of a set of conventional attributes (L: G → C1×C2×...×Cn). Four primitive
operations are defined on layers. Attribute derivation (Spatial computation)
enables the application of conventional (spatial) functions and predicates.
Conventional attributes are not maintained in the result of a spatial
computation. Reclassification merges into one all the range tuples of a layer,
which satisfy the following two properties: (i) They have identical values in a
given attribute and (ii) They concern adjacent spatial objects (Figures 2.2(b)).
This operation can be applied only to layers of type ARC or REGION.
Finally, operation Overlay can be applied to two layers of any type.

The layer algebra enables the user to create derived virtual layers from others
already existing. Object classes combines spatial data, stored in layers, with
conventional data, recorded in relations, into a single data structure.
Constraints [HT92] are used in the definition of object classes and enable
specifying which spatial features of each layer and which tuples of each
relation compose each spatial object. Queries can thus be expressed by
defining object classes.

 14

2.2.5 ESRI ArcInfo 8

ArcInfo is a commercial GIS developed by ESRI (Environmental Systems
Research Institute) [Esri99, Esri00, Ze99, Ma99, Tu00, MSW99, Esri02a,
Esri02b]. Its spatial data model, Geodatabase, is organized in geographic
datasets [Ma99]. Geographic data sets are either of the following: (i) Feature
datasets, used to model maps containing 2-d spatial objects. (ii) Raster
datasets, used to model maps representing properties that change
continuously in space. (iii) TIN datasets, used to model elevation data. Within
the objectives of this thesis, this subsection restricts to only feature datasets
and tools provided for their manipulation. However, tools for the
manipulation of raster datasets are described in Subsection 2.2.9.

A feature dataset is a collection of object classes (relations) and feature
classes (relations with one spatial data type called shape). Both of them are
implemented as tables in a DBMS. The ArcSDE module [Esri02a] acts as an
interface between ArcInfo and commercial DBMSs and enables taking
advantage of the spatial capabilities of DBMSs [Ora00, Inf01, Ibm01]. An
element of a POINT data type is a vector point (Figure 2.1(a)). An element of
MULTIPOINT data type is a collection of POINT elements. An element of
POLYLINE type is a collection of simple vector polylines (g6 in Figure
2.1(b)). An element of type POLYGON is a disjoint collection of polygons
(Figure 2.1(c)). The empty set is a valid spatial object. Predicates defined
between these data types enable testing topological relationships. The user
interface of ArcInfo has three components, ArcMap, ArcCatalog and
ArcToolbox. From these, ArcMap provides tools for the visualization and
exploration of feature classes in maps [MSW99]. ArcToolbox contains over
120 advanced geoprocessing tools for the manipulation of both feature and
object classes [Tu00]. Functionality relevant to the present work is outlined as
follows: Selection tools enable using a restricted version of SQL with spatial
predicates. Operation Dissolve merges adjacent polygons or polylines in a
feature class with the same value in a given conventional attribute. Similarly,
operation DissolveRegions combines polygons, either adjacent or not with the
same value in a conventional attribute. Given a feature class of any data type
A and a feature class B of type POLYGON, three operations enable
computing the overlay of feature classes. The result type is that of A.
Operation Intersection yields pieces of spatial objects in A lying inside some
polygon B. Operation Identity yields the result of Intersection plus the pieces
of spatial objects in A that lie outside all the polygons of B. Finally, operation
Union, applied to two POLYGON feature classes, yields the result of
operation Identity plus the pieces of spatial objects in B that lie outside the
polygons of A (Figure 2.2(a)). Operation Erase yields a new feature class with
the pieces of spatial objects of A outside all the polygons of B. Operation

 15

Update yields the Superimposition (Figure 2.2(d)) of two feature classes
whose scheme is compatible. Other functionalities are Buffer, Clipping
(Figure 2.2(e)) and Cover (Figure 2.2(f)). A final one yields the Thiessen
polygons that are associated with a set of points.

2.2.6 Intergraph Geomedia 5

Geomedia [LH98, Int02] is a commercial GIS developed by Intergraph
Corporation. Its characteristics are close to those of ESRI ArcInfo, described
in the previous section, therefore, only the main differences are discussed
here. Besides data types POINT (MULTIPOINT in ArcInfo), LINE
(POLYLINE in ArcInfo) and AREA (POLYGON in ArcInfo), an additional
data type COMPOUND consists of spatial objects of any of the previous data
types. Contrary to ArcInfo, the empty set is not a valid spatial object in
Geomedia. Similarly with ArcInfo, more than one attribute of a spatial data
type is allowed in a feature class. However, only one of them is the primary
geometry. Contrary to ArcInfo, a conventional relation is also considered as a
feature class. Regarding spatial data management, the set of tools provided in
Geomedia is smaller than that of ArcInfo. Operations with a functionality
similar to that of operations Dissolve and DissolveRegions of ArcInfo apply to
feature classes that contain spatial objects of any spatial data type. Operation
Spatial intersection of Geomedia can be applied between two feature classes
of any spatial data type. Operation Spatial intersection of two feature classes
of type AREA yields, in the general case, points, lines and areas. The Spatial
difference operation does not allow subtracting lines from surfaces and points
from lines.

2.2.7 MapInfo Professional 7

MapInfo Professional [Mapi01, Mapi02] is a commercial GIS developed by
MapInfo Corporation. Its characteristics are close to those of ESRI ArcInfo,
(Subsection 2.2.5). However, only one data type ST_SPATIAL is supported.
Operations Dissolve, Erase, Update and the various types of Overlay are not
supported.

2.2.8 Bentley Microstation Geographics 7.2

Microstation Geographics [Bent01] is a commercial GIS developed by
Bentley Systems. It provides the user with a data structure, called Feature,
which enables the modelling of maps that contain 2-d spatial objects. A
Feature is implemented as a relation in a conventional DBMS. Two of the

 16

attributes of a relation (mslink and mapid) are used to store pointers to spatial
objects stored in CAD files. Note that the same spatial object may be
addressed from to distinct Features. Valid spatial objects in a CAD file
include points, polylines, polygons and non-empty collections of them
(Figures 2.1(a-c)).

Regarding spatial data management, the SQL of the underlying DBMS can be
used to query Features. When more than one feature is included in a FROM
clause, one of them is treated as the master table and the others as look up
tables. In addition, specialized tools support an enhanced functionality such us
Spatial selection, Overlay and management of networks. Another commercial
GIS with a similar functionality is provided by Intergraph [Int95].

2.2.9 Grid Based Commercial GIS Tools (GRIDGIS)

In many commercial GIS, a data structure, raster grid, is provided for the
modelling of maps that represent properties that change continuously in space.
Examples of such systems are ArcGIS Spatial Analyst (grid extension for
ArcInfo) [Esri01, MJ01], MFWorks [Keig02] (also provided as a grid
extension of Geomedia), GRASS (Geographic Resources Analysis Support
System) [Gras02], IDRISI [Lo00] and MAPCALC [BK01, RHS01].
Characteristics that are common to them are described in this subsection.

Informally, a 2-d raster grid is a partition of a given rectangular area into a
matrix of squares called cells or pixels. The number of rows and columns in
the matrix determines the resolution of the grid. Each cell is associated with a
numeric value representing a given property at that location. Each set of cells
with identical numeric value is called a zone or category. Grids provide
efficient discrete representations for physical phenomena that change
continuously in space like temperature, atmospheric pressure, elevation, etc.
Some examples of operations between grids are shown in Figure 2.3.
Operation Clump reassigns distinct identification numbers to connected zones
(Figure 2.3(a)). Operation Classify changes the numeric values of some zones
of a grid according to given rules Figure 2.3(b). Operation Interpolation
produces a continuous surface from a set of discrete values by applying some
interpolation algorithm (Figure 2.3(c)). Zonal operations apply a given
aggregate function (average, for example) to the values of a grid, for each
zone in another grid (Figure 2.3(d)). Operation Compute applies an algebraic
pixel-wise operation between two grids Figure 2.3(e). Operation Combine
assigns distinct numbers to each distinct combination of values for the same
pixel in two distinct grids (Figure 2.3(f)). Operation Drain computes the path
that water would follow from a given set of sources in a grid through a surface
of elevations in another grid. Operation Radiate returns the pixels that are

 17

visible from a given set of source points in a given grid of elevations (Figure
2.3(h)). Operation Spread computes the minimum cost to go from each non-
zero pixel in a grid to its closest non-zero pixel in the same grid. The cost of
crossing each pixel is given in another grid (Figure 2.3(i)).

9
9

3
7

2
2

3
7

3
3

9
7

3
3

9
9

3
3

1
4

2
2

1
4

1
1

3
4

1
1

3
3

(a) Clump

4
4

4
4

3
3

4
3

2
2

4
3

2
1

4
3

4
4

4
4

2
2

4
2

2
2

4
2

2
2

4
2

(b) [1-3 2]Classify →

1
3

5
1
1

1
1

2
2

2
2

3
4

3
3

4
5

4
3

(c) Interpolation

1

2
2

2
2

1
1

2
2

1
1

3
3

1
1

3
3

3
3

2
3

3
2

3
4

2
2

4
3

2
1

5
4

3
3

3
3

2
2

3
3

2
2

4
4

2
2

4
4

(d) [AVG] Zonal

2
2

2
2

1
1

2
2

1
1

3
3

1
1

3
3

3
3

2
3

3
2

3
4

2
2

4
3

2
1

5
4

5
5

4
5

4
3

5
6

3
3

7
6

3
2

8
7

(e) [a + b c] Compute →

2
2

2
2

1
1

2
2

1
1

3
3

1
1

3
3

3
3

2
3

3
2

3
4

2
2

4
3

2
1

5
4

3
3

6
3

4
2

3
5

2
2

8
7

2
1

9
8

(f) Combine

3

3
2

5
4

3
3

5
4

4
4

5
4

5
5

5
5

3
3

3
3

(g) Drain

1

2
3

1
1

3
2

1
2

2
1

2
3

1
1

3
2

1
1
1

1
1

1
1
1

1
1

(h) Radiate

1
1

1
1

1
1

1
1

1
1

3
1

2
3

1
1

1
1

3
3

(i) Spread

source

elevation

source

elevation cost

locations

Figure 2.3: Examples of operations on raster grids.

2.2.10 Geosabrina

Geosabrina is a spatial DBMS implemented as an extension of the
commercial relational DBMS Sabrina, and aims at the management of 2-d
spatial data [LPV93, CVL+94]. An extension of it, for the management of 3-d
spatial data, is proposed in [YC94a]. The main objective of the approach is
the description of a spatial DBMS rather than the formalization of a spatial
data model. Only one spatial data type, GEOMETRY, is supported.

 18

Informally, an element of type GEOMETRY is a set of spatial objects that are
either points or polylines or polygons, possibly with holes (Figures 2.1(a-c)).
Any number of attributes of type GEOMETRY can be incorporated in the
definition of a relation. Both predicates and functions can be incorporated in
SQL queries for the manipulation of spatial objects. Amongst the functions,
worth mentioning are those that enable the computation of spatial union,
spatial difference and spatial intersection of two spatial objects. An aggregate
function, called sum, yields the spatial union of a set of spatial objects.

2.2.11 Egenhofer’s Spatial SQL (ESSQL)

A relational SQL extension for the management of 3-d spatial data is
described in [Eg94]. The main objective of the approach is the identification
of general requirements for a spatial SQL, with particular interest in spatial
data presentation rather than the formalization of a set of data types and
operations. Four spatial data types, described informally, enable the
representation of points, lines, surfaces and solids. An additional data type,
SPATIAL, consists of all the previous data types. The representation of
spatial values follows a vector-based approach (Figures 2.1(a-c)). Any
number of attributes of a spatial data type can be included in the definition of
relations. The author of the paper argues that spatial data manipulation can be
achieved by the incorporation of spatial predicates and functions in SQL
queries. Although definitions of predicates are given in [Eg89, EF91] no
spatial functions are defined. Two of them, that are discussed informally, are
Complementation and Boundary. In this approach, the boundary of a line is a
set of points and the boundary of a point is the empty set.

2.2.12 Pictorial SQL (PSQL)

An SQL extension for the management of 2-d spatial data is described in
[RFS88]. However, the main objective of the approach is the efficient
management of spatial data by the use of R+-trees rather than the
formalization of spatial data types and operations. A difference from the
previous approach is that both vector and raster spatial representations are
allowed internally. Example spatial data types that can be supported are
points, lines and surfaces. It is not clear whether the empty set is a valid
spatial object. Regarding spatial intersection, an example of a function is
given, which yields the intersection points of two lines.

 19

2.2.13 Scholl and Voisard’s Relational Approach (SVRA)

The experience on the implementation of a relational (actually relational-like)
extension for the management of 2-d spatial data, on top of the object-oriented
DBMS O2, is described in [SV92]. The approach does not aim at defining a
complete set of spatial data types, predicates and functions, but just at
reporting on the peculiarities identified during the implementation phase. An
element of type POINTS is defined as a finite set of points in R2. A line is
defined in terms of line segments. Each line segment consists of an infinite
number of R2 points (Figure 2.1(b)). The authors state that whether the end
points of a line belong to the line or not is beyond their objective. An element
of data type LINES is defined as a finite set of lines. An element of type
REGIONS is defined as a subset of R2 composed of a finite set of polygons
without holes (g8 in Figure 2.1(c)). As in the case of lines, whether the
boundary of a polygon belongs or not to a region is left open by the authors.
Some spatial predicates are defined. Four functions enable computing the
spatial intersection of two spatial objects. Function inside returns the pieces
of a LINES element which are inside a REGIONS element. Function
rintersection returns the REGIONS element contained in the spatial
intersection of two REGIONS elements. Similarly, functions lintersection and
pintersection return the LINES elements and POINTS elements, respectively,
which are contained in the spatial intersection of two LINES elements.
Function border returns the LINES element that forms the boundary of a
REGIONS element.

2.2.14 Gargano, Nardelli and Talamo’s Relational Model (GNTRM)

A formalism of a relational model for the management of 2-d spatial data is
given in [GNT91a, GNT91b]. The extension of the conventional relational
model is minimal, since only one generic data type and three new relational
algebra operations are defined. For an informal description, if S is the set of
all raster cells (pixels) in a grid, the possible elements of data type
GEOMETRY(S) are defined as sets of sets of elements in S. Thus, only
surfaces can directly be represented in the model, whereas points and lines
have to be approximated by surfaces (Figure 2.1(d)). Both the empty set and
non-connected surfaces are valid elements of GEOMETRY(S). Relational
algebra is extended by three new primitive operations. Operation G-Compose
merges the spatial objects recorded in some attribute of a relation R, provided
that they are in tuples whose value in some other attribute of R is the same.
Inversely, operation G-Decompose decomposes each spatial object to so many
tuples as the number of cells it consists of. Finally, the spatial functionality of

 20

operation G-Fusion is identical to that of G-Compose, but it enables, at the
same time, the application of aggregate functions to non-spatial attributes.

2.2.15 GeoSAL

A many sorted algebra, used in a prototype of system designed for spatial
data analysis, is described in [SH91, HSH92, HS93]. Spatial data types and
relations enable the management of points, lines, polygons and raster grids.
An element of data type POINT is defined as a pair (x, y) of real numbers.
Data type LINE consists of simple vector polylines (g4 in Figure 2.1(b)). Data
type POLYGON consists of vector polygons without holes (g8 in Figure
2.1(c)). Subtypes of polygon include REG_POLYGON, SQUARE and
XY_SQUARE, which represent, respectively, regular polygons, squares and
orthogonal squares. Any number of the previous spatial types can be declared
at the definition of the scheme of a relation. A raster grid is defined as a
relation whose scheme includes one attribute of a SQUARE data type. The
many sorted algebra enables defining a long set of operations between
combinations of (i) conventional values, (ii) spatial objects, (iii) sets of
conventional values and spatial objects and (iv) relations. Operations Union,
Difference and Intersection yields, respectively, the spatial union, difference
and intersection, of two spatial objects of the same data type, either LINE or
POLYGON. The result of the Union of two lines (polygons) is a set of lines
(polygons). The same observation also applies to Difference. The Intersection
of two polygons is a set of polygons. However, the Intersection of two lines is
exclusively either a set of lines or a set of points, depending on whether the
lines are partly collinear. Operations Union and Intersection can also be used
as aggregate functions. Note that, although the results of the previous
operations are sets, an implicit Unnest operation always yields a flat data
structure. Operation Boundary yields the boundary line of an element of a
POLYGON data type. Further functionality for the manipulation of spatial
objects includes the calculation of the length of lines, of the area of surfaces,
of the shortest Euclidian distance of two spatial objects, of the gravity centre
of a spatial object, of the buffer area of a spatial object, of the split of a
polygon with respect to a line, of the split of a line with respect to a point and
of the voronoi diagram of a set of points. Specific functionality for the
manipulation of raster grids includes operations Visible (resembles operation
Radiate in Figure 2.1.(h)) and Diffuses (resembles operation Spread in Figure
2.1.(i)).

 21

2.2.16 Geo Relational Algebra (GRAL)

Another many sorted algebra for the management of 2-d spatial objects is
defined in [Gu88, Gu89]. Three spatial data types are supported. An element
of type POINT is a set of just one element of R2. An element of type LINE is
an infinite subset of R2 defined by a simple polyline (g4 in Figure 2.1(b)) A
value of type PGN is an infinite subset of R2 defined by a polygon without
holes (g8 in Figure 2.1(c)). Data type AREA is defined as PGN, with an
additional restriction, that the intersection of two polygons that are recorded in
the same column may not be another polygon. The approach has similarities
with that of the previous subsection. Operation Intersection enables obtaining
part of the result of a spatial intersection of pairs of spatial objects recorded in
two relations. The following cases are identified: (i) If both relations contain
only lines then the result relation contains only isolated points. (ii) If both
relations contain only polygons then the result relation contains only
polygons. (iii) If the first relation contains only lines and the second only
polygons then the result relation contains only lines. (iv) If both relations
contain only areas then the operation is called Overlay and the result contains
only areas. Implementation issues are discussed in [Gu89].

2.2.17 QLG

A nested relational model and query language for the management of 2-d
spatial data is proposed in [CZ96, CW96, CN97]. A set of operators is
defined, which is intended to be general and independent of any particular
nested data model. A mechanism for the incorporation of new functions is
also provided. Spatial objects are defined as closed, non-empty and possibly
infinite subsets of R2. Data type POINT consists of R2 points. Elements of
data type S_LINE are defined as simple polylines (g4 in Figure 2.1(b)). Data
type LINE consists of polylines of any kind (g4, g5 and g6 in Figure 2.1(b)).
Data type LINE* consists of both POINT and LINE types. Data type
S_REGION consists of polygons without holes (g8 in Figure 2.1(c)). Data
type REGION consists of polygons of any kind (g7 and g8 in Figure 2.1(c)).
Finally, data type REGION* consists of both REGION and LINE* types. Due
to the use of a nested relational model, sets of elements of the previous types
are also valid data types. A long set of primitive operations is defined.
Operation Intersection computes the spatial intersection of two spatial objects
of any type. The result, in the general case, is a set of spatial objects of type
REGION*. Operation Fusion computes the spatial union of a set of spatial
objects of any data type. The result is a set of spatial objects of the same data
type. In [CN97], an algorithm is proposed that enables subtracting regions
from either lines or regions. Additional functionality includes: length of lines,

 22

area of surfaces, minimum and maximum Euclidian distance, slope of the
straight line linking two points, coordinates of points, end points of lines,
envelope and holes of surfaces, centroid, the set of paths linking two points in
a network of lines, computation of buffer, split and voronoi, and projection of
spatial objects in space. The description of a developed prototype is presented
in [CW96]. Algorithms for the computation of various spatial operations are
proposed in [CN97].

2.2.18 Dedale

A nested constraint-based model for the management of multidimensional
spatial and spatio-temporal data is described in [GRSS97, GRS98a, GRS98b,
GRS00, RSSG02]. In particular, the model for multidimensional spatial data
is described in [GRSS97, GRS98a]. The demonstration of its capabilities in
spatio-temporal data management is presented in [GRS98b]. In [GRS00] it is
shown how the model supports interpolated data. Examples of interpolated
data are: (i) Properties that change continuously in space, such as elevation,
temperature, etc and (ii) moving spatial objects whose position changes
continuously with respect to time. Finally, some implementation issues are
addressed in [RSSG02]. The approach enables the incorporation of infinite
collections of n-d points as values in a nested relational model. At an abstract
level, such infinite collections are represented as infinite relations of n
attributes, one for each dimension. At a symbolic level, infinite relations,
called linear constraint relations, are represented by finite sets of linear
constraints. Such a constraint is a formula of the form a1x1 + a2x2 + ... + anxn θ
a0, where ai are integers, xi are variables, one for each dimension, and θ is
either = or ≤. The following are examples of the types of data that can be
represented by a linear constraint relation:

0 21 3

1

3

2
LAND_PARCEL
Owner | string G | Relation(X|real, Y| real)

Susan
Peter

1 x 2 1 y 2
2 x 1 y x + y 4

≤ ≤ ∧ ≤ ≤
≤ ∧ ≤ ∧ ≤

Figure 2.4: Relation with spatial data in the constraint data model.

− R(x, y), where x and y represent the orthogonal coordinates of a 2-d
plane, stores the points of a 2-d spatial object. An example of a nested

 23

relation with two linear constraint relations, which represent two spatial
objects, is shown in Figure 2.4.

− R(x, y, m) stores the value of a property m for each point (x, y) of a 2-
d plane. This enables representing properties that change continuously
in space, like elevation, temperature, etc.

− R(x, y, t), stores the value of the x and y coordinates of a moving point
for each time instant t, i.e., spatial data that changes continuously with
respect to time.

Relational algebra operations are defined between linear constraint relations.
For example, spatial union, difference and intersection are achieved by the
relational operations Union, Except and Intersect. Operation Unionnest
applies relational operation Union to all the relations of a relation-valued
attribute, provided that they belong to tuples whose values for another set of
attributes are identical. The behaviour of operation Internest is similar to that
of Unionnest except that Intersection is applied instead of Union. When
relational algebra operations are applied, tuples containing in one attribute an
empty linear constraint relation are automatically discarded. Further spatial
functionality includes spatial Boundary of surfaces, spatial Complementation,
predicates for testing topological relationships and one predicate to test if the
distance of two spatial objects is less than a given constant.

2.2.19 CALG

A nested constraint-based model for the management of multidimensional
spatial data is described in [KRSS98]. The behaviour is very close to that of
the Dedale approach, described in the previous subsection. Regarding the
management of spatial data, the only difference is related to the management
of the empty set. Specifically, the empty set is a valid linear constraint relation
in CALG, as opposed to Dedale.

2.2.20 van Roessel’s Conceptual Model (RCM)

A complex object model for the management of 2-d spatial data is presented in
[Ro93, Ro94]. Two primitive operations, Fold and Unfold (borrowed from
research on temporal databases [LJ88b]) enable defining four kinds of
Overlay between relations with spatial data. The behaviour of the approach is
close to the GNTRM approach described in Subsection 2.2.14, therefore, only
major differences are outlined here. Points and infinite sets of R2 points are
now valid data types. Contrary to GNTRM, two distinct spatial data types are
defined one for connected and another for non-connected subsets of R2.
Operations Fold and Unfold resemble operations G-Compose and G-

 24

Decompose in GNTRM. Operation Fold is defined in four steps, and one of
them requires the use of nested data structures. Based on Fold, Unfold and the
four types of Codd’s outer natural join, four types of Overlay operations are
defined. Their functionality resembles that of the Overlay operations of
ArcInfo (Subsection 2.2.5).

2.2.21 Scholl and Voisard’s Thematic Map Model (SVTMM)

A complex object Model that enables the manipulation of 2-d spatial data is
described in [SV89]. An elementary region is defined as a subset of R2. A
region is either an elementary region or a set of elementary regions. Various
predicates and functions are defined that enable the manipulation of regions.
They include: (i) A predicate that tests whether an elementary region is
empty. (ii) Functions that compute spatial union, spatial difference and spatial
intersection of two elementary regions. The functions return an elementary
region and they are defined in terms of the set operations ∪, ∩ and −. Hence,
either empty or non-closed regions may be obtained. (iii) Spatial union, which
can also be applied to a set of elementary regions in order to obtain a single
elementary region. (iv) A generalization of spatial intersection that is applied
to pairs of any type of regions, either elementary or not. A map is defined as a
relation with at least one attribute of some region data type. Based on the
predicates, the functions and the primitive operations of the complex object
model, it is demonstrated how operations of practical interest between maps
can be achieved (see Figure 2.2). As an example, if A is a set of attributes of
any type and G an attribute of an elementary region type, operation
Fusion[A](R) (Figure 2.2(b)) can be achieved by a combination of the Nest
operation and of the Spatial union of sets of regions.

2.2.22 ISO SQL Multimedia Standard: Spatial (ISOSQLMM)

The SQL:1999 standard includes Object Relational capabilities [MS02]. The
SQL Multimedia and Application Packages (SQL/MM) [ME01] defines a set
of class libraries of the SQL:1999 object types for the management of various
types of complex data. The part for spatial data management [Iso02] includes
a hierarchy of classes that enables the manipulation of 2-d spatial objects.
Figure 2.5 shows the hierarchy of classes in UML notation. Some
superclasses of the hierarchy, those in grey boxes, are not instantiable. Their
definition provides compatibility between their subclasses. The
ST_GEOMETRY consists of spatial objects of any type. ST_POINT
represents single locations in a 2-d Euclidian space. ST_LINESTRING
consists of simple polylines (g4 in Figure 2.1(b)). ST_CIRCULARSTRING is

 25

ST_GEOMETRY

ST_CURVEST_POINT ST_SURFACE ST_GEOMCOLLECTION

ST_COMPOUNDCURVE

ST_CURVEPOLYGON

ST_POLYGON

ST_CIRCULARSTRING

ST_MULTIPOINT ST_MULTICURVE

ST_LINESTRING

ST_MULTISURFACE

ST_MULTILINESTRING ST_MULTIPOLYGON
Figure 2.5: Hierarchy of classes supported by the spatial SQL/MM standard.

similar except that arcs are used instead of line segments.
ST_COMPOUNDCURVE consists of connected sequences of elements of the
two previous data types. ST_CURVE represents any kind of line.
ST_POLYGON consists of vector polygons (Figure 2.1(c)). The boundary of
a ST_CURVEPOLYGON is a collection of ST_CURVES. ST_SURFACE is
a non-instantiable type that represents any kind of a 2-d surface.
ST_GEOMCOLLECTION consists of collections of type ST_GEOMETRY.
Subtypes of ST_GEOMCOLLECTION are collections of elements of the
relevant atomic data types. Two surfaces in an element of type
ST_MULTISURFACE may intersect only in a finite set of points. The empty
set is a valid object of any of the previous data types. A long set of methods is
defined in the classes of the above hierarchy. The inclusion of such methods
in SQL statements enables the manipulation of spatial objects. The set of
predicates st_equals, st_disjoint, st_intersects, st_touches, st_overlaps,
st_crosses, st_within, and st_contains enable testing topological relationships
between two spatial objects. Their definition follows the Calculus Based
Method defined in [CFO93, CF94, CF96]. Method st_boundary yields the
boundary of a spatial object. In the general case, the boundary of a
ST_SURFACE is defined as set of ST_CURVES and the boundary of a
ST_CURVE is defined as the possibly empty set of its end points. The
boundary of an ST_POINT element is the empty set. The boundary of an
ST_GEOMCOLLECTION is the spatial union of the boundaries of its
elements. Given two spatial objects g1 and g2, the methods st_union,
st_difference and st_intersection enable computing their spatial union, spatial
difference and spatial intersection, respectively. In the general case, the result

 26

is a possibly empty element of type ST_GEOMCOLLECTION. Function
st_symdifference returns (g1 st_difference g2) st_union (g2 st_difference g1).
Additional functionality enables obtaining the length of lines, the area of
surfaces, the minimum Euclidian distance of two spatial objects, the gravity
centre of an spatial object, the minimum bounding rectangle enclosing a
spatial object, the buffer of a spatial object, and testing for emptiness,
simplicity and circularity (line without end points).

2.2.23 OpenGis Simple Features Specification for SQL (OGISSQL)

The OpenGIS Simple Features Specification for SQL [Ogis99] gives
guidelines for the implementation of the abstract model specified in [Ogis01a]
in two distinct approaches, (i) pure relational SQL92 and (ii) SQL2, extended
by object relational capabilities. The set of classes and the behaviour of the
methods defined in the OpenGIS Simple Features Specification for SQL is
almost identical to that supported by the spatial part of the SQL/MM
Standard, described in the previous subsection.

2.2.24 Oracle8i Spatial Cartridge (ORACLE)

The Oracle9i Spatial Cartridge [Ora00] extends the Oracle8i object relational
DBMS with functions and procedures for spatial data management. Only one
spatial data type is provided, SDO_GEOMETRY, whose definition follows
the guidelines provided in the OpenGIS Simple Features Specification for
SQL (Subsection 2.2.23). Contrary to the standard, the empty set is not a valid
spatial object. A set of operations, predicates and functions enable the
manipulation of spatial objects. Operations Sdo_filter, Sdo_relate, Sdo_nn and
Sdo_within_distance, enable the use of spatial indexes for the retrieval of
spatial objects that satisfy certain conditions. Such conditions enable testing
topological relationships according to the Nine Intersection Model [EH92]
and testing if an object is within a given distance from another. Beyond this
functionality, a set of predicates and functions is also available that does not
take advantage of the spatial indexes. Predicate relate enables testing
topological relationships between two spatial objects. The functionality of
functions union, difference, intersection and xor resembles, respectively, the
relevant functions st_union, st_difference, st_intersection and
st_symdifference of the spatial SQL Multimedia standard (Subsection 2.2.22).
The difference is that when the empty set is to be obtained in the standard, a
null value is produced in Oracle Spatial. Additional spatial functionality
provided by other functions includes the computation of the length of lines,
the area of surfaces, the minimum Euclidian distance of two spatial objects,
the buffer of a spatial object and the gravity centre of a spatial object.

 27

2.2.25 IBM Informix Spatial DataBlade (INFORMIX)

The IBM Informix Spatial DataBlade Module [Inf01] extends the object
relational IBM Informix Dynamic Server with new data types, functions and
index structures that simplify the manipulation of 2-d spatial objects. The
system implements, to some degree, the SQL/MM standard (Subsection
2.2.22). However, heterogeneous collections of primitive spatial objects are
not supported as spatial objects, since the data type
ST_GEOMCOLLECTION is not instantiable. This leads to limitations and
data loss in functions whose result is, in the general case, an heterogeneous
set. Examples of such functions are st_union, st_difference, st_symdifference
and st_intersection. The three first have to be applied to spatial objects whose
primitive atomic elements are of the same data type. Their result type is the
most appropriate relevant to the input data types. Function st_intersection can
be applied to two spatial objects g1 and g2 of any data type. Its result data type
is either ST_MULTIPOINT or ST_MULTILINESTRING, or
ST_MULTIPOLYGON, depending on whether the spatial intersection of g1
and g2 contains, respectively, only points or curves (and perhaps points) or
surfaces (and perhaps curves and points). The aggregate function st_dissolve
enables computing the spatial union of a group of spatial objects whose
primitive atomic elements are of the same data type.

2.2.26 IBM DB2 Spatial Extender (DB2)

The IBM DB2 Spatial Extender [Ibm01] extends the IBM DB2 object
relational DBMS with new data types, functions and index structures that
enable the management of 2-d spatial objects. Its functionality is almost
identical to that of the IBM Informix Spatial DataBlade Module (Subsection
2.2.25) except that the aggregate function st_dissolve is not supported.

2.2.27 PostgreSQL

PostgreSQL [Post01] is an Open-Source Object Relational DBMS, whose
design is based on the Postgres system [SR86, RS87, SRH90]. An element of
type POINT is defined as a pair of real coordinates (x, y). A LINE is an
infinite straight line. An LSEG is a line segment linking two points. A BOX is
a rectangle. A PATH is a simple vector polyline (g4 in Figure 2.1(b)). A
POLYGON is a vector polygon without holes (g8 in Figure 2.1(c)). Many
functions and predicates are supported as methods for the above spatial types.
The functionality provided by such functions and predicates is very primitive.
Some example functions return the intersection point of two line segments,

 28

the intersection box of two boxes and a path defining the boundary of a
polygon.

2.2.28 GEO++

The GEO++ system [VO92] is a GIS developed on top of the object relational
DBMS Postgres [SR86, RS87, SRH90]. A set of spatial data types, and
relevant methods, enables the manipulation of 2-d spatial objects. One more
data type enables the storage of images in a raster format. Functions for the
manipulation of raster images are not provided. The set of spatial data types is
almost identical to that of PostgreSQL (Subsection 2.2.27). Regarding spatial
functionality, GEO++ includes a function that computes the spatial
intersection of two polygons. The result is a set of polygons.

2.2.29 GEUS

The GEUS system [PLL+98] has been developed by extending a commercial
object relational DBMS with new spatial data types, operations and spatial
indexes (R*-tree). The behaviour of the system is very close to that of GEO++
(Subsection 2.2.28). No functions are provided for the computation of spatial
union, intersection, difference and boundary.

2.2.30 Object-Oriented Geographic Data Model (OOGDM)

An object-oriented data model for the management of 2-d and 3-d spatial data
in both vector and raster format is defined in [Vo97, BVH96, DBVH97,
VBH97]. A hierarchy of classes is defined that supports the representation and
management of spatial data. Such a hierarchy of classes, in UML notation, is
shown in Figure 2.6. Elementary features are vector or raster objects in either
a 2-d or a 3-d space. Vector classes represent points (Figure 2.1(a)), simple
polylines (Figure 2.1(b)) and polygons (Figure 2.1(c)). Furthermore, class
Solid represents 3-d polyhedra. Raster elements in both a 2-d and a 3-d space
are represented by classes Profile, Grid and Lattice. A Feature is either
elementary or a collection of features. Features incorporate, therefore,
connected atomic spatial objects and non-connected set-valued spatial objects.
A GeoObject combines a set of non-spatial properties with a collection of at
least one feature. User classes incorporating spatial functionality are defined
as subclasses of GeoObject. Finally, a SpatialObject is either a feature or a
GeoObject. Functions and predicates that enable the manipulation on spatial
data are defined as methods of classes in this hierarchy. The definition of
predicates, to test topological relationships between spatial objects, follows

 29

the Calculus Based Method presented in [CFO93, CF94, CF96]. Predicates to
test directional relationships are also provided and their definition follows the
approach in [PTS94, TPS96]. Operations touch, overlap and cross enable
obtaining parts of the spatial intersection of two spatial objects for which a
relevant predicate evaluates to true. Two polygons touch if their intersection
contains only points and/or polylines. A polyline and a polygon touch if they
intersect only at the end points of the polyline. Finally, two polylines touch if
they intersect only at their end points. Two polygons overlap if their
intersection contains at least one polygon. Two polylines overlap if their
intersection contains at least one polyline. A polyline and a polygon cross if
their intersection contains at least one polyline. Finally, two polylines cross if
they do not touch and their intersection contains only isolated points. The
boundary of a point is the empty set. The boundary of a polyline is the set of
its end points and the boundary of a polygon is a set of polylines. Further
spatial functionality includes the computation of the length of polylines, the
area of polygons, the minimum Euclidian distance of two spatial objects, the
gravity center of a spatial object, the minimum bounding rectangle of a spatial
object, the holes of a polygon, and the buffer of a spatial object.
Implementation issues are described in [VBH97].

ElementaryFeature

SpatialObject

FeatureSet

GeoObjectFeature
1..*

1..*

Elmem1DFeatureElmem0DFeature Elmem2DFeature Elmem3DFeature

Lattice SolidProfile Polyline Grid Region

Figure 2.6: Class hierarchy supported by the OOGDM approach.

Other object-oriented models are [CF93], concerning an object calculus,
DASDBS [SW86, ELNR88, WS92], GEOQA [SDS00], GODOT [GR93],
PROBE [MO86], GeoToolKit [BBC97] and LEGAL [CCF+96, CSFG96].

 30

2.3 Previous Research in Spatio-temporal Approaches

Many models have been proposed for the management of temporal data
[JM80, Be82, CT85, Ar86, Ta86, Sn87, Ga88, LJ88a, LJ88b, TG89, Sa90a,
Sa90b, TC90, MS91, JJ92, Lo93, CC93, NA93, TCG+93, Sn95, EJS98,
CZ99]. A relevant potential SQL standard has also been proposed in [Iso96a].
Some of the characteristics of these models have been incorporated in the
spatio-temporal approaches that are briefly described below.

2.3.1 Güting et al Spatio-temporal Model (G+STM)

A spatio-temporal object model for the representation and management of
moving objects is defined in [GBE+00, FGNS00, CFG01]. Time is defined as
infinite and continuous.

REGION REGION LINE

LINE LINE POINTS

POINT
ANY
LINE
LINE

REGION
REGION

ANY
POINT
LINE

REGION
LINE

REGION

POINT
POINT
LINE
LINE
LINE

REGION

LINE
REGION
REGION

REGION
LINE

REGION

POINTS
POINTS
POINTS

Intersection

Common_border

Touch_points

Crossings

Operation Type of First
 Operand

Type of Second
 Operand

Type of
Result

Figure 2.7: Operations for spatial intersection in G+STM.

Data type INSTANT consists of time points. A PERIOD is the union of a set
of non-overlapping and non-adjacent time intervals, where each time interval
is a closed or open set of successive time points. PERIOD actually matches
RANGE(INSTANT), where RANGE is a generic data type. Data types
POINT, POINTS, LINE and REGION consist, respectively, of points, sets of
points, sets of lines and sets of surfaces. Spatial objects are closed. If S is a
spatial data type, then data type MOVING(S) describes the continuous
evolution with respect to time of elements of type S. INTIME(S) is another

 31

data type, with elements of the form (s, t), which describes a spatial object s
and its position at time t. Similar data types MOVING(D) and INTIME(D) are
defined for a conventional data type D. A long set of primitive operations is
formalized between elements of the previous data types. Amongst them,
operations Union, Minus and Intersection can be applied to either time periods
or spatial objects. For time periods, the functionality is that of the relevant set
operation. Regarding spatial data, Union yields the spatial union of two spatial
objects of the same type. Minus gives the spatial difference of two spatial
objects. The data type of the result is that of the first operand and an implicit
Closure is applied to obtain this result. Four different operations enable
retrieving the different pieces of the spatial intersection of two spatial objects,
as is shown in Figure 2.7. Operations Union and Intersection can also be used
as aggregate functions. The operations supported for a data type D can be
lifted so as to be applied to combinations of data types D and MOVING(D).
As an example, operation Intersection can also be applied to data types
MOVING(POINT) and REGION to produce a value of type
MOVING(POINT). Finally, operation Decompose enables decomposing a
non-connected spatial object or a time period into its connected components.
The design and implementation of a prototype is left for further research.

2.3.2 Moreira, Ribeiro and Abdessalem’s Spatio-temporal Model
(MRASTM)

A classification of the set of operations required in a spatio-temporal object
model for the management of moving objects is proposed in [MRA00,
MSR99]. Data types for time and space are not formalized. A movement is
defined as an infinite set of elements of the set T×G, where T is a set of time
instants and time intervals and G is a set of points, lines and polygons. A
movement value is a finite representation of a movement. Such finite
representations [MSR99] are finite sets of tuples, each of them describing the
movement within a time interval. Projections are operations that enable
extracting from a movement its period of time, its trajectory and numeric
values derived from the movement, such as average speed. Restrictions enable
retrieving pieces of a movement when a temporal, a spatial or a numeric
predicate is satisfied. Metric operations enable retrieving maximum, minimum
and moving distances of movements and static spatial objects. Finally, the
topological-temporal predicates enter, leave and cross describe the
relationship between a movement and a static spatial object. The approach
incorporates uncertainty.

 32

2.3.3 Worboys’s Spatio-temporal Model (WSTM)

A spatio-temporal object model with operations that enable the management
of spatial objects that change discretely with respect to time is defined in
[Wo94]. Bitemporal elements are defined as unions of Cartesian products of
intervals of transaction and valid time. Set operations, union, difference and
intersection can be applied between bitemporal elements, always resulting in a
bitemporal element. Spatial objects are defined as collections of points, non-
overlapping straight line segments and non-overlapping triangles. If a triangle
belongs to a spatial object, then the edges and vertices of the triangle also
belong to the object, and are recorded separately. The same also applies to
line segments. Set operations Union, Difference and Intersection can also be
applied to spatial objects. Operation Boundary is presented informally. A
formalism for spatial and temporal operations are out of the scope of the
approach. Spatio-temporal objects are defined as finite sets of pairs ST = {(S1,
T1), (S2, T2), ..., (Sn, Tn)}, where each Si is either a point or a straight line
segment or a triangle and each Ti is a bitemporal element. The set of Si values
must form a spatial object and for each pair of tuples (Si, Ti), (Sj, Tj) in ST, if
Si is contained in Sj, then Ti is also contained in Tj. Operations relevant to the
work in the present thesis are those that enable retrieving the evolution with
respect to time of the spatial union, spatial difference, spatial intersection and
spatial boundary of spatial objects. Implementation issues are not discussed.

2.3.4 Erwig and Schneider’s Spatio-temporal Partition Model
(ESSTPM)

A temporal map model, resulting from the generalization of a map model
(Subsection 2.2.3) is presented in [ES99]. In particular, the model defines a
new data structure that extends by a temporal dimension, a previously defined
data structure for the representation of a special kind of maps (partitions of
space into non-overlapping surfaces). A spatio-temporal partition of type A is
formalized as a kind of a semi-continuous mapping P from the temporal
domain T (infinite and continuous set of time instants) to the set of spatial
partitions of type A (see Subsection 2.2.3). Thus, each time instant has an
associated spatial partition. The primitive operations Intersection and Relabel,
already defined for spatial partitions (see Subsection 2.2.3), are generalized
for spatio-temporal partitions. Informally, the Intersection of two spatio-
temporal partitions is the result of applying the Intersection operation to
spatial partitions at each point in time. Operation Relabel enables applying a
function, whose definition changes with respect to time, to a spatio-temporal
partition of type A in order to obtain a spatio-temporal partition of type B (ft∈T

(a ∈ A) = b ∈ B).

 33

2.3.5 d’Onofrio and Pourabbas’s Temporal Map Model (OPTMM)

A temporal map model is presented in [OP01]. Its functionality is very close
to that of the previous approach, therefore, only the main differences are given
here. The approach is not formal. A thematic map is defined as a mapping
from a finite set of surfaces to a set of either colours or strings. The concept of
thematic map is also generalized for lines. Relevant to the work of the present
thesis, operation Fusion enables merging adjacent surfaces that have the same
colour. Operation Intersection can be applied to a pure surface or a set of pure
surfaces and to a thematic map. A temporised thematic map is defined as a set
of pairs {(I1, T1), (I2, T2), ..., (In, Tn)}, where each Ii is a time interval and each
Ti is a thematic map. Operations Fusion and Intersection are generalized so as
to apply to temporised thematic maps.

2.3.6 Tryfona and Hadzilacos’s Temporal GIS Approach (THTGIS)

In [TH98] the GIS model for spatial data, which has been described in
Subsection 2.2.4, is extended so as to apply to spatio-temporal data. Both
relations and layers are extended to their temporal counterparts. Temporal
relations and temporal layers are extended by a pair of implicit attributes, one
for a period of valid time and another for a period of transaction time.
Definitions are missing. Beyond spatial constraints, temporal constraints can
also be used for the construction of objects in queries.

2.3.7 Kemp and Kowalczyk’s Temporal GIS Approach (KKTGIS)

The design and implementation of a temporal GIS on top of Postgres [SR86,
RS87, SRH90], is described in [KK94]. Regarding spatial data, the approach
is similar to that described in Subsection 2.2.8. Spatial data is recorded
separately from conventional data in four system tables, namely POINTS,
LINES, AREAS and AREA_LINK. The use of attributes of type period
enables recording the evolution of both conventional and spatial data with
respect to time. The current versions of the data are maintained in user tables,
whereas past versions are recorded in system tables called history tables.
Figure 2.8 shows the set of tables needed to represent the evolution of both
spatial and conventional data with respect to time, for an application of
HOTELS, ROADS and land OWNERSHIP. Implicit transaction time support
is directly provided by Postgres. Spatio-temporal data management is
achieved by the use of the object-relational query language of Postgres. Other
pieces of work, addressing issues related to the incorporation of versions in
geographic information systems, are discussed in [La92, NTE92, WH94,
MJ94, RK98].

 34

[11, 20]

p1

p2

p3

a1

a2

[21, 30]

p4
p5

p6

a1

a2

a3

p2

p1
PID X Y Feat
p1 0 5
p2 5 0
p3 8 8 Hotel
p4 7 1 Hotel
p5 9 3
p6 3 9

POINTS

Start End Left Right Period Feat FID
1 2 a2 a1 [11, 30] Road r1
6 5 a3 a2 [21, 30]

LINES

AID Feat
a1 Owner
a2 Owner
a3 Owner

AREAS

AID OID Period
a1 o1 [11, 30]
a2 o2 [11, 30]
a3 o1 [21, 30]

AREA_LINK

HID Owner PID
h1 o2 p4

HOTEL
HID PID Period
h1 p3 [11, 20]

HOTEL_HIST
Rcode Width

r1 8

ROAD
OID Name
o1 John
o2 Helen

OWNER

Figure 2.8: Spatio-temporal data in a temporal GIS.

2.3.8 STSQL

An SQL extension for the management of spatio-temporal data is described in
[BJS98], and it is a generalization of an earlier extension for temporal data
[BJ96]. Only one data type PERIOD is provided for time data. Data types
1D_REGION, 2D_REGION and 3D_REGION enable the representation of
spatial data. Definitions are not provided. Predicates and functions are out of
the scope of the approach. Attributes of the above data types can be
incorporated in relations in two possible ways, as explicit attributes, treated
the same way as conventional attributes and as implicit attributes. Implicit
PERIOD attributes are used for valid and transaction time. Implicit
XD_REGION attributes are used to record the set of XD points of a spatial
object. Explicit attributes are manipulated using standard SQL:1992
statements, possibly by the incorporation of spatial and temporal predicates
and functions. Such statements apply implicitly to tuples that are valid at the
present time. Implicit spatial attributes are ignored (projected out) before a
conventional SQL:1992 statement is executed. To use implicit attributes in
queries, a prefix has to be added before an SQL statement. For an example,
consider the scheme of two relations R1(A, G1, T1) and R2(B, G2, T2), where

 35

A, B are two sets of explicit attributes of any type, G1, G2 are two implicit
attributes of a spatial type and T1, T2 are two implicit attributes of time type.
Then the effect of the syntax

REDUCIBLE (R1.G1, R2.G2) AS G
REDUCIBLE (R1.T1, R2.T2) AS T
 SELECT R1.A, R2.B
 FROM R1, R2

is that the SELECT-FROM statement is executed for every time instant and
for every point of each spatial object. In a next step, the resulting tuples are
combined to tuples in which explicit attributes are stamped by the values of
implicit attributes. This way, the previous SQL statement computes the
spatio-temporal intersection of spatial objects in relations R1 and R2. On the
other hand, implicit attributes can be treated as explicit by adding the
statement NONREDUCIBLE (<implicit attribute list>) before the relevant
SQL statement. Definitions are left for further research as they are issues
related to implementation. As is reported, the temporal SQL extension has
been implemented.

2.3.9 SQLST

In [CZ00] an SQL extension for the management of spatio-temporal data is
described, which is again a generalization of an earlier extension for temporal
data [CZ99]. A special attribute called VTime of type time instant enables the
storage of valid time. Time instant allows various granularities, such as DAY,
TIME, etc. The use of the SQL clause GROUP BY enables merging time
instants into periods. Next, functions and predicates for periods can be
included in the SELECT and HAVING clauses of SQL [Al83]. The approach
for spatial data is almost the same. Data types POINT, LINE and REGION
are defined and their elements are always composed of triangles. Hence a
point is a triangle whose vertices are co-located. Similarly, a line is a triangle
whose vertices are collinear. This enables compatibility between spatial types.
The GROUP BY clause enables merging triangles into spatial objects. Spatial
predicates, such as equal, overlap, etc. and functions, such as intersection, can
be used on the SELECT and HAVING clauses. Yet defining predicates and
functions is out of the scope of the approach. An implementation is also
reported. Internally, time intervals are used instead of time instants. It is
reported that further research includes the implementation of the spatial
approach with a vector representation and the efficient implementation of
spatial objects whose position and shape changes continuously with respect to
time.

 36

2.3.10 Dedale

A nested constraint-based model for the management of multidimensional
spatial and spatio-temporal data is described in [GRS98b, GRS00]. Actually,
the approach extends the work described in Subsection 2.2.18 by linear
constraint relations in which time is also incorporated.

2.3.11 Yeh and de Cambray’s Spatio-temporal Model (YCSTM)

A complex object model for the management of both discrete and continuous
changes in conventional and spatial data is described in [YC95]. It is also
based on an earlier temporal approach [YC94b]. Regarding spatial data, the
model provides just one GEOMETRY data type, as in the approach described
in Subsection 2.2.10. Temporal data is recorded in variability tuples
containing two implicit attributes, (i) a surrogate tuple identifier and (ii) a
closed time interval. The remainder attributes of the tuple are called
variability attributes. Variability attributes are used to record the continuous
evolution with respect to time. At a high level of abstraction, variability
values can be seen as infinite sets of states of the form (time instant, value).
At a lower level of abstraction, they are recorded as the values at the end
points of a time interval and as the definition of an interpolation function.
Internally, a 2-d spatial variability value is represented by a 3-d geometric
object. Geometric operations between 3-d spatio-temporal objects are used.
Relational algebra is extended so as to handle sets of variability values.
Cartesian product yields tuples with more than one pair (surrogate, time
interval). Each variability value of a variability tuple is associated with just
one such pair. When a variability value is projected, the relevant (surrogate,
time interval) is also projected. Relational Union, Except and Intersect
operations are applied to states of variability tuples. Selection is extended to
yield the set of states for which a given predicate evaluates to true. Finally,
Temporal projection enables obtaining the set of states within a time interval.

2.3.12 Informix Geodetic DataBlade (GEODETIC)

The IBM Informix Geodetic DataBlade Module [Inf00] extends the object
relational IBM Informix Dynamic Server with new data types, functions and
index structures that simplify the manipulation of spatio-temporal data. A
value of a spatio-temporal data type is defined as a tuple of the form (s, a, t),
where s is a spatial object, a is an altitude range and t is a time range.
Depending on the type of the spatial object s, various spatio-temporal data
types are defined. Some of them are the following: (i) GEOPOINT, which
represents points (gi in Figure 2.1(a)). (ii) GEOSTRING, which represents

 37

simple polylines (g4 in Figure 2.1(b)). (iii) GEOPOLYGON, which represents
polygons, possibly with holes (gi in Figure 2.1(c)). Other spatio-temporal data
types include GEOBOX, GEOCIRCLE, GEOLINESEG, etc. A general and
non-instantiable data type, GEOOBJECT, represents spatio-temporal objects
of any type. A time range is either a time instant or a time interval. The value
any denotes a time range that consists of all the time instants. Similar
observations also apply to altitude ranges. A set of predicates and functions is
provided, which enable the management of spatio-temporal data. Predicate
intersect evaluates to true if the spatial objects, time ranges and altitude
ranges have points in common. Predicates inside and outside are defined in a
similar manner. Certain functions return the area of polygons, the gravity
centre, the time and altitude ranges, the buffer, etc.

2.3.13 ORParaDB

The approach undertaken in [CG94] proposes a pattern matching query
language for spatio-temporal databases in the context of an object relational
model (ORParaDB). The language extends the SQL-like query language
ORParaSQL, defined for parametric databases [CGN93], special cases of
which are temporal, spatial and conventional databases. In a parametric
database, relations are either conventional or parametric. In a parametric
relation (object type in the object-relational terminology), each attribute is
defined as a mapping from a set of parametric elements to the values of a
conventional data type. Parametric elements are defined as subsets of a given
parametric domain, and at the same time, they are called the parametric
domain of the attribute. Examples of parametric domains are the set T of all
time instants, the set R of all spatial objects and the set T×R of all spatio-
temporal elements. Parametric elements are closed under the set operations
Union, Intersection, Difference and Complementation. The parametric
domains of values of a given tuple must be the same. This requirement is
termed homogeneity. Relational operations Union, Except and Intersection are
applied to the parametric elements of tuples. Projection and Cartesian
product are defined the usual way, except that, due to the homogeneity
property, the domain of each tuple, in the result relation, equals the
intersection of the domains of the tuples, from which it is deduced. Select
retrieves portions of tuples.

2.3.14 Temporal Object-Oriented Geographic Data Model (TOOGDM)

The approach described in [Vo97, BVH96] extends the object-oriented spatial
data model presented in Subsection 2.2.30 for the management of spatio-

 38

temporal data. Valid time Timestamps of type either time instant or time
period (opened or closed) can be incorporated at the level of attribute. Only
periods for transaction time are supported at the tuple level. The object-
oriented query language is extended by (i) a VALID TIME clause, which
enables the restriction of the result to a valid time interval, (ii) a SNAPSHOT
keyword, which enables projecting out timestamps from the result and (iii)
predicates and functions for time intervals in the WHERE clause.

2.3.15 Tripod

Within the framework of an object-oriented data model, a set of primitive data
types and operations for the management of both valid time and spatial data is
defined in [GFP+01a, GFP+01b, GFDP01]. In addition, a specific class,
called History, provides support for transaction time. The set of primitive
spatial data types follows the approach described in Subsection 2.2.1.
INSTANT, INSTANTS, TIMEINTERVAL and TIMEINTERVALS
represent, respectively, instants, finite collections of instants, closed time
intervals and finite collections of closed time intervals [GFDP01]. Operations
Union, Difference and Intersection are defined for time types. Regarding
transaction time, if D is either a primitive data type or class, History(D) is a
finite set of pairs of the form {(d1, t1), ..., (dn, tn)}, where each di is an instance
of D and ti are values of some time data type. Each di and ti is required to be
unique in the history. Operations between histories include Union,
Intersection and Difference.

2.3.16 MOST

The M.O.S.T. (Moving Object Spatio-Temporal) approach [SWCD97]
proposes an object-oriented model for the modelling of the past, present and
future locations of moving objects in a database system. A future temporal
logic is used as a query language. The coordinates of spatial objects are
recorded in conventional attributes. A dynamic attribute is used to record the
evolution of the relevant data from a time instant t to the future. Internally, the
evolution is represented by an initial value, an initial time instant and a
function for time that computes future values. Valid and transaction time are
considered to be the same in the approach. Examples of spatial predicates are
those that enable testing whether a point is inside or outside a polygon. By
default, queries apply to the data that is valid at the present time. Temporal
predicates enable testing whether a given non-temporal predicate evaluates to
true at specific future time instants. If g and f are predicates then two temporal
predicates are the following: (i) “g until f”, which evaluates to true if f is true
at some time in the future and until then, g evaluates to true. (ii) Nexttime g,

 39

which evaluates to true if g evaluates to true in the next time instant. Other
temporal predicates can be defined in terms these two. Queries regarding the
past are left as open for further research. Issues concerning the integration of
the model in a commercial DBMS are discussed in [WXCJ98].

2.4 Classification of Spatial Approaches

In this section spatial approaches are classified with respect to general
characteristics.

2.4.1 Discrete versus Continuous Change in Space

Two different approaches in spatial data modelling have been identified
[Go92, LGMR01, Wo95, RSV02, LT92, BM98], Object-based and Field-
based models.

Object-based models view geographic space as being populated by discrete
spatial entities (spatial objects in [PT98]). Spatial objects are classified with
respect to their geometric representation into various types such as point, line
and surface. For example a well, a river and a country are of a point, line and
surface type, respectively.

Field-based models view spatial data as mappings from the points of a
geographic space to the domain of some property of space (spatial attribute in
[PT98]). The domain of a property of space can be either discrete or
continuous. Examples of a discrete attribute are the type of soil and the type
of vegetation. Continuous properties of space are temperature, atmospheric
pressure and elevation.

The functionality required for the management of data that changes discretely
in space, i.e. of spatial entities and of discrete properties of space (Figure
2.2), is different than that for the management of data that changes
continuously in space i.e. of continuous properties of space (Figure 2.3).
Different data structures are also considered in the two approaches. Models of
the first approach are [GS95, DHT94, ES97, FVM97, VE93, HT96, Esri00,
Int02, Mapi02, Bent01, Int95, LPV93, Eg94, RFS88, SV92, GNT91a, Gu88,
CZ96, Ro93, SV89, Iso02, Ogis99, Ora00, Inf01, Ibm01, Post01, VO92,
PLL+98]. Models of the second approach are [To91, Ogis00, MJ01, Keig02,
Gras02, Lo00, BK01, RHS01].

Some approaches attempt the integration of the two. Hence some commercial
geographic information systems [Esri00, Int02], which support the
management of spatial objects, provide extensions for the management of

 40

properties of space [MJ01, Keig02]. To bridge the gap, data transformations
have also to be performed. In [Wo95], it is discussed how some object-
oriented models [Vo97, ELNR88, SDS00, CCF+96] provide a different set of
data types and operations to support each of the approaches. In [SH91] both
types of data are integrated in the same data structure of a many sorted
algebra. Finally, in [GRS00] it is shown how constraint-based spatial models
[GRS98a, KRSS98], initially developed for the manipulation of spatial
objects, can also be used for the manipulation of continuously changing
interpolated spatial data.

2.4.2 Raster-based versus Vector-based Representation of Space

The finite representation of spatial data can roughly be classified into raster-
based and vector-based (for a finer classification see [Pe90, LT92]).

In raster representations, space is partitioned into a finite grid of cells (usually
squares, which are called pixels) of the same size and shape. The geometry of
a spatial object is approximated by a set of cells [GNT91a, RFS88]. The
representation of a property of space can be achieved by associating a value
of a given domain to each of these cells [Ogis01b, MJ01, Keig02, Gras02,
Lo00, BK01, RHS01, Vo97, ELNR88, SDS00, CCF+96].

Vector-based representations describe the boundaries of spatial entities and of
discrete properties of space by the use of finite sets of points and of line
segments [GS95, DHT94, HT96, Esri00, Int02, Mapi02, Bent01, Int95,
LPV93, Eg94, RFS88, SV92, Gu88, SH91, CZ96, Iso02, Ogis99, Ora00,
Inf01, Ibm01, Post01, VO92, PLL+98, Vo97, ELNR88, SDS00, CCF+96].
One typical vector representation, which is concerned with continuous
properties of space, is the partition of space into a finite set of triangles called
Triangulated Irregular Network (TIN). In this representation the value of a
property in a given point is computed by an interpolation function that is
applied to the vertices of the triangle that contain the point.

Issues related to the advantages and disadvantages of the two types of
representations can be found in [Pe90, LT92, BM98, RSV02] and are outlined
as follows:

− Vector-based representations are largely used for the management of
data that changes discretely in space. On the other hand, raster-based
representations are still used for the management of continuous
properties of space. This is not likely to change, due to the fact that the
growing volumes of data, which are received from satellites, are
available in raster format.

− Vector-based representations achieve a high precision by few
resources, but they make use of complex algorithms and data structures.

 41

On the other hand, raster-based representations achieve a lower
precision by the use of big volumes of data, but they make use of
simple algorithms and data structures.

2.4.3 GIS-centric versus Database-centric Spatial Data Management

Relevant to the architecture of the underlying system, spatial data modelling
approaches can be classified into GIS-centric and Database-centric [Da98].

GIS-centric architectures provide data structures and operations for the direct
manipulation of maps, also known as layers, coverages or feature classes.
They consider either vector-based (Figure 2.2) or raster-based (Figure 2.3)
representations. Map algebras are defined in [To91, DHT94, ES97]. In
[HT96], a layer algebra is combined with a relational algebra within a single
GIS-centric architecture. One effort for a standard coverage type has been
undertaken by the OpenGIS consortium [Ogis00]. Commercial systems that
are based on raster maps are [MJ01, Keig02, Gras02, Lo00, BK01, RHS01].
Regarding vector maps, the first GIS-centric implementations were based on
CAD tools, which support only graphic data, and attempted to link graphic
objects with conventional data stored in separate files. Such systems were
missing the majority of the advantages provided by the use of database
technology. The architecture of current GIS-centric systems is either layered
or dual [VO92, LPV93, Gu94, SA95, SS96].

In a layered architecture both conventional and spatial data are stored in a
conventional DBMS, thus, they take advantage of the database technology.
However, optimised spatial data management cannot be achieved by the
DBMS, since spatial data are treated by the DBMS as bit strings. Such
systems are Esri ArcInfo [Esri99, Esri00, Ze99, Ma99, Tu00, MSW99,
Esri02a, Esri02b], Intergraph Geomedia [LH98, Int02] and MapInfo
Professional [Mapi01, Mapi02].

In a dual architecture, conventional data remains in the database but one
specialized subsystem is considered for the management of spatial data. The
spatial subsystem enables the optimisation of spatial data access. Such
systems are Bentley Microstation Geographics [Bent01] and Intergraph MGE
[Int95].

Although GIS-centric approaches are very flexible in the management of
maps, they do not take full advantage of database technology. Typical
examples are the lack of a powerful generic query language that combines
both spatial and non-spatial data (therefore excess programming is required)
and the lack of data independence. According to [DA98], GIS-centric
approaches form the first two generations of spatial management systems.

 42

Database-centric approaches form the third generation of spatial management
systems [DA98]. Their inherent characteristic is that facilities for spatial
support are integrated within a DBMS, whose underlying data model ranges
from the simple pure relational model to the complex object-oriented. The
management of spatial data is usually achieved by the use of spatial predicates
and functions that are applied to data of a spatial type. Relevant research
approaches and prototype implementations include [GS95, LPV93, Eg94,
RFS88, SV92, GNT91a, SH91, Gu88, CZ96, GRS98a, KRSS98, Ro93, SV89,
VO92, PLL+98, Vo97, ELNR88, SDS00, CCF+96]. An open source product
of this sort is PostgreSQL [Post01]. Commercially available products are the
spatial extensions of ORACLE [Ora00], INFORMIX [Inf01] and DB2
[Ibm01]. Standards for an SQL extension are the OpenGIS Simple feature
specification for SQL [Ogis99] and the spatial part of the ISO SQL
Multimedia [Iso02]. Database-centric approaches take full advantage of
database technology. Due to the fact that spatial functionality is integrated
within the DBMS, queries that combine spatial and conventional data can also
be optimised. On the other hand, DBMS-centric approaches lack the
flexibility of GIS-centric in the management of maps. As an example, map
operations like Overlay or Superimposition (Figure 2.2) are not supported by
many such approaches [Eg94, RFS88, SV92, Gu88, CZ96, Iso02, Ogis99,
Ora00, Ibm01, Post01, VO92, PLL+98, Vo97].

2.5 Remarks on Spatial Approaches

A number of comments are now made on the various spatial approaches. The
comments have primarily their origin in the many distinct results of an
operation between spatial objects. Such representative operations are spatial
union, spatial difference and spatial intersection. As can be seen in Figures
2.9-2.11, the result of any of these operations may yield zero, one or more
spatial objects, and there are cases in which the type of the resulting spatial
object does not even match the type of the objects involved in the operation.
Particular effort has been made for the remarks to be objective. Throughout
the remainder of this thesis, discussion restricts to only 2-d spatial objects
unless otherwise is explicitly stated.

2.5.1 Informal Data Types and Operations for Space

Formalism is missing in many approaches and, instead, either descriptions or
examples of the data types and the operations between them are given [To91,
HT96, LPV93, Eg94, RFS88, SV92, SH91, Gu88, CZ96, Vo97]. As a
consequence, it is not easy to determine precisely which are the valid data
types and which is the precise functionality of an operation.

 43

(a)

(c)

(e)

(g)

(i)

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Result

Result

Result

Result

Result

(b)

(d)

(f)

(h)

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Result

Result

Result

Result

(g is a point)B

gA gB
gA gB

g
gA

gB

gA gB ggA gB
gA gB

gA

gB

gA
gA gB gA gB

gA gB gA gBgA

gB

gA

gA

gB

g

Figure 2.9: Examples of spatial union of gA with gB.

 44

(a)

(c)

(e)

(g)

(i)

(k)

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Result

Result

Result

Result

Result

Result

(b)

(d)

(f)

(h)

(j)

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Result

Result

Result

Result

Result

gA gB

gB

gB

gA

gA

gB

g

gA

gB

g1

g2

gA

gB

gB

gB

gA

gA gB g gB

gA g1 g2

gA

gB

g gA

gB

g2

gA

gB

no object

gB

gA
(g is a point)A

no object

no objectgBgA

g1

gB

gB

Figure 2.10: Examples of spatial difference of gB from gA.

 45

(a)

(c)

(e)

(g)

(i)

(k)

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Result

Result

Result

Result

Result

Result

(b)

(d)

(f)

(h)

(j)

(l)

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Spatial Objects

Result

Result

Result

Result

Result

Result

no object

gA

no object

no object

no object

g is horizontalA

gA

gB

gA gB
gB g

gA gB ggA gB

gA gA gB

gA gBgA

gB
(g is a point)B

gA

gB

g
g1

g2

g3

g4

g5

g6

g7g8

g1

g2

g3

g4

gA

gB

gB gB

gB

gA

gB

g3

g4g2

g1

Figure 2.11: Examples of spatial intersection of gA with gB.

 46

2.5.2 Spatial Data Types Deviating from Human Perception

According to [TL82] a data model must enable an accurate mapping of the
real world. Contrary to it, the spatial data types that are considered in various
approaches deviate from human perception. Four distinct such cases are
enumerated below.

1 No Support of User-friendly Data Types for Space

In daily practice people consider three primitive types of spatial objects,
points, lines and surfaces. Given however the many distinct results of
representative operations between spatial objects (Figures 2.9-2.11), various
approaches fail in defining user-friendly spatial data types. Some of them
support only one generic spatial data type [To91, Bent01, Int95, LPV93,
GRS98a, KRSS98, Ro93, SV89, ORA00]. Others restrict, in principle, to
supporting only surfaces [ES97, FVM97, VE93, GNT91a, MJ01, Keig02,
Gras02, Lo00, BK01, RHS01]. Others define spatial sets rather than spatial
elements [GS95, Esri00, Int02, Mapi02, SV92, ELNR88]. Typical examples
are sets of points, sets of lines, sets of surfaces or sets of various combinations
of points, lines and surfaces. Finally, in all vector-based approaches, the user
has to think in terms of arcs, when defining lines and surfaces.

2 Incompatibility Between spatial Data Types

In daily practice people tend to consider a point as either a degenerate line or
as a degenerate surface. Similarly, they consider a line as a degenerate
surface. However, the compatibility between spatial types, which is implied
by these observations, is not considered in the definition of spatial types. Due
to this, database design and manipulation problems are encountered. To make
them clear, two examples are first given.

Example 2.1: A meteorological information system usually requires the study
of physical phenomena, which are identical in nature, yet their geometric
shape varies. One such example is temperature, which may have to be
recorded either for isolated points (cities) or for lines (connecting cities with
the same temperature) or for surfaces (regions).

Example 2.2: Spatio-temporal data models aim at modelling spatial data
whose geometry changes with respect to time. However, there are sorts of
spatial objects whose data type also changes with respect to time. One typical
example is that a spring, originally recorded as a point, may change to a river
(to be recorded as a line), then to a lake (to be recorded as a surface) and
finally shrink to a point again.

 47

Given now that spatial data compatibility has not been addressed
satisfactorily, three distinct data structures have to be used for the recording of
the spatial data in the above examples in [GS95, Esri00, SV92, SH91, Gu88,
Post01, VO92, PLL+98, ELNR88]. Subsequently, even a simple display of
spatial data requires referring to all these structures.

3 No Support of Set-Theoretically Closed Spatial Objects

All non-computerised spatial applications (e.g. cartography, topography,
cadastral systems etc) consider closed spatial objects. Informally, this means
that lines with missing points (whether end points or not) are not allowed.
Similarly, surfaces with missing points or lines are not allowed either. Yet,
this property is not satisfied in [Ro93, SV89]. Note that the support of open or
closed spatial objects is left as an open issue in [SV92].

4 Support of the Empty Set as a Valid Spatial Object

As can be seen in Figure 2.10(j), the spatial difference of two pieces of spatial
data may not yield any spatial object. Due to this, the empty set is treated as a
valid spatial object in [GS95, Esri00, LPV93, Eg94, SV92, GNT91a,
KRSS98, SV89, Iso02, Ogis99, Inf01, Ibm01, Vo97]. In practice, however, it
does not make too much sense to consider an empty spatial object.
Alternatively, a null value replaces the empty set in [Ora00].

2.5.3 Spatial Objects of Practical Interest Treated as Invalid Data

As can be seen in Figure 2.9(d), the spatial union of two pieces of spatial data
may yield a spatial object composed of a surface and a line component. For
ease of discussion, an object like this is called hybrid surface. Such an object
may also have practical interest, e.g. a hydrological application may require
treating combinations of lakes and rivers pouring into them as integral spatial
objects. Contrary to this, hybrid surfaces are not supported in [ES97, FVM97,
VE93, GNT91a, Ro93, MJ01, Keig02, Gras02, Lo00, BK01, RHS01].
Indirect alternatives and relevant problems are outlined below.

In [Int02, Mapi02, LPV93, Iso02, Ogis99, Ora00, Vo97], the line and surface
components of the hybrid surface in Figure 2.12(a) have to be recorded as
separate elements under an attribute whose type is some sort of set of spatial
objects. Alternatively, distinct tuples of the same data structure have to be
used for the recording of the components of hybrid surfaces in [Eg94, DHT94,
HT96, Inf01, Ibm01]. Finally, distinct structures have to be considered for the
recording of the components of a hybrid surface in [GS95, Esri99, SV92,
SH91, Gu88, Post01, VO92, PLL+98, ELNR88]. In all cases, the end-user has

 48

to ascertain that the pieces of spatial data are recorded as is shown in Figure
2.12(b), since a recording like that in either Figure 2.12(c) or Figure 2.12(d)
may cause undesirable side effects. Alternatively, the application programmer
may have to write code so as to enforce integrity constraints. The existence of
database design and manipulation problems, in most of the above alternatives,
is obvious.

(a) Hybrid Surface HS (b) HS = {S, L , L }1 2 (c) HS = {S, L , L }1 2 (d) HS = {S, L}
S L = {point}∩ 1

S L = {point}∩ 2

S L = line∩ 1

S L = line∩ 2

S L = line∩

HS
S

L1

L2

S

L1

L2

S

L

Figure 2.12: Hybrid surface and examples of possible decompositions.

2.5.4 Lack of Spatial Data Validation Mechanisms

Only one spatial data type, geometry, is defined in [To91, Bent01, Int95,
LPV93, GRS98a, KRSS98, Ro93, SV89, Ora00]. Similarly, data types like set
of points, set of lines or set of surfaces are defined in [GS95, Esri00, Int02,
Mapi02, SV92, ELNR88]. Subsequently, the recording of valid spatial data,
such as only one line or only one surface in relevant applications, is left to the
responsibility of the end-user. Alternatively, the application programmer has
to develop data validation code.

2.5.5 Need to Support Non-connected Spatial Objects as Valid Data

The fact, that the result of a spatial operation may yield two or more non-
connected spatial objects, has been the reason for defining sets of spatial
objects data types. Given that such types are complicated, compared to the
simple point, line and surface types, it is estimated that the code to support
them is also more difficult to develop.

2.5.6 Need to Support Complex Spatial Data Structures

Obtaining more than one spatial object in a spatial operation has also led to
the use of complex data structures. Hence, nested data structures are used in
[CZ96, Ro93, SV89, Post01, VO92, PLL+98]. Clearly, they are much more

 49

powerful than non-nested but, at the same time, they are also much more
difficult both to use and also to develop, as is witnessed by the fact that many
alternative formalisms and query languages have been proposed [JS82, PA86,
SS86, RKS88, LR94, LD98, GJ00]. In addition, the modelling of spatial data
in such structures has considered only the individualities of spatial data.
Consequently, relevant approaches do not take full advantage of the whole of
the functionality of a general-purpose nested model.

Alternatively, two distinct data structures, one for relations and another for
layers, are adopted in [HT96, Bent01, Int95]. Hence, the user has to consider
two distinct sets of tools, one for each of these structures.

Finally, two relation structures are adopted in [BJS98]: One is the ordinary
non-nested. The other consists of two types of attributes, implicit to record
spatial data, and the ordinary attributes, termed explicit, to record
conventional data. The two types of attributes differ in behaviour. This is also
estimated to introduce a degree of complexity.

2.5.7 Limitations on Spatial Data Structures

As is well known, the relational model does not impose any limitation on the
data types of the attributes of a relation. Contrary to this, some prototype
systems and commercial products, which follow GIS-centric approaches,
violate this principle. Hence, a relation (actually a layer implemented in terms
of a relation) does not allow more than one attribute of a spatial type [DHT94,
HT96, Bent01, Int95].

Alternatively, more than one attribute is allowed in relations (actually feature
classes) in [Esri00, Int02, Mapi02] but only one of them, termed the main
geometry, can be involved in spatial operations. This is also a limitation, in
that it disallows operations of practical interest which may involve two spatial
attributes. Note that although more than one spatial attribute are supported in
[SV89], the authors argue that this property is of poor interest. This is also
estimated not to be precise for the above stated argument.

Finally, both explicit and implicit attributes are used in [BJS98]. This is also
estimated to be a kind of limitation.

2.5.8 Data Loss in Spatial Operations

The precise spatial intersection in Figure 2.11(j) yields a set of surfaces,
hybrid surfaces, points and lines. However, the points, lines and the line
components of hybrid surfaces are discarded in [DHT94, HT96, Esri00,
Bent01, SV92, GNT91a, Gu88, SH91, Inf01, Ibm01, Post01, VO92]. This

 50

also applies to other operations. Clearly, this results in loss of data, which
may can useful in certain applications. Contrary to this, a second operation, to
obtain only the lines, is applied in [GS95, Vo97].

2.5.9 Limited Functionality of Spatial Operations

By this, it is meant that certain operations are allowed only between spatial
objects of a given type.

g2

g1

g3

g4

g5

g2

g1 g3 g4g5

g6

g7

(, g)a 1 (, g)b 2 (, null, g)
 (, , g)
 (null, , g)

a
a b

b

3

4

5

(, g)a 1 (, g)b 2 (, null, g)
 (, null, g)
 (, , g)
 (null, , g)
 (null, , g)

a
a
a b

b
b

3

4

5

6

7

Figure 2.13: Overlay of spatial objects.

As an example, Figures 2.13(a) and Figures 2.13(b) show the result of a (full)
overlay operation, respectively, when applied to two surfaces and to two lines.
The tuples of the input relations, as well as those of the result relation, are also
shown in the figures. However, only the first of these operations is supported
in [GS95, ES97, Esri00, Bent01, Gu88]. An overlay, in which spatial objects
of different types are involved, is not supported either. This delimits the
functionality of spatial operations. Similar observations apply to other spatial
operations defined in [GS95, DHT94, HT96, SH91, Inf01, Ibm01].

 51

2.5.10 Definition of Too Many Primitive Operations

A basic set of few spatial operations is common to all approaches. Yet, there
are differences in the functionality of even these operations. In addition, the
following can be noted:

Certain research approaches define many primitive operations and they are
open-ended, in that they provide tools for the user to define new [GS95,
LPV93, Eg94, RFS88, SH91, Gu89, CZ96, VO92, PLL+98, Vo97]. The same
also applies to the commercial products [Esri00, Int02, Mapi02, Bent01,
Ora00, Inf01, Ibm01, Post01].

ARC/INFO [Esri00], supports excessively many operations, more than 100
geo processing tools. Similarly, SQL standards [Iso02, Ogis99] and
commercial DBMS [Inf01, Ibm01] support more than 50 spatial functions and
predicates. Although few of them are widely used, the set of operations tends
to increase from one new release to another.

Finally, certain operations are supported only in few approaches. Examples
are voronoi [SH91, Gu88, CZ96], simple path [CZ96], split [CZ96, SH91],
and spatial projection [CZ96].

From the above, it is obvious that the spatial data management community has
not yet established a commonly accepted set of spatial operations, as is for
example the case in the relational model. This is also witnessed by the fact
that almost all the operations defined in each approach are primitive. Contrary
to this, it is argued that a data model should consist of a well-chosen set of
general-purpose fundamental operations, few of which should be primitive,
that will enable users to face the majority of their requirements.

2.5.11 Dimension Dependent Spatial Data Types and Operations

In their majority, various approaches restrict to the management of only 2-d
data [GS95, To91, DHT94, ES97, HT96, Esri00, Int02, Mapi02, Bent01,
Int95, MJ01, Keig02, Gras02, Lo00, BK01, RHS01, LPV93, RFS88, SV92,
GNT91a, SH91, Gu88, CZ96, Ro93, SV89, Iso02, Ogis99, Ora00, Inf01,
Ibm01, Post01, PLL+98, CF93, ELNR88, CCF+96]. Some others handle only
2-d and 3-d data [YC94a, Eg94, VO92, Vo97, BBC97, MO86, SDS00]. It is
argued, however, that the definition of a model should be more general,
independent of the dimension of the spatial data to which it is applied.

 52

2.5.12 Availability of Implementation

A data model is really useful if it can also be implemented. This is really the
case in most of the proposed approaches.

2.6 Classification of Spatio-temporal Approaches

Spatio-temporal models are now classified with respect to general
characteristics.

2.6.1 Discrete versus Continuous Change with Respect to Time

Spatio-temporal approaches can be classified with respect to the type of
changes they intend to model.

Applications like cartography, cadastral systems and topography are mainly
concerned with spatial changes that occur at discrete time points. In principle,
such applications assume that, after a change, spatial data remains steady until
a new change occurs. Relevant spatio-temporal approaches are [Wo94, OP01,
TH98, KK94, BJS98, CZ00, Inf00, CG94, BVH96, GFP+01a].

Other applications, such as navigational systems and, more generally, real
time applications consider that spatial data changes continuously with respect
to time. Spatial objects whose position changes continuously with respect to
time are widely known as moving objects [Pf00]. Relevant approaches are
[GBE+00, MRA00, ES99, GRS00, YC95, SWCD97].

2.6.2 Valid Time versus Transaction Time Modelling

Consider the relation in Figure 2.14(a), which is used to record employee
salaries and the time during which each salary was in effect. Hence, the first
tuple shows that John’s salary became 10k on date d11 and it remained so
until date d30. The next tuple shows that on date d31 his salary changed to
20k and it remained so until date d40. Hence, in this relation the data of each
tuple is associated with the time during which it was true in the real world. In
temporal databases, this kind of time is termed valid time and the data
associated with this time is called valid time data. Such data may be
associated with past, present or future time. Valid time is typically managed
by the user and reflects his perception of reality. Spatio-temporal approaches
that consider only this type of time are [GBE+00, MRA00, ES99, OP01,
CZ00, GRS00, Inf00, CG94, SWCD97].

 53

PERSON

John
Helen

d1
d2

Name Birth_date
EMPLOYEE

John
John
Helen

Name Salary
[d11, d30]
[d31, d40]
[d11, d20]

Time
10k
20k
50k

(b) Time Instants(a) Time Periods
Figure 2.14: Examples of user-friendly time data types.

Now consider a relation with scheme R(Name, Salary) and assume that at
time d11 a user inserts the tuple (John, 10k), at time d31 he updates this tuple
to (John, 20k) and at time d40 he deletes it. Now consider another relation
with scheme EMPLOYEE(Name, Salary, Time) (Figure 2.14(a)) and assume
that it consists of the tuples of R associated with the time during which these
tuples remained recorded in R. This type of time, which is associated with the
data, is called transaction time. The relevant data is called transaction time
data. Such data may be associated only with the past and the present time.
Transaction time is typically maintained by the system.

Finally, it is possible both data to be associated in a relation with both valid
and transaction time. Such data is called bitemporal. Spatio-temporal
approaches that consider both of these types are [Wo94, TH98, KK94, BJS98,
BVH96, GFP+01a].

2.6.3 Tuple versus Attribute Time Recording

In some temporal approaches time is recorded at the level of a tuple (Figure
2.14(a)). In general, therefore, each insertion or update results in the addition
of a tuple to the relation. Spatio-temporal approaches of this type are [ES99,
OP01, TH98, KK94, BJS98, CZ00].

In other approaches, time is recorded at the attribute level. Hence, in each
attribute both a value and the relevant time is also recorded. Clearly, such
approaches require either complex data types or nested data structures. Spatio-
temporal approaches usually consider complex data types. Spatio-temporal
approaches of this type are [GBE+00, MRA00, Wo94, GRS00, Inf00, YC95,
CG94, SWCD97].

Finally, approaches that adopt both levels of time recording are [BVH96,
GFP+01a].

 54

2.7 Remarks on Spatio-temporal Approaches

A number of comments are now made on the various spatio-temporal
approaches. As in the case of spatial models, effort has again been made for
the remarks to be objective.

2.7.1 Informal Data Types and Operations for Time

As in the case of spatial data management, formalism on data types and
operations is missing in many spatio-temporal approaches [MRA00, Wo94,
TH98, KK94, BJS98, YC95, CG94, Vo97, SWCD97].

2.7.2 Time Data Types Deviating from Human Perception

As in the case of spatial data management, it is desirable to define time data
types close to human perception. Contrary to this, the following are noticed.

1 No Support of User-friendly Data Types for Time

In daily practice people use to consider time instants, for events that occur at a
given time, and time intervals (periods of time) for events that have duration
(Figure 2.14). Contrary to this, some approaches support only time instants
[ES99, CZ00]. Others support only time periods and they model a time instant
t as a time interval [t, t] [OP01, Wo94, GRS00, Inf00, TH98, KK94, BJS98,
YC95, CG94, SWCD97]. Clearly, recording this way the date of a birth
deviates from human perception. Finally, some others consider a time type
composed of the union of non-connected periods [GBE+00, Wo94, GRS00,
Inf00]. Such types are complex and not commonly used.

2 Empty set not a Valid Time Period

Approaches that define a time type of the form union of non-connected
periods, consider the empty set as a valid value [GBE+00, Wo94, CG94,
GFP+01a]. This is due to their effort, to define closed operations between
elements of this type. Clearly, this also deviates from human perception.

2.7.3 No Support of Various Granularities of Time

The requirement of supporting various granularities of time is widely accepted
in the field of temporal databases [LM95]. Yet, the majority of spatio-

 55

temporal approaches provide only one time granularity [GBE+00, Wo94,
ES99, OP01, BJS98, YC95, Inf00, CG94, BVH96, GFP+01a, SWCD97].

2.7.4 Need to Support Spatio-temporal Data Types

Some approaches do not consider distinct spatial and time data types but a
composite spatio-temporal type [GBE+00, MRA00, Wo94, CG94, GRS00].
Operations between elements of this type are also defined. It is estimated that
manipulating such elements is far more complicated than manipulating spatial
objects and time separately. Yet, on the other hand, it has to be appreciated
that some of these approaches aim at manipulating moving objects and, more
generally, they are closer to real time applications.

2.7.5 Need to Support Complex Data Structures

Certain approaches consider complex data structures. Such a structure, called
History, is adopted in [GFP+01a] to record sets of the form {(pi, vi)}, where pi
are time periods and vi are values. Alternatively, two types of relations are
considered in some approaches [TH98, BJS98]. The first type consists of the
ordinary relations whereas the second type adopts implicit attributes, to record
time, in addition to the ordinary attributes, in which conventional data is
recorded. As a side effect, the semantics of such structures become obscure,
as is also reported in [CZ00]. Finally, a complex object model in adopted in
[YC95], yet it aims at the modelling of moving objects.

2.7.6 Non-Generic Support of Temporal Data

A data model must be application independent. Contrary to this, some
approaches provide spatio-temporal support but they fail to support temporal
data when the spatial data is projected out [Wo94, ES99, OP01, Inf00]. This
fact has also been reported in [GFP+01a].

2.7.7 Limitations on Data Structures for Time

As in the case of spatial data management, some approaches, which support
time at the level of tuple, disallow the incorporation of more than one attribute
of a time data type [TH98, KK94, CZ00]. This delimits the power of the
underlying data model. Alternatively, other approaches record time in implicit
attributes [TH98, BJS98], similarly as in [Sn95]. This is also a limitation, as
has already been reported in Subsection 2.5.7.

 56

2.7.8 Redefinition of Functionality of Conventional Operations

To support time, certain models have redefined the functionality of known
relational operations [YC95, CG94]. For example, if relations R1(A, Time)
and R2(B, Time) consist, respectively, of the tuple (a, [d11, d30]) and (b, [d21,
d40]) then the join operation has been redefined so as to function as is
commonly called, intersection join, yielding the tuple (a, b, [d21, d30]). This
may really be useful for certain types of queries. However, there are also
queries of practical interest in which the user would like to obtain the tuple (a,
[d11, d30], b, [d21, d40]). Such redefinition applies to all the conventional
relational algebra operations. However, it delimits the functionality of the
model, as has also been identified in [LM95].

2.7.9 No Support of Evolution of Spatial Operations with Respect to
Time

Consider a relation LAND_PARCEL(Name, Shape, Time) with one tuple
(John, g1, [d11, d30]), which shows that John was the owner of land g1 during
the period [d11, d30]. Let also another relation LAND_USE(Use, Shape,
Time) contain the tuple (Industrial, g2, [d21, d40]), which shows that land g2
was industrial during the period [d21, d40]. Now consider the query

“give the pieces of land owned by John that had an industrial use and the
respective periods, as well”.

The result should consist of one or more tuples of the form (g3i, [d21, d30]),
where each g3i should be one of the pieces of land of the spatial intersection
of g1 with g2. Although such a result has practical interest, queries of this form
are not supported in [MRA00, TH98, KK94, YC95, Inf00, BVH96,
SWCD97]. An operation that enables replying the above query is termed to
yield the evolution of spatial intersection with respect to time (Section 5.7).

2.7.10 Definition of Too Many Primitive Operations

As in the case of spatial data management, a spatio-temporal model should
provide a limited set of general-purpose primitive operations. Contrary to this
many primitive spatio-temporal operations or functions are defined in
[GBE+00, MRA00, Wo94, OP01, Inf00, BVH96, GFP+01a].

 57

2.7.11 Availability of Implementation

As already reported, a data model is really useful if it can also be
implemented. It is estimated that the few implementations of spatio-temporal
models is due to the fact that this research area is fairly new.

2.8 Thesis Objectives

The major objective of this thesis is the definition of a spatial and of a spatio-
temporal model, which overcome the limitations of the relevant approaches
that were identified in the previous sections. Detailed objectives are analysed
below.

A. Formalization of a Spatial Model

Model Characteristics
C1. It considers discrete change in space.
C2. It is closer to raster-based approaches.
C3. It is database-centric.

Model Properties
P1. Formalism for spatial types and operations is provided.
P2. Spatial data types match human perception and, in particular:

P2.1 They consist only of point, line and surface types.
P2.2 The spatial types are compatible.
P2.3 The spatial objects are set-theoretically closed.
P2.4 The empty set is not a valid spatial object.

P3. A hybrid surface is supported as a valid spatial object.
P4. Spatial data validation mechanisms are enforced by spatial data types.
P5. All valid spatial objects are connected.
P6. Only the simple structures of non-nested relations are supported.
P7. No limitations are enforced by the relation scheme.
P8. No data loss is encountered in operations.
P9. Full functionality of all the operations is achieved.
P10. Few kernel operations achieve full functionality.
P11. It applies to 2-d spatial data but its extension to n-d is straightforward.
P12. It is argued that it can be implemented.

B. Formalization of a Spatio-temporal Model

Model Characteristics
C1. It considers discrete change in time.
C2. It considers valid time.
C3. Time is recorded at the level of tuple.

 58

Model Properties
P1. Formalism for time types and operations is provided.
P2. Time data types match human perception and, in particular:

P2.1 They consist of only generic instant and period types.
P2.2 The empty set is not a valid time period.

P3. Various granularities of time are supported.
P4. Spatio-temporal data types are not required.
P5. Only the simple structures of non-nested relations are supported.
P6. Generic support of temporal data is provided.
P7. No limitations are enforced by the relation scheme.
P8. Conventional operations need not have to be redefined.
P9. It supports the evolution of spatial operations with respect to time.
P10. Few kernel operations achieve full functionality.
P11. It is argued that it can be implemented.

2.9 Conclusions

The characteristics of various spatial and spatio-temporal approaches, whether
data modelling approaches or not, have been outlined. A number of properties
have thus been identified, which a relevant model should satisfy. Hence, the
objectives of this thesis were also identified, i.e. the formalization of a spatial
and of a spatio-temporal model, which overcome a number of limitations.

CHAPTER 3

QUANTA AND DATA TYPES FOR SPACE

3.1 Introduction

A set of spatial data types is formalized in this chapter, based on a prior
definition of spatial quanta [LTV99, LVT99, LVT00]. The formalism enables
the discrete representation of 2-d spatial objects. It is closer to raster-based
approaches but it does not really match them. The approach enables meeting
the relevant objectives specified in Section 2.8. The remainder of this chapter
is organized as follows. Spatial quanta are formalized in Section 3.2. Based
on them, spatial data types are next defined in Section 3.3. Although the
definition of a complete set of predicates and functions is beyond the
objectives of this thesis, some of them are defined in Sections 3.4 and 3.5,
respectively. Operations between spatial objects are defined in Section 3.6.
Finally, conclusions are drawn in the last section.

3.2 Spatial Quanta

In the remainder of this chapter I (R) denotes the set of integer (real) numbers.

Consider some n ∈ I, n > 0, with a fixed value. Let In = {0, 1, …, n−1} and let
i, j ∈ In, i.e. 0 ≤ i ≤ n−1, 0 ≤ j ≤ n−1. Then there is exactly one integer k, 0 ≤ k
≤ n2−1, such that k = n*j + i. Inversely, it is known that for each such k there
is exactly one such pair (i, j) satisfying k = n*j + i. As is shown in Figure 3.1,
each pair (i, j), equivalently each k, can then be represented in R×R by a dot
and i (j) is the horizontal (vertical) coordinate of (i, j) or of k. Figure 3.2
depicts an example for n = 15. It is said that k is the ordinal number of (i, j). If
k div n (k mod n) is the function that returns the quotient (remainder) of the
integer division of integer k by integer n, the following functions are defined:

 60

h_coord: I → I : h_coord(k) = k mod n ⇔ 0 ≤ k ≤ n2 – 1.
v_coord: I → I : v_coord(k) = k div n ⇔ 0 ≤ k ≤ n2 – 1.
ord: I2 → I : ord(i, j) = n*j + i ⇔ 0 ≤ i, j ≤ n – 1.

Clearly, the inverse function of ord is (h_coord, v_coord).

n-2
1*n-1

2*n-1

3*n-1

4*n-1

5*n-1

6*n-1

7*n-1

8*n-1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .

. . .

. . .

. . .

0 1 2 3 4 5 6 7
0*n

1*n

2*n

3*n

4*n

5*n

6*n

7*n

(n-2)*n

(n-1)*nLTOP

LBOTTOM

(n-1)*n-1

n -12

LLEFT LRIGHT
Figure 3.1: Assignment of ordinal numbers to pairs of integers (i, j).

Figure 3.2: Spatial quanta and spatial objects.

It is said that
− (i+1, j) is to the east of (i, j) and that
− (i, j+1) is to the north of (i, j).

It is noticed that if k is the ordinal number of (i, j) then
− k+1 is the ordinal number of (i+1, j) and
− k+n is the ordinal number of (i, j+1).

Using this, if p denotes a pair (i, j) with ordinal number k then

 61

− pE denotes the pair (i+1, j) whose ordinal number is k+1,
− pNE denotes the pair (i+1, j+1) whose ordinal number is k+n+1,
− pN denotes the pair (i, j+1) whose ordinal number is k+n.

The pairs p, pE, pNE, and pN are called corner pairs.

As an example, Figure 3.2 shows that if ord(p) = 16 then ord(pE) = 17,
ord(pNE) = 32, ord(pN) = 31 and p, pE, pNE, pN are corner pairs.

Three types of spatial quanta are now defined.

Definition 3.1: The singleton Pk = {k | k ∈ 2nI } is called a 2-dimensional (2-
d) spatial point or a 2-d quantum point or simply point.
The set of all quantum points is denoted as QPOINT. The following are also
defined:

− The geometric representation of Pk is that of k.
− The coordinates (horizontal, vertical) of Pk are those of k, i.e.

h_coord(Pk) ≡ h_coord(k) and v_coord(Pk) ≡ v_coord(k).
− The ordinal number of Pk is that of its coordinates, i.e.

ord(Pk) ≡ ord(h_coord(Pk), v_coord(Pk)).

The east, north and northeast point of Pk are denoted, respectively, PEk, PNk
and PNEk, i.e PEk ≡ Pk+1, PNk ≡ Pk+n and PNEk ≡ Pk+n+1. P, PEk, PNk, and PNEk are
corner points. On a system of orthogonal coordinates a spatial point is
conventionally denoted only by its ordinal number (Figure 3.1).

Definition 3.2: Let Pk, PEk ∈ QPOINT, i.e. the coordinates of one of them are (i,
j) and those of the other are (i+1, j). Then the set

Hk ≡ {(x, y) ∈ R2 | i ≤ x ≤ i+1 ∧ y = j }
is a pure horizontal quantum line.
Similarly, if Pk and PNk ∈ QPOINT, i.e. the coordinates of one of them are (i, j)
and those of the other are (i, j+1), then the set

Vk ≡ {(x, y) ∈ R2 | x = i ∧ j ≤ y ≤ j+1}
is called a pure vertical quantum line.
Finally, pure quantum line is called any pure horizontal or any pure vertical
quantum line.
Note in the above definitions that the index k of a pure horizontal (vertical)
line Hk (Vk) matches that of point Pk. The set of all pure horizontal (pure
vertical) quantum lines is denoted QPH (QPV). The set of all pure quantum
lines is denoted QPL.

By definition, a pure quantum line consists of an infinite number of R2
elements.

 62

The points Pk and PEk (Pk and PNk) of a horizontal (vertical) pure quantum line
are its end points. Alternatively, a pure quantum line is denoted as qlp,q, where
p and q are the ordinal numbers of its end points. By definition, qlp,q = qlq,p,
i.e. no direction is considered. A pure quantum line qlp,q can geometrically be
interpreted as a line segment. Hence, (a) and (b) in Figure 3.2 are two pure
quantum lines, a pure horizontal quantum line, ql183,184, and a pure vertical
quantum line, ql187,202.

Definition 3.3: Let Pk and PEk, PNEk and PNk be four corner points. Then the
set

Sk ≡ {(x, y) ∈ R2 | i ≤ x ≤ i + 1 ∧ j ≤ y ≤ j+1 }
is called a pure quantum surface.
The set of all pure quantum surfaces is denoted as QPS.

Note in this definition that the index k of a pure surface Sk matches that of
point Pk. By definition, a pure quantum surface consists of an infinite number
of R2 elements.

Alternatively, a pure quantum surface is denoted as qsp,q,r,s, where p, q, r and s
is a clockwise or a counter-clockwise order of the ordinal numbers of the
points Pk, PEk, PNEk and PNk. Hence, qsp,q,r,s, qsq,r,s,p, qss,r,q,p are equivalent
notations of the same pure quantum surface, i.e. no direction is considered
again. A pure quantum surface can geometrically be interpreted as a square.
Hence, Figure 3.2(c) depicts a pure quantum surface, qs191,192,207,206. The points
Pk, PEk, PNEk and PNk are called the corners of Sk. The quantum lines Hk,
HNk,Vk and VEk are called the sides of Sk.

Definition 3.4: QLINE ≡ QPL ∪ QPOINT is called the set of all quantum lines.

Definition 3.5: QSURFACE ≡ QPS ∪ QLINE is called the set of all quantum
surfaces.

By definition, QSURFACE consists of all the pure quantum surfaces, of all the
pure quantum lines and of all the pure quantum points. Due to this, an element
in QSURFACE is called quantum of space or spatial quantum and QSURFACE is
alternatively denoted as QGEO.

Definition 3.6: If q is a quantum other than point, it is defined that
ord(q) ≡ ord(Pk).

Hence, ord(Hk) = ord(Vk)= ord(Sk) ≡ ord(Pk) = k.

 63

3.3 Data Types for Space

Based on the concept of spatial quanta, a series of data types for space are
now defined. A spatial object consists in general of an infinite number of R2
elements, but it is composed of only spatial quanta. Before the formalism is
given, preliminary definitions for quantum set and spatial connectivity are
provided.

Definition 3.7: If ∅ ≠ S = q1 ∪ q2 ∪ … ∪ qn ⊂ R2, where qi ∈ QGEO ∀ i = 1,
2, …, n, S is called a quantum set.

Conventionally, the notation g = g1g2 … gn is used in the sequel in place of
g = g1 ∪ g2 ∪ … ∪ gn.

Definition 3.8: A quantum set S ⊂ R2 is called connected iff for every pair of
reals x, y ∈ S there exists a sequence of spatial quanta q1, q2, ..., qn ⊆ S that
satisfies the following two properties:

(i) x ∈ q1 and y ∈ qn.
(ii) qi ∩ qi+1 ≠ ∅ for i = 1, 2, …, n-1.

Based on this definition, spatial data types are now formalized.

Definition 3.9: Let g be a non-empty, connected quantum set. It is then
defined that g is of a (2-d spatial) type

− POINT ⇔ iq g ≡ , qi ∈ QPOINT.
− PLINE ⇔ ,q g i iU≡ qi ∈ QPL.
− LINE ⇔ ,q g i iU≡ qi ∈ QLINE.
− PSURFACE ⇔ ,q g i iU≡ qi ∈ QPS.
− SURFACE ⇔ ,q g i iU≡ qi ∈ QSURFACE.

An element of one of the above types is called, respectively, (2-d spatial)
point, pure line, line, pure surface and surface.

Figure 3.2 depicts the geometric interpretation of the following spatial
objects:

Points: {0}, {2}, ..., {224}.
Pure lines: (a), (b), (d) (e). Object (d) is the union of four pure quantum
lines.
Lines: Any of the previous pure lines and points.
Pure surfaces: (c), (f) and (g). Object (f) is the union of eleven pure
quantum surfaces. Object (g) is a surface with a hole. A relevant
predicate is defined later in Section 3.4.

 64

Surfaces: Any of the above pure surfaces, any of the above lines and
(h). Object (h) is a hybrid surface. A relevant predicate is defined later
in Section 3.4.

Some remarks, on Definitions 3.7 - 3.9 are the following.

1. A point is not an element; it is a unary set. Defining it as a set is
due to the fact that points are practically involved in set operations,
as will also be seen in the next chapter.

2. A spatial object of a PLINE type is also of a SURFACE type.
Hence, it is said that a pure line is also a degenerate pure surface.

3. A spatial object of a POINT type is also of both a LINE type and
of a SURFACE type. Hence, it is said that a point is also a
degenerate pure line and a degenerate pure surface.

SURFACE

POINT

PSURFACE

LINEPLINE

isa

isa

isa

isa

Figure 3.3: Data types for space.

It is noted that in cartography it is meaningless to consider a line from which
some point is missing, whether it is an end point or not. Similarly, it is
meaningless to consider a surface from which some point or line is missing.
The formalism undertaken has taken particular provision for this property to
be satisfied. Hence, the following property is satisfied:

4. By definition, all the spatial objects are closed.

The term closed set is assumed to be known from mathematics. Note that
remarks 2, 3 and 4 match human perception. Figure 3.3 illustrates the
relationship between all the spatial data types.

Two spatial objects of particular interest are used in subsequent chapters,
gSURF_ALL and gLINE_OUT, defined as follows:

gSURF_ALL = S0S1S2 … S(n-1)*n-2 = ∪iSi, where Si ∈ QPS.

 65

Hence, gSURF_ALL is the union of all the quanta (Figure 3.1).

gLINE_OUT = LBOTTOMLRIGHTLTOPLLEFT
where

− LBOTTOM = H0H1… Hn-2,
− LTOP = H(n-1)*nH(n-1)*n+1… 2-n 2H ,
− LLEFT = V0Vn... V(n-2)*n,
− LRIGHT = Vn-1V2*n-1...V(n-1)*n-1,

are shown in Figure 3.1.

3.4 Predicates

Providing definitions for a complete set of predicates is beyond the objectives
of this thesis. Hence, the definitions below restrict only to those that are either
necessary for the subsequent formalism or are used in examples. Initially,
however, a total ordering on spatial quanta and two canonical representations
of spatial objects are defined.

Definition 3.10: If q1, q2 are spatial quanta it is defined that
q1 <> q2 ⇔ ¬(q1 = q2).

Definition 3.11: Let q1, q2 ∈ QSURFACE. If ord(q1) <> ord(q2) then it is defined
that

q1 < q2 ⇔ ord(q1) < ord(q2).
If ord(q1) = ord(q2) it is defined that

q1 < q2 ⇔ (q1 ∈ QPOINT ∧ q2 ∈ QSURFACE − QPOINT) ∨
(q1 ∈ QPH ∧ q2 ∈ QSURFACE − QPOINT ∪ QPH) ∨
(q1 ∈ QPv ∧ q2 ∈ QPS).

By definition, it follows that
Pi < Hi < Vi < Si < Pi+1 < Hi+1 < Vi+1 < Si+1.

Definition 3.12: Let g be a spatial object and let Lg = <q1, q2, ..., qn> be a list
of spatial quanta that satisfies the following properties:

(i) qi ∈ Lg ⇔ qi ⊆ g ∀ i = 1, 2, ..., n.
(ii) qi ≠ qj ∀ i, j = 1, 2, ..., n, i ≠ j.
(iii) qi < qi+1 ∀ i = 1, 2, ..., n-1.

Then Lg is called the maximal canonical form of g and is denoted as Lg =
maxcform(g).

Definition 3.13: Let g be a spatial object and let Lg = <q1, q2, ..., qn> be a list
of spatial quanta that satisfies the following properties:

 66

(i) qi ∈ Lg ⇔ qi ⊆ g ∀ i = 1, 2, ..., n.
(ii) qi ≠ qj ∀ i, j = 1, 2, ..., n, i ≠ j.
(iii) qi < qi+1 ∀ i = 1, 2, ..., n-1.
(iv) (∀qi ∈ Lg)(∀qj ∈ Lg, i ≠ j) (qi ⊄ qj).

Then Lg is called the minimal canonical form of g and is denoted as Lg =
mincform(g) or simply Lg = cform(g).

It should be obvious that for a given g, both of these forms are uniquely
defined. Moreover, each of them can be obtained from the other. For example,
cform(g) can be obtained from maxcform(g) by applying the following steps:

S1: Let L = maxcform(g).
S2: Eliminate Pk from L if any of Hk, Hk-1, Vk, Vk-n, Sk, Sk-1, Sk-n, Sk-n-1 is

present.
S3: Eliminate Hk from L if any of Sk, Sk-n is present.
S4: Eliminate Vk from L if any of Sk, Sk-1 is present.

Definition 3.14: The number of quanta in cform(g) is called the string_length
of g and it is denoted as string_length(g).

If cform(g) = <q1q2...qn> then g[i] is used to denote the i-th spatial quantum
within cform(g), i.e.

g[i] = qi, i= 1, 2, ..., n.

Based on the above definitions, a number of spatial predicates are now
defined.

• If g1 and g2 are spatial objects, it is defined that
g1 = g2⇔ (∀ q ∈ QSURFACE)((q ⊆ g1 ⇒ q ⊆ g2) ∧ (q ⊆ g2 ⇒ q ⊆ g1)).

The validity of the following corollary is obvious.

Corollary 3.1: If g1, g2 are spatial objects then
g1 = g2 ⇔ cform(g1) = cform(g2)

 ⇔ (string_length(g1) = string_length(g2) = n) ∧ (g1[i] = g2[i], i = 1, 2, ..., n).

• g1 <> g2 ⇔ ¬(g1 = g2).

Based on these two predicates, a total ordering on spatial objects can be
defined in terms of the total ordering on spatial quanta. It can easily be
verified that the definition matches the total ordering on character strings in
terms of the total ordering on characters.

• Let g1, g2 be two spatial objects, g1 <> g2 and let string_length(g1) = m,
string_length(g2) = n. It is then defined that

 67

g1 < g2 ⇔ (g1[1] < g2[1]) ∨
(∃ k, 1 ≤ k < min(m, n))

(g1[i] = g2[i], i = 1, 2, ..., k ∧ g1[k+1] < g2[k+1]) ∨
(g1[i] = g2[i], i = 1, 2, ..., m) ∧ (m < n).

As an example, assume that n = 15 (Figure 3.2). Then an ordering of some
spatial objects (not shown in the figure), is the following:

H0H1 < H0H1H2 < H0V1 < H0V1H16H17 < S1H2H3.

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

(a) Valid and invalid linessimple (b) Valid and invalid linescircular

invalid

valid

invalid

invalid

valid

invalid

Figure 3.4: Examples of valid and invalid simple and circular lines.

Based on the above, the following predicates between spatial objects are also
defined:

• g1 <= g2 ⇔ (g1 < g2) ∨ (g1 = g2).

• g1 > g2 ⇔ ¬(g1 <= g2).

• g1 >= g2 ⇔ ¬(g1 < g2).

Two more predicates of practical interest are the following:

• g1 cp g2 ⇔ g1 ∩ g2 ≠ ∅ (g1 and g2 have common points).

• g1 disjoint g2 ⇔ g1 ∩ g2 = ∅.

The unary predicates below enable determining whether a spatial object is of a
particular data type. This functionality is useful in retrievals.

• is_point(g) ⇔ g ∈ POINT.

• is_pure_line(g) ⇔ g ∈ PLINE.

• is_line(g) ⇔ g ∈ POINT ∨ g ∈ PLINE.

• is_pure_surface(g) ⇔ g ∈ PSURFACE.

• is_surface(g) ⇔ g ∈ SURFACE.

 68

• is_hybrid_surface(g) ⇔ g ∈ SURFACE ∧ g ∉ LINE ∪ PSURFACE.

If card(A) denotes the cardinality of a set A, the following two predicates
determine whether a pure line is simple or circular.

• is_simple(g) ⇔
g ∈ PLINE ∧ (∀ p ∈ QPOINT, p ⊂ g)(card({q | q ∈ QPL ∧ q ⊆ g ∧ p ⊂ q})≤2).

• is_circular(g) ⇔
g ∈ PLINE ∧ (∀ p ∈ QPOINT, p ⊂ g)(card({q | q ∈ QPL ∧ q ⊆ g ∧ p ⊂ q})=2).

According to the first definition, a pure line g is simple iff every quantum
point of it belongs to at most two quantum lines that are subsets of g.
Similarly, a pure line is circular iff every quantum point of it belongs to
exactly two quantum lines that are subsets of g. Examples of valid and invalid
simple and circular lines are shown in Figure 3.4.

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gINSULATOR

g1 g2

g4

g3

g5

gCONDUCTOR

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gLINE_OUT

gSURF_ALL

g1

g2

g3

g4

g5

g6

g7

(a) (b)
Figure 3.5: Illustration of functionality of predicate conductive.

If g1, g2, gCONDUCTOR and gINSULATOR are spatial objects of any type, the next
predicate enables determining whether there is a path from g1 to g2 in
gCONDUCTOR, which does not cross gINSULATOR.

• conductive(gA, gB, gCONDUCTOR, gINSULATOR) ⇔
there exists a sequence of quanta q1, q2, ..., qn ⊆ gCONDUCTOR which
satisfies the following three conditions:
(i) q1 ⊆ gA.
(ii) qn ⊆ gB.
(iii) (∀i, 1≤ i ≤ n−1)(∅ ≠ qi ∩ qi+1 ⊆/ gINSULATOR).

Considering therefore the objects in Figure 3.5(a), it follows that
conductive(g1, gB, gCONDUCTOR, gINSULATOR)

evaluates to true if gB = g2. If gB is any of g3, g4 g5 the predicate evaluates to
false. As should be obvious from the definition, the first two objects may be
interchanged, i.e.

 69

conductive(gA, gB, gCONDUCTOR, gINSULATOR) =
conductive(gB, gA, gCONDUCTOR, gINSULATOR).

The objects do not have to be distinct. Hence, for i = 1, 2, 3,
conductive(gi, gi, gCONDUCTOR, gINSULATOR)

evaluates to true but for i = 4, 5, it evaluates to false. Similarly,
conductive(gA, gINSULATOR, gCONDUCTOR, gINSULATOR)

always evaluates to false. More generally, the objects may have points in
common. Hence, if gB ⊆ gINSULATOR then

conductive(gA, gB, gCONDUCTOR, gINSULATOR)
always evaluates to false. Finally, the objects can be of any data type. For
example, if gLINE_OUT and gSURF_ALL are the spatial objects defined in Section
3.3 then, for the objects in Figure 3.5(b),

conductive(gi, gLINE_OUT, gSURFACE_ALL, g1)
evaluates to true for i = 5, 6, 7, but it evaluates to false for i = 2, 3, 4.

The next predicate is defined in terms of conductive and is of spatial interest,
as is witnessed by its name.

• g1 surrounds g2 ⇔ ¬conductive(g2, gLINE_OUT, gSURF_ALL, g1).
Hence, for the objects in Figure 3.5(b),

g1 surrounds gi
evaluates to true for i = 2, 3, 4, but it evaluates to false for i = 5, 6, 7. Note
that, as opposed to conductive,

g1 surrounds g2 ≠ g2 surrounds g1 .

Based on the previously defined predicates, another one is the following:

• has_holes(g) ⇔ (is_pure_surface(g) ∨ is_hybrid_surface(g)) ∧
(∃ qs ∈ QPS)((g surrounds qs) ∧ (qs ⊆/ g)).

3.5 Functions

Providing definitions for a complete set of functions is also beyond the
objectives of this thesis. Hence, the definitions below restrict only to those
that are either necessary for the subsequent formalism or are used in
examples.

Function ord has been defined for any spatial quantum. Functions h_coord
and v_coord have been defined only for a point Pk and are now extended, so
as to apply to any spatial quantum.

• If q is any of Hk or Vk or Sk, it is defined that
h_coord(q) = h_coord(Pk),
v_coord(q) = v_coord(Pk).

 70

The next function enables obtaining a spatial point from a pair of integers:

• form_point(i, j) = Pk ⇔ k = n*j +1 ∧ 0 ≤ k ≤ n2-1.

Finally, functions can be defined that return not only any of Pk, Hk, Vk, Sk
from any of the others but also points, pure horizontal lines, pure vertical lines
and surfaces that are to the east, west, north, south etc of these quanta.

Definition 3.15: Given two spatial data types DT1 and DT2, their least
common supertype, lcs(DT1, DT2), is defined as the data type DT that satisfies
the following two properties:

(i) DT1 ∪ DT2 ⊆ DT.
(ii) If DT1 ∪ DT2 ⊆ DT´ and DT´ ≠ DT then DT ⊂ DT´.

For example,
lcs(POINT, PLINE) = LINE.
lcs(PLINE, PSURFACE) = SURFACE.
lcs(PLINE, PLINE) = PLINE.

Given that the least common supertype of the data types of any two objects g1
and g2 is always defined uniquely (Figure 3.3), it is said that g1 and g2 are
spatially compatible. This enables involving spatial objects of distinct types in
binary set operations such as union, except and intersect. In spite of this, the
following type transformation functions are defined, which can be useful in
operations (see relevant discussion on operation Compute, in Definition 4.18).

• to_point(g) = g ⇔ is_point(g).

• to_pure_line(g) = g ⇔ is_pure_line(g).

• to_line(g) = g ⇔ is_line(g).

• to_pure_surface(g) = g ⇔ is_pure_surface(g).

• to_surface(g) = g ⇔ is_surface(g).

• If Pk1, Pk2 are points with coordinates (ik1, jk1), (ik2, jk2), respectively,
their Euclidian distance is defined as the real number
distance(Pk1, Pk2) = 2

k1k2
2

k1k2)j - (j)i - (i + .

To extend this function so as to apply to any two spatial objects, one
definition is first given, that returns all the pure quanta of a given type that are
subsets of g.

Definition 3.16: If g is a spatial object then
qpoints(g) ≡ {q | q ⊆ g ∧ q ∈ QPOINT}
qplines(g) ≡ {q | q ⊆ g ∧ q ∈ QPL}
qpsurfaces(g) ≡ {q | q ⊆ g ∧ q ∈ QPS}

 71

• Now let gA and gB be two spatial objects. It is then defined that
distance(gA, gB) = min(distance(iAP ,

iBP)),

where iAP ∈ qpoints(gA) and
iBP ∈ qpoints(gB).

Similarly, the next function enables retrieving the greatest distance between
one point in gA and another in gB.

• greatest_distance(gA, gB) = max(distance(iAP ,
iBP)).

In a similar manner, it is possible to obtain the coordinates, and subsequently
define the minimum bounding rectangle of an object g.

If card(A) denotes the cardinality of a set A the following functions are
defined:

• length(g)=card({q | q ⊆ g ∧
 q ∈ QPLINE ∧
 (∀q’ ⊆ g)(q’ ∈ QSURFACE)(q ⊄ q’)}).

• area(g) = card(qpsurfaces(g)).

The first function returns the number of pure line quanta that are subsets of g
but, at the same time, they are not subsets of pure surfaces of g. The second
one returns the number of pure surfaces that are subsets of g. By definition,
these functions can be applied to a spatial object of any data type. However, if
g is either a point or a pure surface then length(g) = 0. Similarly, if g is either
a point or a pure line then area(g) = 0.

3.6 Operations

In this section, operations between sets of spatial objects are formalized. From
the way they are defined, it is guaranteed that the result set consists of closed
objects. Moreover, the results obtained match those of the relevant
mathematical definitions. Use of these operations is made in the definition of
Relational Algebra operations.

Definition 3.17: The spatial union of two sets of spatial objects
r} ..., 2, 1, i|{g S iAA == and s} ..., 2, 1, j|{g S jBB == is a set
n} ..., 2, 1, k |{g S kU == of disjoint spatial objects, defined as follows: For a

quantum q ∈ QSURFACE and a given k ∈ I, 1 ≤ k ≤ n,
q ⊆ kUg ⇔ (∃i, 1 ≤ i ≤ r)(q ⊆ iAg) ∨ (∃j, 1 ≤ j ≤ s)(q ⊆ jBg).

 72

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gA1 gA2

gB1

gB2

gB6

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gU1

gA4

gB3

gB4

gB5

gA6

gA5
gU2

gU3 gU4

gU5

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gE 2 gE 5

gE 1 gE 3

(a) S = {g }, S = {g }A Ai B Bj (b)
of S and S

spatial union
A B

(c)
of S
spatial difference

B from SA

3gA

4gE

8gE

gE 7

9gE

6gE

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gE 16

gE12

gE 13

gE18

gE 10

(d)
of
spatial difference

 from S SA B

gE 17

gE11

gE14
gE15

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gI7

(e)
of and

spatial intersection
S SA B

gI8

gI1 gI3

gI10

gI4 gI5 gI6

gI11

gI9

gI2

Figure 3.6: Illustration of spatial union, difference and intersection.

For an example, consider any pair of the spatial objects gA and gB in Figure
2.9. Then the respective spatial union of {gA} and {gB} is also shown in the
same figure. For another example, let SA and SB be the sets of spatial objects
in Figure 3.6(a). Then their spatial union consists of the objects whose
geometric representation is shown in Figure 3.6(b).

 73

Definition 3.18: The spatial difference of a set of spatial objects
s} ..., 2, 1, j|{g S jBB == from another set r} ..., 2, 1, i|{g S iAA == is a set
n} ..., 2, 1, k |{g S kD == of disjoint spatial objects, defined as follows:

For a quantum q ∈ QSURFACE and a given k ∈ I, 1 ≤ k ≤ n,
q ⊆ kDg ⇔ (∃q’ ∈ QSURFACE) ((q ⊆ q’) ∧ (q’ ⊆ iAg) ∧ (q’ ⊆/ jBg)).

Note that, due to the definition, if SA = {gA}, SB = {gB}, gA is a pure surface
and gB is either a pure line or a point then the spatial difference of SB from SA
always matches SA (i.e. it does not matter whether gA and gB have points in
common). The same is also true if gA is a pure line and gB is a point. Finally,
the same is also true if gA is, for example, a pure horizontal line and gB is a
vertical line. Contrary to this, if gA is a point and gB is either a pure surface or
a pure line and gA ⊂ gB then S = ∅. Similarly, if gA is a pure line, gB is a pure
surface and gA ⊂ gB then, again, S = ∅. In either case, the result is either the
empty set or it consists of closed spatial objects. This functionality is
demonstrated by the examples below.

Consider any pair of the spatial objects gA and gB in Figure 2.10. Then the
respective spatial difference of {gB} from {gA} is also shown in the same
figure. For another example, let SA and SB be the sets of spatial objects in
Figure 3.6(a). Then the spatial difference of SB from SA consists of the objects
whose geometric representation is shown in Figure 3.6(c) and the spatial
difference of SA from SB consists of the objects whose geometric
representation is shown in Figure 3.6(d).

Definition 3.19: The spatial intersection of two sets of spatial objects
r} ..., 2, 1, i|{g S iAA == and s} ..., 2, 1, j|{g S jBB == is a set

n} ..., 2, 1, k |{g S kI == of disjoint spatial objects, defined as follows: For a
quantum q ∈ QSURFACE and a given k ∈ I, 1 ≤ k ≤ n,

q ⊆ kIg ⇔ (∃i, 1 ≤ i ≤ r)(q ⊆ iAg) ∧ (∃j, 1 ≤ j ≤ s)(q ⊆ jBg).

For an example, consider any pair of the spatial objects gA and gB in Figure
2.11. Then the respective spatial intersection of {gA} and {gB} is also shown
in the same figure. For another example, let SA and SB be the sets of spatial
objects in Figure 3.6(a). Then their spatial intersection consists of the objects
whose geometric representation is shown in Figure 3.6(e).

Definition 3.20: The spatial complementation of a set of spatial objects
s} ..., 2, 1, j|{g S jBB == is a set n} ..., 2, 1, k |{g S kC == of disjoint spatial

objects, which matches the spatial difference of SB from SA = {gSURF_ALL}.

As an example, if SB is the set of spatial objects whose geometric
representation is shown in Figure 3.7(a), then its spatial complementation

 74

consists of the spatial objects whose geometric representation is shown in
Figure 3.7(b). It is worth noticing that the spatial complementation of
gSURF_ALL is the empty set. This result matches fully the complementation of
the base set in mathematics. Notice also that if SB consists of spatial objects of
either a POINT or PLINE type then its spatial complementation is
S = {gSURF_ALL}. Note finally that the result of this operation is either the
empty set or it consists of closed spatial objects.

(c) .spatial boundary

(a) Input spatial objects. (b) .spatial complementation

g2

g3

g4

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gB1

gB2
gB3

gB4

gB5

gB6

g1

g5

g6

gC1

gC2

Figure 3.7: Illustration of spatial complementation and boundary.

Definition 3.21: If r} ..., 2, 1, i|{g S iAA == and s} ..., 2, 1, i|{g S
iBB == is

its spatial complementation then the spatial boundary of SA (and also of SB) is
a set of disjoint spatial objects defined as the spatial intersection of SA with
SB.

As an example, if SA is the set of spatial objects whose geometric
representation is shown in Figure 3.7(a), then its spatial boundary consists of
the objects whose geometric representation is shown in Figure 3.7(c). The
following observations are worth noticing:

(i) If SA consists of only points and pure lines, its spatial boundary is
again SA. This matches fully the mathematical definition of the
boundary of a set of points and lines.

 75

(ii) If g2 is the spatial object in Figure 3.7(a) then the spatial boundary
of {g2} is the set {gB3}, whose geometric representation is shown
in Figure 3.7(c). As can be seen, gB3 does not contain any of the
pure quantum lines V134, V149.

(a) (b)

g3

g4

g5

g6

g2

g7

gE3 gE4

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

g1 gE1

gE6

gE2

gE5

Figure 3.8: Illustration of spatial envelope.

(a) (b)
14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

g1

g2 g3

g4

gB1

gB2

gB3

Figure 3.9: Illustration of spatial buffer.

Definition 3.22: The spatial envelope of a set of spatial objects
r} ..., 2, 1, i|{g S iAA == is a set n} ..., 2, 1, k |{g S kE == of disjoint spatial

objects, defined as follows: For a quantum q ∈ QSURFACE and a given k ∈ I, 1
≤ k ≤ n,

q ⊆ kEg ⇔ (∃i, 1 ≤ i ≤ r)(iAg surrounds q).
As an example, if SA consists of the spatial objects whose geometric
representation is shown in Figure 3.8(a) then its spatial envelope consists of
the spatial objects whose geometric representation is shown in Figure 3.8(b).

Definition 3.23: The spatial buffer of a set of spatial objects
r} ..., 2, 1, i|{g S iAA == , within a distance of d ∈ R, d > 0, is a set

 76

n} ..., 2, 1, k |{g S kB == of disjoint spatial objects, defined as follows: For a
quantum q ∈ QPS and a given k ∈ I, 1 ≤ k ≤ n,

q ⊆ kBg ⇔ (∃i, 1 ≤ i ≤ r)(distance(iAg , q) < d).

As an example, if SA = {g1}, where the geometric representation of g1 is
shown in Figure 3.9(a) then its spatial buffer within a distance of 4 is {gB1},
shown in Figure 3.9(b). Similarly, if SB = {gi | i = 2, 3, 4}, where the
geometric representation of gi is shown in Figure 3.9(a), then its spatial buffer
within a distance of 1 is S = {gBk | k = 2, 3}, where gBk are shown in Figure
3.9(b).

3.7 Conclusions

A set of spatial data types have been defined that enable the discrete
representation of 2-d spatial objects. The characteristics of these types can be
summarized as follows:

− A spatial object is a connected closed subset of R2.
− A spatial object is the union of a finite number of subsets of R2, namely

quanta of space. To the best of this author’s knowledge, such quanta
have not been considered in any other spatial data modelling approach.

− The empty set is not a spatial object.
− The POINT, PLINE and PSURFACE types match human perception.

In this sense, it is estimated that they are user friendly.
− The objects are spatially compatible. This enables objects of distinct

types to be involved in set operations such as union, except and
intersect.

− Beyond points, pure lines and pure surfaces, spatial objects of practical
interest are also supported, hybrid surfaces.

− Although the formalism considers 2-d spatial objects, its generalization
to n-d spatial objects is straightforward.

In conclusion, the spatial data types defined in this chapter satisfy all the
relevant properties specified in Section 2.8. Finally, operations between sets
of spatial objects have been defined.

CHAPTER 4

FORMALISM FOR SPATIAL DATA
MANAGEMENT

4.1 Introduction

A relational algebra is formalized in this chapter, which enables the
management of 2-d spatial objects [LTV99, LVT99, LVT00]. The algebra
consists of just few kernel operations, in that only two more, Unfold and Fold,
had to be added to the five primitive operations of Codd’s relational algebra
[Co70, Co72]. Hence, all the remainder operations are defined in terms of
seven kernel operations. The formalism satisfies the properties specified in
Section 2.8 that are related to the management of spatial data. Some properties
of the operations defined in this chapter can be found in Appendix A.
Although the model is database-centric, it provides the necessary functionality
for the management of thematic maps [SV89]. The remainder of this chapter
can be outlined as follows. The valid data structures of the model are defined
in Section 4.2. Relational operations are formalized in Section 4.3. Finally,
conclusions are drawn in the last section.

4.2 Data Structures

A relation is defined in the known way, except that the underlying domain of
one or more of its attributes can now be of some spatial data type.

Definition 4.1: If A1, A2, ..., An are distinct names and DT1, DT2, ..., DTn, are
names of data types, not necessarily distinct, then a relation R with scheme
R(A1 | DT1, A2 | DT2, …, An | DTn) is defined as a finite subset of DT1 × DT2
× ... × DTn.

Hence a relation consists of elements of the form ti = (ai1, ai2, ..., ain), where aij
∈ DTj for all j = 1, 2, …, n. It is said that aij is the value of tuple ti for attribute
Aj and that DTj is the domain of Aj. By definition, a spatial data type may be

 78

the domain of more than one attribute. In case that the domain of the attributes
is immaterial, the relation scheme is denoted either as R(A1, A2,…, An) or as
R(A), where A represents a set of one or more attributes. G, perhaps
subscripted, is used to denote an attribute of some spatial data type. Hence,
R(A, G) denotes a relation scheme with attributes A ∪ {G}. In this case A
may be the empty set. By R(A, G) it is not necessarily assumed that G is the
last attribute of R. Finally, (a, g) denotes a tuple of a relation with scheme
R(A, G), where a denotes the values of the tuple for attributes A and g is the
value (spatial object) of the tuple for attribute G. To ease discussion, a relation
with at least one attribute of a spatial type is called spatial relation. Such an
example is the relation in Figure 4.1(a) whose scheme is

R(Name | CHAR(20), G | SURFACE).
As can be seen in Figure 4.1(b), the geometric representation of the objects
recorded in attribute G is a point, a pure line and a pure surface.

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

Marathon lake

Aoos river

Crystal spring

Name G

Marathon lake
Aoos river
Crystal spring

g
g
g

1

2

3

R

(a) (b)
Figure 4.1: Spatial objects within a relation and their geometric

representation.

One relation of particular interest is SURF_ALL(G | SURFACE), which
contains a single tuple t = (gSURF_ALL), where gSURF_ALL is the spatial object
defined in Section 3.3. SURFACE has been defined as the domain of G
because (i) it is the most general type and (ii) SURF_ALL is used in a series
of operations where union-compatibility (defined in the next section) is a
requirement.

4.3 Relational Algebra Operations

The relational algebra operations are formalized in this section. The general
syntax of a unary relational operation is

S = Operation[Parameters](R),

 79

where Operation is the operation name, R is the relation to which Operation
is applied and S is the result relation. Parameters vary from one operation to
another. Similarly, the general syntax of a binary operation is

S = R1 Operation[Parameters] R2
where now R1 and R2 are the relations to which Operation is applied.
Parameters may be missing in some binary operations. The operations defined
in this chapter are listed in Figure 4.2.

Operation Name
Scheme of

Input
Relation(s)

Syntax
Scheme of

Output
Relation

Remarks

Union R1(A), R2(A) R1 Union R2 S(A)
Except R1(A), R2(A) R1 Except R2 S(A)
Project R(A, B) Project[A](R) S(A)
Select R(A) Select[F](R) S(A) F is a wff
Product R1(A), R2(B) R1 Product R2 S(A, B) A ∩ B = ∅
Intersect R1(A), R2(A) R1 Intersect R2 S(A)

Inner Theta Join R1(A), R2(B) R1 ITJoin[F] R2 S(A, B) F is a wff
A ∩ B = ∅

Inner Natural Join R1(A, C), R2(C, B) R1 INJoin R2 S(A, C, B) A ∩ B = ∅
Left Natural Join R1(A, C), R2(C, B) R1 LNJoin R2 S(A, C, B) A ∩ B = ∅
Right Natural Join R1(A, C), R2(C, B) R1 RNJoin R2 S(A, C, B) A ∩ B = ∅
Full Natural Join R1(A, C), R2(C, B) R1 FNJoin R2 S(A, C, B) A ∩ B = ∅
Unfold R(A, G) Unfold[G](R) S(A, G)
Fold R(A, G) Fold[G](R) S(A, G)
Quantum Union R1(A, G), R2(A, G) R1 QUnion[G] R2 S(A, G)
Quantum Except R1(A, G), R2(A, G) R1 QExcept[G] R2 S(A, G)
Quantum Intersect R1(A, G), R2(A, G) R1 QIntersect[G] R2 S(A, G)
Pair-Wise Union R1(A, G), R2(B, G) R1 WUnion[G] R2 S(A, B, G) A ∩ B = ∅
Pair-Wise Except R1(A, G), R2(B, G) R1 WExcept[G] R2 S(A, B, G) A ∩ B = ∅
Pair-Wise Intersect R1(A, G), R2(B, G) R1 WIntersect[G] R2 S(A, B, G) A ∩ B = ∅
Inner Overlay R1(A, G), R2(B, G) R1 IOverlay[G] R2 S(A, B, G) A ∩ B = ∅
Left Overlay R1(A, G), R2(B, G) R1 LOverlay[G] R2 S(A, B, G) A ∩ B = ∅
Right Overlay R1(A, G), R2(B, G) R1 ROverlay[G] R2 S(A, B, G) A ∩ B = ∅
Full Overlay R1(A, G), R2(B, G) R1 FOverlay[G] R2 S(A, B, G) A ∩ B = ∅
Complementation R(A, G) Complementation[G](R) S(A, G)
Boundary R(A, G) Boundary[G](R) S(A, G)
Envelope R(A, G) Envelope[G](R) S(A, G)
Compute R(A) Compute[Ci = fi(Ai)](R) S(A, Ci) Ai ⊆ A
Buffer R(A, D, G) Buffer[D, G](R) S(A, D, G)
Replicate R(A, Bi) Replicate[Bi’:Bi](R) S(A, Bi, Bi’)

Figure 4.2: List of relational algebra operations defined.

One requirement of some binary operations is that the relations, which are
involved in them, must be union-compatible. Hence, the relevant definition is
given below.

 80

Definition 4.2: Two n-ary relations R1 and R2 are union-compatible iff for all
i, 1 ≤i ≤n, the name of the i-th attribute of the first relation matches that of the
i-th attribute of the second and both of these attributes have the same
underlying domain.

It is recalled that all the spatial types defined in this thesis are spatially
compatible (Section 3.5). To comply however with the requirement of union-
compatibility, it is occasionally necessary to transform two distinct such types
to their least common supertype (Definition 3.15). This is achieved by the use
of operation Compute (see later Definition 4.18).

As a final remark, it is noted that, occasionally, it is necessary to assign a new
name to the attribute of a relation. A back arrow (←) is used for this purpose.
Hence, R(G1 ← G) means that attribute G of relation R is renamed to G1.
Such a renaming may appear in a relational algebra expression in which R is
involved. The assumption is that the renaming occurs before the relational
algebra expression is evaluated.

4.3.1 Conventional Operations

The model includes all the well-known algebraic operations of Codd’s
relational algebra [Co70, Co72, Co79]. The five primitive operations are
defined as follows.

Definition 4.3: Given two union-compatible relations with scheme R1(A) and
R2(A), operations Union and Except (Difference) are defined as follows:

U = R1 Union R2 has scheme U(A) and extension {t | t ∈ R1 ∨ t ∈ R2}.
E = R1 Except R2 has scheme E(A) and extension {t | t ∈ R1 ∧ t ∉ R2}.

Definition 4.4: If R is a relation with scheme R(A, B) then relation
P = Project[A](R)

has scheme P(A) and extension
P = {(a) | (a, b) ∈ R}.

Definition 4.5: If R is a relation with scheme R(A) and F is a well-formed
formula then relation

S = Select[F](R)
has scheme S(A) and extension

S = {(a) | (a) ∈ R ∧ F(a)}.

As is known, a well-formed formula may include comparisons with constants.
In the case of spatial objects, it is practically more convenient for a spatial
constant to be specified via a graphical user interface. However, for reasons of
completeness of the relational algebra, which is defined in this chapter, spatial
literals are also defined. Such a literal is defined as a string of spatial quanta

 81

enclosed in simple quotes (‘’), preceded by an appropriate keyword that
identifies the spatial data type. If the format of each qi, 1 ≤ i ≤ n, below is
either Pk or Hk or Vk or Sk, for some valid k, then the following spatial literals
are defined:

POINT literal: POINT ‘Pi’, where Pi ∈ POINT.
PLINE literal: PLINE ‘q1q2...qn’, where g ≡ q1q2...qn ∈ PLINE
LINE literal: LINE ‘q1q2...qn’, where g ≡ q1q2...qn ∈ LINE.
PSURFACE literal: PSURFACE ‘q1q2...qn’, where g ≡ q1q2...qn ∈ PSURFACE.
SURFACE literal: SURFACE ‘q1q2...qn’, where g ≡ q1q2...qn ∈ SURFACE.

A spatial literal may not necessarily be in some canonical form. Note also that
the above syntax convention matches fully that of SQL:1999 for types DATE,
TIME, TIMESTAMP and INTERVAL.

With reference to Figure 3.2, examples of spatial literals are the following:

− (a) PLINE ‘H183’
− (b) PLINE ‘V187’
− (c) PSURFACE ‘S191’
− (d) PLINE ‘H137H138H139H140’
− (f) PSURFACE ‘S62S63S64S65S77S78S79S92S93S94S107’
− (h) SURFACE ‘S18H19H20H21S22S23S24S33S37’

Definition 4.6: If R1, R2 are relations with scheme R1(A), R2(B), respectively,
and A ∩ B = ∅, then relation

P = R1 Product R2
has scheme P(A, B) and extension

P = {(a, b) | (a) ∈ R1 ∧ (b) ∈ R2}.

Beyond the previous five primitive operations, some derived have also been
defined. Some of them, which are used in this thesis, are the following.

Definition 4.7: Let R1(A), R2(A), R3(B), R4(A, C) and R5(C, B) be the
scheme of five relations, such that R1 and R2 are union-compatible and A ∩ B
= ∅. Let also F be a well-formed formula defined on attributes A ∪ B. The
following operations are then defined:

R1 Intersect R2 ≡ R1 Except (R1 Except R2).
R1 ITJoin[F] R3 ≡ Select[F](R1 Product R3).
R4 INJoin R5 ≡ Project[A, C, B](R4 ITJoin[C = D] R5(D ← C)).

Operation ITJoin (Inner Theta Join) is called Theta-Join in [Co79] and just
Join in [Co70]. Operation INJoin (Inner Natural Join) is called Natural Join
in [Co79]. Finally, the Outer Join operations [Co79] are required for the
formalism of a series of Overlay operations (Definition 4.14). These join
operations are defined below.

 82

Definition 4.8: Let R1(A, C) and R2(C, B) be the scheme of two relations, A
∩ B = ∅. Let also R3 and R4 be relations with scheme R3(A) and R4(B),
respectively, and extension {(null)}. Finally, let

I = R1 INJoin R2,
L = (R1 Except (Project[A, C](I))) Product R4,
R = R3 Product (R2 Except (Project[C, B](I))),

Then the following natural join operations are defined:
Left Natural Join: R1 LNJoin R2 ≡ L Union I.
Right Natural Join: R1 RNJoin R2 ≡ I Union R.
Full Natural Join: R1 FNJoin R2 ≡ (L Union I) Union R.

(a) Original Relations (b) Inner Natural Join

(e) Full Natural Join

(c) Left Natural Join

(d) Right Natural Join

R1

A C
a1 c1

a2 c2

R2

C B
c2 b1

c3 b2

A C B
a2 c2 b1

INJ

A C B
a1 c1

a2 c2 b1

c3 b2

FNJ

A C B
a1 c1

a2 c2 b1

LNJ

A C B
a2 c2 b1

c3 b2

RNJ

Figure 4.3: Illustration of the result of Natural Join operations.

As an example, if R1 and R2 are the relations in Figure 4.3(a) then Figure 4.3
shows the extension of

INJ = R1 INJoin R2,
LNJ = R1 LNJoin R2,
RNJ = R1 RNJoin R2,
FNJ = R1 FNJoin R2.

Note that natural join operations have practical interest for the management of
conventional data, and are supported in SQL standard (SQL:1992[Iso92],
SQL:1999[Iso99]).

4.3.2 Additional Basic Operations

In addition to the previous operations, two more basic operations are now
defined, Unfold and Fold. As will be seen, the remainder operations can be

 83

defined in terms of both the conventional and of these two operations.
Moreover, it is estimated that the set of all these operations enable
incorporating within the relational model the functionality required for the
management of spatial data.

For an informal description of Unfold, let R(A, G) be the scheme of a relation.
Let also (a, g) be any of the tuples in R. Then

Unfold[G](R)
yields in the result relation the set of tuples {(a, gi)}, where {gi} consists of all
the spatial quanta that are subsets of g. The operation is formalized as follows:

R.G
POINT POINT POINT
PLINE LINE PLINE
LINE LINE LINE

PSURFACE SURFACE PSURFACE
SURFACE SURFACE SURFACE

R1.G R2.G
POINT POINT POINT
PLINE PLINE LINE
LINE LINE LINE

PSURFACE PSURFACE SURFACE
SURFACE SURFACE SURFACE

(a) Unary Operations

(b) Binary Operations

([G](R)).GUnfold ([G](R)).GFold

(R [G] R).G1 2Binary

Figure 4.4: Result data types in spatial operations.

Definition 4.9: If R is a relation with scheme R(A, G) then relation
U = Unfold[G](R)

has scheme U(A, G), where the data type of U.G is that in Figure 4.4(a), and
extension

{(a, qi) | qi ∈ QSURFACE ∧ qi ⊆ g ∧ (a, g) ∈ R}.

To demonstrate the functionality of Unfold, let
U = Unfold[G](R).

Assume also that R is the relation in Figure 4.1. Then U is the relation in
Figure 4.5(a) and the geometric representation of the spatial objects recorded
in U.G is shown in Figures 4.5(b)-(d). In particular, Figure 4.5(b) shows the
spatial objects, which are quantum surfaces, Figure 4.5(c) shows the spatial

 84

objects, which are quantum lines, and Figure 4.5(d) shows those, which are
quantum points.

Operation Fold is the converse of operation Unfold. For an informal
description, let R(A, G) be the scheme of a relation. Let also {(a, gi)} be a
subset of R consisting of all the tuples with the same value for attributes A.
Then

Fold[G](R)
yields in the result relation the set of tuples {(a, gk)}, where {gk} is the spatial
union of {gi} and ∅. The operation is formalized below.

U
Name G

Marathon lake
.
.
.
Marathon lake
Aoos river
.
.
.
Aoos river
Crystal spring

g
.
.
.
g
g
.
.
.
g
g3

1,1

1,225

2,1

2,21

(a) Result of Unfold (b) Pure surfaces

(Marathon lake,)g1,1

(d) Points(c) Pure lines

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

Figure 4.5: Illustration of the result of operation Unfold.

Definition 4.10: If R is a relation with scheme R(A, G) then relation
F = Fold[G](R)

has scheme F(A, G), where the data type of U.G is that in Figure 4.4(a), and
extension

 85

{(a, U
n

1 i ig g ==) | (g is connected) ∧
((a, gi) ∈ R, i = 1, 2, ..., n) ∧
((∃/ (a, gk) ∈ R, k ≠ 1, 2, …, n)(g ∪ gk is connected))}.

To demonstrate the functionality of Fold, let
F = Fold[G](R).

Assume also that R = {(a, gA), (a, gB)}, where gA and gB are the spatial objects
that appear in one of the Figures 2.9(a)-(i). The spatial union of {gA} and {gB}
can also be seen in the same figure. Then F contains one tuple (a, gi) for each
gi in this spatial union.

As another example, let R = {(a, gAi)} Union {(a, gBj)}, where gAi and gBj are
shown in Figure 3.6(a). Then, similarly as before, F contains one tuple (a, gi)
for each distinct object depicted in Figure 3.6(b). This example is more
general, in that the input relation consists of more than two tuples.

It is finally noticed that if the data type of G in R(A, G) is POINT, then
R = Fold[G](R).

Definition 4.11: If R is a relation with scheme R(A, G) then it is defined that
Normalise[G](R) ≡ Fold[G](Unfold[G](R)).

It has been shown [LPS95] that
Fold[G](Unfold[G](R)) = Fold[G](R).

Hence, it also follows that
Normalise[G](R) = Fold[G](R).

One justification, however, for introducing this operation is given in
Subsection 4.3.6.

4.3.3 Quantum Operations

Three such operations are defined, Quantum Union (QUnion), Quantum
Except (QExcept) and Quantum Intersect (QIntersect). For an informal
description, let R1 and R2 be two union-compatible relations with respective
scheme R1(A, G) and R2(A, G). Let also

S1 = {(a, gi) | i = 1, 2, …, p} (S2 = {(a, gj) | j = 1 ,2, …, q})
be a subset of R1 (R2), consisting of all the tuples with the same value for
attributes A. For these S1 and S2,

− R1 QUnion[G] R2,
− R1 QExcept[G] R2,
− R1 QIntersect[G] R2,

yields in the result relation the set of tuples {(a, gk) | k = 1 ,2, …, r}, where
{gk} is, respectively, the

 86

− spatial union of {gi} and {gj},
− spatial difference of {gj} from {gi},
− spatial intersection of {gi} and {gj},

i = 1, 2, …, p, j = 1, 2, …, q. These operations are formalized below.

(a)

(d)

(g)

(j)

(m)

(p)

Quanta

Quanta

Quanta

Quanta

Quanta

Quanta

Result

Result

Result

Result

Result

Result

(b)

(e)

(h)

(k)

(n)

(q)

Quanta

Quanta

Quanta

Quanta

Quanta

Quanta

Result

Result

Result

Result

Result

Result

(c)

(f)

(i)

(l)

(o)

(r)

Quanta

Quanta

Quanta

Quanta

Quanta

Quanta

Result

Result

Result

Result

Result

Result

qA qB qA qB

qA
qBg

g

qA qB

qA qB

qA

qB

qA

qB

qA

qB
g

qA

horizontal pure
quantum line qB

qA

qA

qA

vertical pure
quantum line qB

qA

qB

qA

qB

qA qA

quantum point qB

qBqA qBqA qBqA

qA

qBqA qBqA qB

qA

qA qB qA qB

qA

quantum point qB

g

g

qA qA qB qA qB qA qB qA

Figure 4.6: Examples of spatial union of quantum qA with quantum qB.

Definition 4.12: Let R1(A, G) and R2(A, G) be two union-compatible
relations. Then the following operations are defined:
Quantum Union:

R1 QUnion[G] R2 ≡ Fold[G](Unfold[G](R1) Union Unfold[G](R2)).
Quantum Except:

R1 QExcept[G] R2 ≡ Fold[G](Unfold[G](R1) Except Unfold[G](R2)).

 87

Quantum Intersect:
R1 QIntersect[G] R2 ≡ Fold[G](Unfold[G](R1) Intersect Unfold[G](R2)).

If R is the result of any of these operations, it follows that its scheme is R(A,
G), where the domain of R.G is shown in Figure 4.4(b).

To demonstrate the functionality of the operations, let

(a)

(d)

(g)

(j)

(m)

(p)

(s)

Quanta

Quanta

Quanta

Quanta

Quanta

Quanta

Quanta

Result

Result

Result

Result

Result

Result

Result

(b)

(e)

(h)

(k)

(n)

(q)

(t)

Quanta

Quanta

Quanta

Quanta

Quanta

Quanta

Quanta

Result

Result

Result

Result

Result

Result

Result

(c)

(f)

(i)

(l)

(o)

(r)

(u)

Quanta

Quanta

Quanta

Quanta

Quanta

Quanta

Quanta

Result

Result

Result

Result

Result

Result

Result

qA qB

qA

qB

qA qB

qA qB

qA

qB

qA

qB

qA

q
q

B

A

is one
side of

qBqA

qA qA

qA

no quantum qA qA

qA
qA

q
q

B

A

is one
corner of

qA

qA

qB

qA

qA

qB

qA q
q

A

B

is one
side of

qB

no quantum

qBqA

qA

qA qA qB
no quantum

qA

quantum point qB

qA

qB

q
q

A

B

is one
corner of

no quantum qA qB qA

quantum point qA

qB

no quantum qA qB
qA

qA

qB

qA

qBqA
no quantum

Figure 4.7: Examples of spatial difference of quantum qB from quantum qA.

 88

QU = R1 QUnion[G] R2,
QE = R1 QExcept[G] R2,
QI = R1 QIntersect[G] R2.

Assume also that R1 = {(a, gA)} and R2 = {(a, gB)}, i.e. each of them consists
of one tuple, where gA and gB are the spatial objects that appear in one of the
Figures 2.9(a)-(i) (Figures 2.10(a)-(k), Figures 2.11(a)-(l)). The spatial union
(difference, intersection) of {gA} and {gB} can also be seen in the same figure.

(a)

(d)

(g)

(j)

(m)

(p)

Quanta

Quanta

Quanta

Quanta

Quanta

Quanta

Result

Result

Result

Result

Result

Result

(b)

(e)

(h)

(k)

(n)

(q)

Quanta

Quanta

Quanta

Quanta

Quanta

Quanta

Result

Result

Result

Result

Result

Result

(c)

(f)

(i)

(l)

(o)

(r)

Quanta

Quanta

Quanta

Quanta

Quanta

Quanta

Result

Result

Result

Result

Result

Result

qA qB

qA
qB q

qA qB

qA qB

qA

qB

qA

qB

qA

horizontal pure
quantum line qB

qA

qA

vertical pure
quantum line qB

qA

qB

qA

quantum point qB

qBqA qBqA

qBqA qB

qA

qA qB

qA

quantum point qB

qA qB qA qB qA

no quantum q

no quantum q

qB qB

no quantum

qB

no quantum q

no quantum q no quantum

qB

no quantum

Figure 4.8: Examples of spatial intersection of quantum qA with quantum qB.

Then QU (QE, QI) contains one tuple (a, gi) for each gi in this spatial union
(difference, intersection).

 89

As another example, let R1 = {(a, gAi)} and R2 = {(a, gBj)}, where gAi and gBj
are shown in Figure 3.6(a). Then, similarly as before, QU (QE, QI) contains
one tuple (a, gi) for each distinct object depicted in Figure 3.6(b) (Figure
3.6(c), Figure 3.6(e)). This example is more general, in that each input
relation consists of more than one tuple.

As a final example, let R1 = {(a, qA)} and R2 = {(a, qB)}, i.e. each of them
consists of one tuple, where qA and qB are spatial quanta. Figure 4.6 (Figure
4.7, Figure 4.8) shows representative relative positions of two such distinct
quanta qA and qB. The spatial union (difference, intersection) of {qA} and {qB}
is also shown in the figure. Then QU (QE, QI) contains one tuple (a, gi) for
each gi in this spatial union (difference, intersection).

It is worth noting that, although all these operations have practical interest,
many spatial data modelling approaches do not support their functionality.

4.3.4 Pair-Wise Operations

Although practically useful, the quantum operations must be performed
between two union-compatible relations. More generally, however, it is
desirable to obtain the spatial union, spatial difference and spatial intersection
of sets of spatial objects that are stored in non-union-compatible relations.
This is achieved by the definition of pair-wise operations, namely Pair-Wise
Union (WUnion), Pair-Wise Except (WExcept) and Pair-Wise Intersect
(WIntersect). For an informal description, let R1(A, G) and R2(B, G), A ∩ B =
∅, be the schemes of two relations. Let also

S1 = {(a, gi) | i = 1, 2, ..., p} ({(b, gj)} | j = 1, 2, ..., q)
be a subset of R1 (R2), consisting of all the tuples with the same value for
attributes A (B). For these S1 and S2,

− R1 WUnion[G] R2,
− R1 WExcept[G] R2,
− R1 WIntersect[G] R2,

yields in the result relation the set of tuples {(a, b, gk) | k = 1 ,2, …, r}, where
{gk} is, respectively, the

− spatial union of {gi} and {gj},
− spatial difference of {gi} from {gj},
− spatial intersection of {gi} and {gj},

i = 1, 2, …, p, j = 1, 2, …, q. These operations are formalized below.

Definition 4.13: Let R1, R2 be relations with scheme R1(A, G), R2(B, G),
respectively, where A ∩ B = ∅ and R1.G, R2.G are of the same data type. If

WR1 = Project[A, B, G](R1 Product R2(G1←G)),
WR2 = Project[A, B, G](R1(G1←G) Product R2),

 90

then the three following pair-wise operations are defined:
Pair-Wise Union: R1 WUnion[G] R2 ≡ WR1 QUnion[G] WR2.
Pair-Wise Intersect: R1 WIntersect[G] R2 ≡ WR1 QIntersect[G] WR2.
Pair-Wise Except: R1 WExcept[G] R2 ≡ WR1 QExcept[G] WR2.

As is obvious from the definition, the attributes of both WR1 and WR2 are A,
B, G. Hence the scheme of the result relation R is R(A, B, G). It is also noted
that if (a, g1) ∈ R1 and (b, g2) ∈ R2 then (a, b, g1) ∈ WR1 and (a, b, g2) ∈
WR2. Hence, the extension of R is the one obtained by the application of the
respective quantum operation.

To demonstrate the functionality of the operations, let
WU = R1 WUnion[G] R2,
WE = R1 WExcept[G] R2,
WI = R1 WIntersect[G] R2.

Assume also that R1 = {(a, gA)} and R2 = {(b, gB)}, i.e. each of them consists
of one tuple, where gA and gB are the spatial objects that appear in one of the
Figures 2.9(a)-(i) (Figures 2.10(a)-(k), Figures 2.11(a)-(l)). The spatial union
(difference, intersection) of {gA} and {gB} can also be seen in the same figure.
Then WU (WE, WI) contains one tuple (a, b, gi) for each gi in this spatial
union (difference, intersection).

As another example, let R1 = {(a, gAi)} and R2 = {(b, gBj)}, where gAi and gBj
are shown in Figure 3.6(a). Then, similarly as before, WU (WE, WI) contains
one tuple (a, b, gi) for each distinct object depicted in Figure 3.6(b) (Figure
3.6(c), Figure 3.6(e)). This example is more general, in that each input
relation consists of more than one tuple.

As a final example, let R1 = {(a, qA)} and R2 = {(b, qB)}, i.e. each of them
consists of one tuple, where qA and qB are spatial quanta. Figure 4.6 (Figure
4.7, Figure 4.8) shows representative relative positions of two such distinct
quanta qA and qB. The spatial union (difference, intersection) of {qA} and {qB}
is also shown in the figure. Then WU (WE, WI) contains one tuple (a, b, gi)
for each gi in this spatial union (difference, intersection).

It is worth noting that these operations do not cause the data loss problems
identified in Subsection 2.5.8. For example, the demonstration of the
functionality of WIntersect shows that all the points, pure lines, pure surfaces
and hybrid surfaces of a spatial intersection appear in the result relation. Note
however that the majority of the various spatial data modelling approaches
lack this capability, as has been shown in Subsection 2.5.8.

 91

4.3.5 Overlay Operations

As is well-known, Overlay is a most useful operation in spatial data
management. In the present model four distinct such operations are defined
namely, Inner Overlay (IOverlay), Left Overlay (LOverlay), Right Overlay
(ROverlay) and Full Overlay (FOverlay). They are formalized in terms of the
respective Inner, Left, Right and Full Natural Join operations. For an informal
description of the operations, let R1(A, G) and R2(B, G), A ∩ B = ∅, be the
schemes of two relations. Let also {(a, gAi)} ({(b, gBj)}) be a subset of R1 (R2)
consisting of all the tuples with the same value for attributes A (B). Then
these tuples yield in

IO = R1 IOverlay[G] R2
the set of tuples {(a, b, gIk)}, where {gIk} is the spatial intersection of {gAi}
and {gBj}.

Operation
LO = R1 LOverlay[G] R2

yields in the result relation the tuples in IO and also all the tuples {(a, null,
gEK)}, where {gEk} is the spatial difference of {gBj} from {gAi}.

Operation
RO = R1 ROverlay[G] R2

yields in the result relation the tuples in IO and also all the tuples {(null, b,
gEK)}, where {gEk} is the result of the spatial difference of {gAi} from {gBj}.

Finally, operation
FO = R1 FOverlay[G] R2

yields in the result relation all the tuples in IO, LO and RO.
The operations are formalized below.

Definition 4.14: Let R1(A, G) and R2(B, G) be the schemes of two relations,
where A ∩ B = ∅ and R1.G, R2.G are of the same data type. Let also

UR1 = Unfold[G](R1),
UR2 = Unfold[G](R2).

Then the following operations are defined:
Inner Overlay: R1 IOverlay[G] R2 ≡ Fold[G](UR1 INJoin UR2).
Left Overlay: R1 LOverlay[G] R2 ≡ Fold[G](UR1 LNJoin UR2).
Right Overlay: R1 ROverlay[G] R2 ≡ Fold[G](UR1 RNJoin UR2).
Full Overlay: R1 FOverlay[G] R2 ≡ Fold[G](UR1 FNJoin UR2).

If R is the result of any of these operations, it can easily be seen that its
scheme is R(A, B, G).

To demonstrate the functionality of the operations, let
R1 = {(a, gAi)},
R2 = {(b, gBj)},

 92

where gAi and gBj are shown in Figure 3.6(a). Consider also
I = {(a, b, gIk)}, where gIk are shown in Figure 3.6(e),
L = {(a, null, gEk)}, where gEk are shown in Figure 3.6(c),
R = {(null, b, gEk)}, where gEk are shown in Figure 3.6(d).

Then the extension of
− IO = R1 IOverlay[G] R2 matches that of relation I.
− LO = R1 LOverlay[G] R2 matches that of relation L Union I.
− RO = R1 ROverlay[G] R2 matches that of relation I Union R.
− FO = R1 FOverlay[G] R2 matches that of relation (L Union I) Union R.

It can be easily verified that the result of R1 IOverlay[G] R2 is identical to that
of R1 WIntersect[G] R2, defined in the previous subsection.

It is noticed that the functionality of the various overlay operations does not
restrict to only pure surfaces (Subsection 2.5.9). In addition, they can be
applied to two spatial objects one of which is, for example, a pure line
whereas the other is a pure surface, provided that both of them are recorded in
some attribute G of type SURFACE. Another observation is that if R1
contains two tuples (a1, g1) and (a2, g2), and R2 contains (b, g3), then the result
of any of these operations returns separately the overlay of g1 with g3 and that
of g2 with g3, even if g1 and g2, have points in common. Contrary to this, some
of the other approaches lack this capability.

4.3.6 Other Operations of Spatial Interest

The operations defined in this subsection enable obtaining the spatial
complementation, spatial boundary, spatial envelope and spatial buffer of a set
of spatial objects that are recorded in a relation. To illustrate the first of them,
let R(A, G) be the scheme of a relation R. Let also {(a, gi)} be a subset of R,
consisting of all the tuples with the same value for attributes A. Then

Complementation[G](R)
yields in the result relation the set of tuples {(a, gCk)}, where {gCk} is the
spatial complementation of {gi}. If SURF_ALL(G) is the relation defined in
Section 4.2, then the relevant formalization is given below.

Definition 4.15: If R is a relation with scheme R(A, G | SURFACE) then
Complementation[G](R)

is defined as
SURF_ALL WExcept[G] R.

If C is the result relation, its scheme is C(A, G | SURFACE). As an example,
let R = {(a, gi)}, where the geometric representation of each gi is depicted in
Figure 3.7(a). If

C = Complementation[G](R)

 93

then C = {(a, gCk)}, where the geometric representation of each gCk is depicted
in Figure 3.7(b).

For an informal description of another operation, Boundary, let R be a relation
with scheme R(A, G). Let also {(a, gi)} be the subset of the tuples of R with
the same value for attributes A. Then

Boundary[G](R)
yields in the result relation the set of tuples {(a, gBk)}, where {gBk} is the
spatial boundary of {gi}. This operation is defined in terms of
Complementation, as follows:

Definition 4.16: If R is a relation with scheme R(A, G | SURFACE), then
operation

B = Boundary[G](R)
is defined by the following sequence of operations:

1. TR1 = Complementation[G](R)
2. B = TR1 QIntersect[G] R

The scheme of the result relation is B(A, G | SURFACE). As an example, if
R = {(a, gi)}, where the geometric representation of each gi is depicted in
Figure 3.7(a), then B = {(a, gBk)}, where the geometric representation of each
gBk is depicted in Figure 3.7(c).

To illustrate the functionality of Envelope, let R(A, G) be the scheme of a
relation R. Let also {(a, gi)} be the subset of tuples in R with the same value
for attributes A. Then

Envelope[G](R)
yields in the result relation the set of tuples {(a, gEk)}, where {gEk} is the
spatial envelope of {gi}. The operation is formalized as follows:

Definition 4.17: If R is a relation with scheme R(A, G | SURFACE) then
relation

E = Envelope[G](R)
is defined by the following sequence of operations:

1. TR1 = Normalise[G](R)
2. TR2 = Unfold[G](SURF_ALL)
3. TR3 = TR1(G1 ← G) ITJoin [G1 surrounds G] TR2
4. TR4 = Project[A, G](TR3)
5. E = Fold[G](TR4)

Clearly, the scheme of E is E(A, G | SURFACE). Note that the first operation
in the definition of this operation could have been Fold. The reason for using
Normalise here is clarified in Chapter 5, where this operation is applied to
more than one attribute.

 94

As an example, if R = {(a, gi)}, where the geometric representation of each gi
is depicted in Figure 3.8(a), then E = {(a, gEk)}, where the geometric
representation of each gEk is depicted in Figure 3.8(b). From a comparison of
g1 in Figure 3.8(a) and gE1 in Figure 3.8(b), it is concluded that Envelope
eliminates the holes of pure surfaces. Also, a comparison of g7 in Figure
3.8(a) and gE6 in Figure 3.8(b) shows that Envelope also yields the pure
surface that is surrounded by a circular line. Finally, a comparison of g2 in
Figure 3.8(a) and gE2 in Figure 3.8(b) shows a combination of these two
functionalities. Note however that, an appropriate combination of Envelope
with the operations defined so far enable restricting to only one of these two
functionalities.

Operation Compute enables incorporating functions in the derivation of new
relations [LJ88a]. It is included here because it is a requirement for the
definition of operation Buffer.

Definition 4.18: Let R be a relation with scheme R(A) and let f1, f2, …, fm be
functions that are applied, respectively, to the sets of attributes A1, A2, ..., Am
⊆ A. If

C = Compute[C1 := f1(A1), C2 := f2(A2), …, Cm := fm(Am)](R)

it is defined that
C = {(a, c1, c2, …, cm) | ((a) ∈ R) ∧ (c1 := f1(a1)) ∧ (c2 := f2(a2)) ∧ … ∧ (cm := fm(am))}.

Clearly, the scheme of C is C(A, C1, C2, …, Cm) and the uderlying domain of
attribute Ci, 1 ≤ i ≤ n, is the one determined by the application of the
respective function fi. As an example, if the scheme of a relation is R(A |
INTEGER, B | INTEGER) and C = Compute[C := A + B, D := A - B](R) then
the scheme of C is C(A | INTEGER, B | INTEGER, C | INTEGER, D |
INTEGER) and it consists of the tuples {(a, b, c, d) | ((a, b) ∈ R) ∧ (c = a + b)
∧ d = (a - b)}. Some functions of spatial interest that can be incorporated in
Compute are those given in Section 3.5. Of particular interest is the
incorporation of spatial data type transformation functions. Their use enables
obtaining relations with identical scheme, before they are involved in an
operation that requires union-compatibility.

Note by the way that Compute enables defining the various Overlay
operations in a different way. As an example, if R1(A, G) and R2(B, G), A ∩
B = ∅, are the schemes of two relations, where R1.G and R2.G are of identical
data type, then FO =R1 FOverlay[G] R2 can be obtained by the following
sequence of operations:

1. TR1 = Project[G](R1)
2. TR2 = Project[G](R2)
3. TR3 = R1 WExcept[G] TR2
4. TR4 = R2 WExcept[G] TR1

 95

5. I = R1 WIntersect[G] R2
6. L = Compute[B := null](TR3)
7. R = Compute[A := null](TR4)
8. P = I Union L
9. FO = P Union R

The definition of operation Buffer is based on that of Compute. For an
informal description, let R(A, D | REAL, G | SURFACE) be the scheme of a
relation R, where the value d of every tuple for attribute D satisfies d > 0.
Then for each subset {(a, d, gi)} of R with identical values for attributes A and
D,

Buffer[D, G](R)
yields in the result relation a set of tuples {(a, d, gBk)}, where {gBk} is the
spatial buffer of {gi} within a distance of d. If SURF_ALL(G) is the relation
defined in Section 4.2, the operation is defined as follows:

Definition 4.19: Let R be a relation with scheme R(A, D | REAL, G |
SURFACE) and let the value d of every tuple of R for attribute D satisfy d >
0. Then

B = Buffer[D, G](R)
is defined by the following sequence of operations:

1. TR1 = Unfold[G](SURF_ALL)
2. TR2 = R(G1 ← G) Product TR1(G2 ← G)
3. TR3 = Compute[C := distance(G1, G2)](TR2)
4. TR4 = Select[C < D](TR3)
5. TR5 = Project[A, D, G](TR4(G ← G2))
6. B = Fold[G](TR5)

Clearly, the scheme of the result relation is B(A, D | REAL, G | SURFACE).
As an example, if

R = {(a, 4, g1), (a, 1, g2), (a, 1, g3), (a, 1, g4)},
where the geometric representation of each gi is depicted in Figure 3.9(a),
then

B = {(a, 4, gB1), (a, 1, gB2), (a, 1, gB3)},
where the geometric representation of each gBk is depicted in Figure 3.9(b).

Note that the second and third tuple of relation R have the same values for
attributes A and D. Hence, these tuples yield one tuple (the third one) in B,
due to the application of Fold (step 6), in conjunction with the distance of g2
from g3. Contrary to this, tuples with different values for attribute D always
yield distinct tuples in the result relation (see for example the first and second
tuple of R).

Finally, note that, as an alternative, it is possible to apply the sequence of
operations

 96

1. B = Buffer[D, G](R)
2. P = Project[A, G](B)
3. F = Fold[G](P)

and, therefore, two or more tuples with distinct values for attribute D to be
combined into one tuple in the result relation.

4.3.7 Enhancement of the Functionality of Operations

Consider two relations with schemes R1(A, G), R2(B, G) and respective
extensions

R1 = {(a, gAi), i = 1, 2},
R2 = {(b, gBj), j = 1, 2},

where the geometric representation of gAi and gBj is shown, respectively, in
Figure 4.9(a) and Figure 4.9(b). Note that the values for attributes A of all the
tuples in R1 match. The same is also true for the tuples in R2 for attributes B.
If

R = R1 WExcept[G] R2

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gA1
gA2

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gB1

gB2

(a) (b)
Figure 4.9: Objects involved in WExcept.

is issued the scheme of the result relation is R(A, B, G) and its extension is
R = {(a, b, gE1)},

where gE1 is depicted in Figure 4.10. It is noticed that {gE1} is the spatial
difference of {gB1, gB2} from {gA1, gA2}. However, this is only one possible
result out of four distinct results that might be required. Considering in
particular the above extension of R1 and R2 some application may ask for
WExcept to be applied so as to obtain either of the following spatial
differences:

(c1) of set {gB1, gB2} from set {gA1, gA2} (Figure 4.10),
(c2) of each of the sets {gB1}, {gB2} from set {gA1, gA2} (Figure 4.11),
(c3) of set {gB1, gB2} from each of the sets {gA1}, {gA2} (Figure 4.12),
(c4) of each set {gB1}, {gB2} from each set {gA1}, {gA2} (Figure 4.13).

 97

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gE1

Figure 4.10: Spatial difference of {gB1, gB2} from set {gA1, gA2}.

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

(a) (b)
14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gE2 gE3

Figure 4.11: Spatial difference of each of {gB1}, {gB2} from set {gA1, gA2}.

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gE4

gE5

(a) (b)
Figure 4.12: Spatial difference of {gB1, gB2} from each of {gA1}, {gA2}.

Case (c4) is the most complicated, in that it actually requires the writing of a
program that processes separately every tuple in R1 and every tuple in R2 and
it then applies WExcept to each such pair of tuples. Note however that
WExcept is only an example operation. More generally, however, the
following can be noticed:

(i) Section 3.6 has addressed the formalization of operations between
sets of spatial objects.

(ii) Except Compute, all the relational algebra operations defined in
this chapter transfer are injections of relevant operations between
sets of spatial objects. This has been achieved by considering

 98

subsets of relations with the same value for same attribute, say A,
and considering as a set of spatial objects those that are recorded in
some other attribute G of these tuples.

To achieve therefore a functionality that requires the involvement of only one
tuple at a time, it actually suffices to consider tuples with distinct values for
attribute A. This is achieved by the use of operation Replicate. Informally, let
R(A, B1, B2, …, Bn) be a relation scheme. If

RE = Replicate[B1’:B1; B2’:B2, …, Bn’:Bn](R)
then the scheme of RE is RE(A, B1’, B2’, …, Bn’, B1, B2, …, Bn) and for every
tuple (a, b1, b2, …, bn) in R, RE has a tuple (a, b1, b2, …, bn, b1, b2, …, bn). Its
formalization is as follows:

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

(a) (b)

(c) (d)

gE6 gE7

gE8

gE9

Figure 4.13: Spatial difference of each {gB1}, {gB2} from each {gA1}, {gA2}.

Definition 4.20: Let R(A, B1, B2, …, Bn) be the scheme of a relation R. Then
operation

Replicate[B1’:B1; B2’:B2, …, Bn’:Bn](R)
is defined as the following sequence of two operations:

1. TR1 = R
ITJoin[A = C, B1 = B1’, B2 = B2’, …, Bn = Bn’]
R(C ← A, B1’ ← B1, B2’ ← B2, …, Bn’ ←Bn))

2. RE = Project[A, B1’, B2’, …, Bn’, B1, B2, …, Bn](TR1)

For an example, let the scheme of R be R(A, G). If

 99

RE = Replicate[GA:G](R)
then the scheme of the result relation is RE(A, GA, G) and its extension is

{(a, g, g) | (a, g) ∈R}.
Given that R does not have two tuples with values matching on both A and G,
it follows that RE does not have two tuples with values matching on both A
and GA. Let therefore A’ = {A, GA}. Then the scheme of RE is RE(A’, GA)
and RE does not contain two tuples with identical values on A’. In a similar
manner, it is possible to obtain SE(B’, GB) from S(B, G). It then follows that
the scheme of

WE = RE WExcept[G] SE
is WE(A’, GA, B’, GB, G) and consists of tuples

(a, g1, b, g2, g)
where g is one of the objects produced by the spatial difference of {g2} from
{g1}, where (a, g1) ∈ R and (b, g2) ∈ S.

In this way, the requirement of case (c4) above is achieved. Similarly, cases
(c2) and (c3) are achieved by applying Replicate exclusively to R and S,
respectively. Another advantage of the solution is that every tuple (a, g1, b, g2,
g) in the result relation enables identifying both the spatial objects g1 and g2
and one object g of their spatial difference. Alternatively, attributes RE.G’ and
SE.G’ may be projected out. Finally, note that Replicate works equally
satisfactorily even if A is the empty set.

As should be obvious, the use of Replicate enables applying four (4) distinct
variations of the binary operations

− WUnion,
− WExcept,
− WIntersect,
− IOverlay,
− LOverlay,
− ROverlay,
− FOverlay,

and two distinct variations of the unary operations
− Complementation,
− Boundary,
− Envelope,
− Buffer.

In this way, the flexibility of the proposed relational algebra has been
enriched further.

 100

4.4 Conclusions

An extension of Codd’s relational algebra [Co70, Co72, Co79] for the
management of 2-d spatial objects was formalized in this chapter. Its
characteristics can be summarized as follows:

− Relations are defined in the ordinary way, except that now one or more
attribute may be of some spatial data type.

− As a side effect of the previous observation, the geometric
representation of objects recorded in one or more spatial attributes of a
relation R may be interpreted as a map. In addition, the remainder
attributes of R may be used to record values associated with the
relevant spatial objects.

− The DBMS provides direct spatial data validation mechanisms to
support the spatial data types. Hence, it is not possible, for example, to
record a pure surface or a point as the value of a tuple for an attribute
of type PLINE.

− All the spatial objects recorded in a relation are connected.
− The relations are non-nested.
− The management of spatial data actually reduces to the management of

relations.
− A unique set of operations enables the handling of both spatial and

conventional data. Besides, operations on relations inherit the well-
known functionality of operations on thematic maps [SV89].

− A reduced set of kernel relational algebra operations is used. It consists
of the known operations of the relational model and of two more
operations, Unfold and Fold. The remainder operations have been
defined in terms of them.

− The operations are generic in that their application does not restrict to
spatial objects of only one type. For example, IOverlay can be applied
not only to surfaces but also to lines and points and to combinations of
them.

− The model does not face problems of spatial data loss.
− Although the definition of the operations has restricted to the

management of 2-d spatial objects, their generalization, so as to apply
to n-d spatial objects, is straightforward.

Overall, the spatial model defined in this thesis satisfies all the relevant
properties specified in Section 2.8.

CHAPTER 5

TEMPORAL AND SPATIO-TEMPORAL DATA
MANAGEMENT

5.1 Introduction

This chapter is concerned with two topics, the management of temporal and of
spatio-temporal data, of which the former is a prerequisite for the study of the
latter. Regarding the management of temporal data, it is recalled that this
thesis focuses on applications like cartography, cadastral systems etc, whose
interest restricts to the management of spatial changes at discrete times.
Hence, a discrete model for time is considered here, as is the case in the
majority of the temporal data models that have been defined [JM80, Be82,
CT85, Ar86, Ta86, Sn87, Ga88, LJ88a, LJ88b, TG89, Sa90a, Sa90b, TC90,
JJ92, CC93, Lo93, NA93]. Note however that the management of temporal
data is by itself a distinct research topic. Hence, relevant work in this chapter
is actually based on the model defined in [Lo88, LM97], except that now:

− the data types for time are defined in terms of time quanta and
− periods of the form [i, j] are considered instead of [i, j), defined in

[Lo88, LM97].

As a side effect of the first of these differences, the definitions given, for the
application of operations Unfold and Fold to relations with temporal data,
though equivalent with those in [Lo88, LM97], are now based on time quanta.
The motivation for the second difference is that closed periods are today a
potential ISO standard [Iso96a, Iso96b, Iso96c].

Regarding the management of temporal data, one important conclusion is
drawn: Practically, all the operations defined in Chapter 4, for the
management of spatial data, can straightforwardly be applied to relations that
contain temporal data, i.e. their definition does not have to be revised. In most
of the cases, it is also shown that these applications do have practical interest.

The management of spatio-temporal data, including also the evolution of
spatial data with respect to time, is the second topic this chapter is concerned

 102

with. Relevant to this, one important conclusion is that this management does
not require the definition of a new set of operations. Hence, one single set of
operations enables the management of either spatial or temporal or spatio-
temporal data.

The remainder of this chapter is structured as follows. Quanta and data types
for time are formalized in Section 5.2. Predicates and functions that can be
applied to time data types are defined in Section 5.3. This set restricts to only
those that are necessary for the objectives of this thesis. In Section 5.4 it is
shown how temporal data can be represented in relations. Definitions of
operations Unfold and Fold are also given, related to their application to time
data types. In Section 5.5 it is shown that all the relational algebra operations
defined in Chapter 4 are meaningful when applied to relations that contain
temporal data. The issue of evolution of data with respect to time is addressed
in Section 5.6. The management of spatio-temporal data as well as the
evolution of spatial data with respect to time is presented in Section 5.7.
Conclusions are drawn in the last section.

5.2 Quanta and Data Types for Time

It is recalled that the elements of In = {0, 1, ..., n-1}, n > 0, are called 1-
dimensional (1-d) points or simply points. Then the following definition is
given.

Definition 5.1: If p, q ∈ In, p ≤ q, a period [p, q] over In is defined as the set
[p, q] ≡ {i | i ∈ In ∧ p ≤ i ≤ q}.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

[t , t]3 8 [t , t]10 13

Figure 5.1: Examples of quanta and data types for time.

For the objectives of the present thesis, it is assumed that In matches some
time data type like those supported in SQL, i.e. DATE, TIME, TIMESTAMP.
To avoid however restricting to a particular time data type, successive time
points of a generic type are denoted as t0, t1, t2, ..., ti, ti+1 ..., etc., and periods of
time instants are denoted as [ti, tj]. Based on this, the following definition is
given.

Definition 5.2: Two generic types for time are defined:

− INSTANT ≡ {t0, t1, ..., tn-1},
− PERIOD ≡ {[ti, tj] | ti, tj ∈ INSTANT ∧ ti ≤ tj}.

 103

The elements of the first set are called (time) instants or time quanta and those
of the second (time) periods.

Figure 5.1 depicts the time instants of the generic data type INSTANT, in the
case that n = 15, and periods over it.

By definition, INSTANT is totally ordered. Taking this into account, the
following definition is given.

Definition 5.3: A set P of time instants is connected iff it matches the period
[min(ti ∈ P), max(ti ∈ P)].

5.3 Predicates and Functions for Time

Predicates and functions for time instants and time periods are defined in
[LM97]. Therefore, only those that are necessary for this thesis are given
below.

• Since, INSTANT is totally ordered, all the comparison predicates <, <=,
=, <>, >=, > can be used between two instants.

Given two time periods v1 = [ti, tj], v2 = [tp, tq], the following binary predicates
are defined [LM97]:

• v1 = v2 ⇔ (ti = tp) ∧ (tj = tq)

• v1 <> v2 ⇔ ¬(v1 = v2)

• v1 < v2 ⇔ (ti < tp) ∨ (ti = tp ∧ tj < tq)

• v1 <= v2 ⇔ (v1 < v2) ∨ (v1 = v2)

• v1 > v2 ⇔ ¬(v1 <= v2)

• v1 >= v2 ⇔ ¬(v1 < v2)

• v1 surrounds v2 ⇔ ti ≤ tp ∧ tj ≥ tq

It is easy to verify that the definition of these predicates actually matches
those given for spatial objects (Section 3.4). The definition of predicate
conductive between periods has been eliminated because it does not have too
much interest. Note however that the above definition of surrounds (named
supinterv in [LM97]) is the reduced form of the relevant definition given for
spatial objects. Some more predicates of practical interest are the following:

 104

• v1 cp v2 ⇔ v1 ∩ v2 ≠ ∅ (v1 and v2 have common points)

• v1 disjoint v2 ⇔ v1 ∩ v2 = ∅

• v1 adjacent v2 ⇔ (tj + 1 = tp) ∨ (tq + 1 = ti)

where the addition of a number to a time quantum is assumed to be known.

If ti is a time instant, then function ord: INSTANT → I is defined as

• ord(ti) = i.

The next function enables obtaining a time instant from an integer:

• form_instant(i) = ti ⇔ 0 ≤ i ≤ n - 1.

Each of the above functions is the inverse of the other and it is the analogue of
the relevant function defined for spatial points (Section 3.5). It is easy to
notice that ti θ ti ⇔ ord(ti) θ ord(tj), where θ is some comparison predicate.

Given a time period v = [ti, tj], the following functions are defined:

• start(v) ≡ ti

• end(v) ≡ tj

• duration(v) ≡ tj – ti + 1

where the subtraction of one time quantum form another is assumed to be
known.

If v1 = [ti, tj], v2 = [tp, tq] are two time periods and |x| denotes the absolute
value of x, function distance is defined as

•




=
=

=
21pjqi

21
21 v v| |) t- t| |, t- t(| d

 v v| 0 d
) v,(v

disjointmin
cp

distance

If v1 cp v2 evaluates to true, then function intervsect [LM97] is defined as

• v1 intervsect v2 = [max({ti, tp}), min({tj, tq})]

5.4 Data Structures and Operations for Time

In the sequel, only instants of DATE type are considered. For ease of
presentation, the set of successive dates DATE = {d0, d1, ..., d90} is
considered. Periods of dates are denoted as [di, dj].

A relation is defined the known way, except that the underlying domain of
one or more of its attributes can be of some time type, either INSTANT or

 105

PERIOD. As an example, consider relation S in Figure 5.2, used to record the
daily salary of each employee during some period of time. Hence, the first
tuple shows that John’s salary was 10k on each of the days in [d11, d30], as
can also be seen in the diagram below the relation. Using such a relation, it is
possible to associate pieces of data with the periods during which these data
were valid. For the objectives of this thesis, it is said that a relation like this
contains valid time data or temporal data. Relation U in Figure 5.3(a) also
contains temporal data, since the salary of each employee is recorded
separately for each distinct date. It is thus clear that, as apposed to a relation
that lacks a time attribute, a temporal relation enables recording pieces of data
that are valid at various distinct times.

S
Name Salary Time
John
John
John
John
Alex
Alex
Alex

10k
10k
10k
15k
15k
15k
20k

[d11, d30]
[d21, d40]
[d41, d50]
[d61, d70]
[d21, d50]
[d31, d40]
[d61, d70]

John

d0 d10 d20 d30 d40 d50 d60 d70 d80 d90
10k 10k

10k
15k

Alex
15k

15k

20k

Figure 5.2: Example of a temporal relation.

One relation of particular interest is TIME_ALL(T | PERIOD), which
contains a single tuple tTIME_ALL = ([t0, tn-1]), where t0 (tn-1) is the smallest
(greatest) element in INSTANT. Given that dates are considered in the
examples, it is assumed that tTIME_ALL = [d0, d90].

Now the formalism of operations Unfold and Fold is given, when they are
applied to relations, on a time attribute. Yet, one preliminary definition is
given.

Definition 5.4: Let x be either and atomic element or a set. Then set(x) is
defined as follows:

 106





≡
otherwise | {x}

set a is x | x
 (x)set

U
Name Salary Time
John

John
John

John
Alex

Alex
Alex

Alex

10k

10k
15k

15k
15k

15k
20k

20k

d11

d50
d61

d70
d21

d50
d61

d70

.

.

.

.

F
Name Salary Time
John
John
Alex
Alex

10k
15k
15k
20k

[d11, d50]
[d61, d70]
[d21, d50]
[d61, d70]

John

d0 d10 d20 d30 d40 d50 d60 d70 d80 d90

10k 10k
10k

15k

Alex
15k

15k

20k

(a)

(b)

S

F

10k 15k

15k 20k

S

F

Figure 5.3: Result of operations Unfold and Fold on temporal data.

For an informal description of Unfold, let R(A, T) be the scheme of a relation.
Let also (a, t) be one of the tuples in R. When

Unfold[T](R)
is issued, (a, t) yields in the result relation the set of tuples {(a, ti)}, where {ti}
is the set of all time quanta in set(t). The definition is as follows.

Definition 5.5: If R is a relation with scheme R(A, T) then relation
U = Unfold[T](R)

has scheme U(A, T | INSTANT) and extension
{(a, ti) | ti ∈ INSTANT ∧ set(ti) ⊆ set(t) ∧ (a, t) ∈ R}.

 107

Notice that there is only a minor difference between this definition and
Definition 4.9, the use of set. This is due to the fact that temporal data
modelling requires the use of time quanta, which are elements, whereas
spatial data modelling requires the use of spatial quanta, which are sets.

As an example, if S is the relation in Figure 5.2 then
U = Unfold[Time](S)

is the relation in Figure 5.3(a), i.e., this operation yields the time instants at
which a piece of data is valid.

One observation on relation S is that it contains duplicate data. For example,
the fact that John’s salary was 10k on date d25 has been recorded twice, once
in the first and another in the second tuple (see also the relevant diagram).
Contrary to this, one property of Unfold, a direct consequence of its
definition, is that it eliminates data duplication. The difference is that the
result relation has instants whereas the original relation may have periods.

By definition, Unfold can also be applied to a relation on an attribute of an
instant type. It is then noted that U = Unfold[Time](U), i.e. the result relation
matches the original.

Now it is noticed in relation S (Figure 5.2) that John’s salary was 10k on each
of the dates in [d21, d40] (second tuple) and also on each of the dates in [d41,
d50] (third tuple). Clearly, one would rather be tempted to see, in one tuple,
that John’s salary was 10k on each of the dates in the whole of [d21, d50].
Given also the data duplication in the first and second tuple that was discussed
earlier, it is concluded that it is best for one to see that John’s salary was 10k
on each of the dates in [d11, d50]. Operation Fold achieves exactly this. For
an informal description of this operation, let R(A, T) be the scheme of a
relation. Let also {(a, vi)} be a subset of R consisting of all the tuples with the
same value for attributes A. Then

Fold[T](R)
yields in the result relation the set of tuples {(a, vk)}, where all vk are pair-wise
non-adjacent periods with no points in common that consist of all the time
instants in some of the above vi. The operation is formalized as follows.

Definition 5.6: If R(A, T) is the scheme of a relation R then relation
F = Fold[T](R)

has scheme F(A, T | PERIOD) and extension
{(a, Un

1 i ir)(v v == set) | (v is connected) ∧
 ((a, irv) ∈ R, i= 1, 2, ..., n) ∧
 ((∃/ (a, krv) ∈ R, k ≠ 1, 2, …, n)(set(v) ∪ set(krv) is connected))}.

 108

(Recall that the definition of connected set of time instants has been given in
Definition 5.3.) Notice again that there is only a minor difference between this
definition and that of Fold of spatial data (Definition 4.10).

As an example of the functionality of Fold, if R matches either relation S in
Figure 5.2 or U in Figure 5.3(a) then the result of

F = Fold[Time](R)
is that one shown in Figure 5.3(b). It is noticed that F does not have two
tuples with identical Name and Salary values that are associated either with
adjacent periods or periods that have common points. At the same time, it is
easy to see in F how an employee’s salary evolved with respect to time,
something not such obvious in relation S in Figure 5.2 (The issue of data
evolution with respect to time is addressed in Section 5.6).

5.5 Application of Operations to Temporal Data

Now it is shown that the operations defined for the management of spatial
data do have practical interest when they are applied to temporal relations.
This is of particular interest, if it is noticed that, except the quantum
operations, all the others have been specially defined for the management of
spatial data. Although relations with an attribute of a PERIOD type are
considered in the examples provided, the conclusions are the same if an
INSTANT type is considered instead.

5.5.1 Application of Quantum Operations to Temporal Data

Let S1 and S2 be the two union compatible relations in Figure 5.4. Then the
result of

F = S1 QUnion[T] S2
QE = S1 QExcept[T] S2
QI = S1 QIntersect[T] S2

is shown, respectively, in Figure 5.3(b), Figure 5.5(a), Figure 5.5(b).

Generally, let R1 and R2 be two union-compatible relations with respective
scheme R1(A, T | PERIOD) and R2(A, T | PERIOD). Let also

S1 = {(a, vi) | i = 1, 2, …, p} (S2 = {(a, vj) | j = 1, 2, …, q})
be a subset of R1 (R2), consisting of all the tuples with the same value for
attributes A. For these S1 and S2,

− R1 QUnion[T] R2
− R1 QExcept[T] R2
− R1 QIntersect[T] R2

 109

S2

Name Salary Time
John
John
Alex

10k
15k
15k

[d21, d40]
[d61, d70]
[d31, d40]

John

d0 d10 d20 d30 d40 d50 d60 d70 d80 d90
10k 10k

10k 15k

Alex
15k

15k

20k

S1

Name Salary Time
John
John
Alex
Alex

10k
10k
15k
20k

[d11, d30]
[d41, d50]
[d21, d50]
[d61, d70]

(a) (b)

S1

S2

S1

S2
Figure 5.4: Temporal relations.

QI
Name Salary Time
John
Alex

10k
15k

[d21, d30]
[d31, d40]

John

d0 d10 d20 d30 d40 d50 d60 d70 d80 d90
10k

10k

10k 15k

Alex

15k

15k

20k

QE
Name Salary Time
John
John
Alex
Alex
Alex

10k
10k
15k
15k
20k

[d11, d20]
[d41, d50]
[d21, d30]
[d41, d50]
[d61, d70]

(a) (b)

S1

S2

S1

S2

QE

QI

10k

10k

10k

QE

QI

15k 15k 20k

15k
Figure 5.5: Result of operations QExcept and QIntersect on temporal data.

 110

yields in the result relation the set of tuples {(a, vk) | k = 1, 2, …, r)}, where all
vk are pair-wise non-adjacent periods with no points in common that consist of
all the time instants which are, respectively,

− in either some vi or in some vj
− in some vi but not in any vj
− in both some vi and in some vj,

i = 1, 2, …, p, j = 1, 2, …, q.

5.5.2 Application of Pair-Wise Operations to Temporal Data

Consider relations R and S in Figure 5.6(a) and Figure 5.6(b), respectively.
Then the result of

− WU = R WUnion[T] S
− WE = R WExcept[T] S
− WI = R WInteresect[T] S

S
Manager Department Time

Mark
Mark
Tom

Food
Food
Clothes

[d21, d30]
[d41, d50]
[d51, d70]

John
d0 d10 d20 d30 d40 d50 d60 d70 d80 d90

10k

15k

Mark Food

R
Employee Salary Time

John
Alex

10k
15k

[d11, d40]
[d61, d80]

(a) (b)

Alex

Tom

Food

Clothes

R

S

Figure 5.6: Temporal relations.

is shown in Figure 5.7. Generally, let R1 and R2 be two relations with
respective scheme R1(A, T | PERIOD) and R2(B, T | PERIOD). Let also

S1 = {(a, vi) | i = 1, 2, …, p} (S2 = {(b, vj) | j = 1, 2, …, q})

be a subset of R1 (R2), consisting of all the tuples with the same values for
attributes A(B). For these S1 and S2,

− R1 WUnion[T] R2
− R1 WExcept[T] R2
− R1 WIntersect[T] R2

 111

Manager Department Time
Mark
Tom
Tom
Mark
Mark
Mark
Tom

Food
Clothes
Clothes
Food
Food
Food
Clothes

[d11, d50]
[d11, d40]
[d51, d70]
[d21, d30]
[d41, d50]
[d61, d80]
[d51, d80]

John
Mark

d0 d10 d20 d30 d40 d50 d60 d70 d80 d90
10k

15k

Food

WU
Employee Salary

John
John

Alex
John

Alex
Alex
Alex

10k

15k

10k
10k

15k
15k
15k

Food

Clothes

Manager Department Time
Mark
Mark
Tom
Mark
Tom

Food
Food
Clothes
Food
Clothes

[d11, d20]
[d31, d40]
[d11, d40]
[d61, d80]
[d71, d80]

WE
Employee Salary

John
John

Alex
John

Alex

10k

15k

10k
10k

15k

Manager Department Time
Mark
Tom

Food
Clothes

[d21, d30]
[d61, d70]

WI
Employee Salary

John
Alex

10k
15k

John

Mark

Alex

Tom

R

S

WU

WE
WI

10k, Food

John
Tom

WU

WE

10k, Clothes

Alex
Mark

WU
WE

Alex
Tom

WU
WE
WI

10k, Clothes

15k, Food 15k, Food 15k, Food

15k, Clothes

10k, Food 10k, Food

10k, Clothes

15k, Food

15k, Clothes

10k, Food

15k, Clothes
Figure 5.7: Result of pair-wise operations on temporal data.

 112

yields in the result relation the set of tuples {(a, b, vk) | k = 1, 2, …, r)}, where
all vk are pair-wise non-adjacent periods with no points in common that consist
of all the time instants which are, respectively,

− in either some vi or in some vj
− in some vi but not in any vj
− in both some vi and in some vj,

i = 1, 2, …, p, j = 1, 2, …, q.

5.5.3 Application of Overlay Operations to Temporal Data

If R and S are the relations in Figure 5.6(a) and Figure 5.6(b), respectively,
then the result of

FO = R FOverlay[Time] S
is shown in Figure 5.8. If the operation is

− IOverlay the result relation consists of the tuples (2) and (6) in FO.
− LOverlay the result relation consists of the tuples (1), (2), (3), (6), (7) in FO.
− ROverlay the result relation consists of the tuples (2), (4) and (5), (6) in FO.

Generally, let R1 and R2 be two relations with respective scheme R1(A, T |
PERIOD) and R2(B, T | PERIOD). Let also

S1 = {(a, vi) | i = 1, 2, …, p} (S2 = {(b, vj) | j = 1, 2, …, q})
be a subset of R1 (R2), consisting of all the tuples with the same values for
attributes A(B). For these S1 and S2:

− IO = R1 IOverlay[T] R2
consists of the set of tuples {(a, b, vk) | k = 1, 2, …, r)}, where all vk are pair-
wise non-adjacent periods with no points in common that consist of all the time
instants which are both in some vi and in some vj.

− LO = R1 LOverlay[T] R2
consists of the set of tuples in IO and also all the tuples {(a, null, vk) | k = 1, 2,
…, r)}, where all vk are pair-wise non-adjacent periods with no points in
common that consist of all the time instants in some vi but not in any vj.

− RO = R1 ROverlay[T] R2
consists of the set of tuples in IO and also all the tuples {(null, b, vk) | k = 1, 2,
…, r)}, where all vk are pair-wise non-adjacent periods with no points in
common that consist of all the time instants in some vj but not in any vi.

− FO = R1 FOverlay[T] R2
consists of all the tuples in IO, LO and RO.

 113

Manager Department Time

Mark

Mark
Tom
Tom

Food

Food
Clothes
Clothes

[d11, d20]
[d21, d30]
[d31, d40]
[d41, d50]
[d51, d60]
[d61, d70]
[d71, d80]

d0 d10 d20 d30 d40 d50 d60 d70 d80 d90
10k

15k

Food

FO
Employee Salary

John
John
John

Alex
Alex

10k
10k
10k

15k
15k

Food

Clothes

John

Mark

Alex

Tom

R

S

(1)
(2)
(3)
(4)
(5)
(6)
(7)

John, nullFO 10k

10k, Food

10k

John, Mark

John, null

null, Mark

null, Tom

Alex, Tom

Alex, null

Food

Clothes

15k, Clothes

15k
Figure 5.8: Result of overlay operations on temporal data.

5.5.4 Application of Other Operations to Temporal Data

If tTIME_ALL = [d0, d90] and S is the relation in Figure 5.2, then
C = Complementation[T](S)

gives the relation in Figure 5.9. Generally, the complementation of a relation
with scheme R(A, T) consists of tuples of the form (a, v′), where v′ is a
greatest period during which a is not valid, in the sense that none of the
instants in v′ are instants of some tuple (a, v) ∈ R.

If S is the relation in Figure 5.10(a) then
B = Buffer[D, Time](S)

yields the relation in Figure 5.10(b). Generally, let B = Buffer[A, D, T](R) and
let (a, d, [ti, tj]) be a tuple obtained when R is normalized. This tuple of R
yields, in the general case, a tuple (a, d, [ti-d, tj+d]) (actually the period is
[tmax(0, i−d), tmin(90, i+d)]) in B, [ti-d, tj+d] ⊆ tTIME_ALL, i.e., the period of validity of a
is extended by d instants to both the left and right.

 114

C
Name Salary Time
John
John
John
John
Alex
Alex
Alex
Alex

10k
10k
15k
15k
15k
15k
20k
20k

[d0, d10]
[d51, d90]
[d0, d60]
[d71, d90]
[d0, d20]
[d51, d90]
[d0, d60]
[d71, d90]

John

d0 d10 d20 d30 d40 d50 d60 d70 d80 d90
10k 10k

10k
15k

Alex

15k

15k

20k

S

C
10k 10k

15k 15k

S

C
15k

15k

20k 20k
Figure 5.9: Result of Complementation on temporal data.

John

d0 d10 d20 d30 d40 d50 d60 d70 d80 d90
10k, 20

Alex
10k, 10

S
Name Salary Time
John
Alex
Alex

10k
10k
10k

[d10, d20]
[d21, d30]
[d41, d50]

(a) (b)

S

B

S
B

D
20
10
10

B
Name Salary Time
John
Alex

10k
10k

[d0, d40]
[d11, d60]

D
20
10

10k, 20

10k, 10

10k, 10
Figure 5.10: Result of Buffer on temporal data.

Regarding operation Boundary, it can easily be verified that when it is applied
to a relation on a time attribute, it returns an empty relation. This is due to the

 115

fact that the complementation of a period [ti, tj] consists in general of two
periods, [t0, ti-1] and [tj+1, tn] and neither of the two has common instants with
[ti, tj]. This result matches fully the mathematical definition of boundary,
when it is applied to a discrete set, and this is really a desirable result for the
objectives of this thesis. Hence, it makes sense to apply Boundary to a relation
on a time attribute, except that this does not really have some practical
interest.

By its definition, a period does not have holes. Hence, it can also be verified
that when operation Envelope is applied to a relation on a time attribute, it
functions as operation Fold. Again, therefore, it makes sense to apply
Envelope to a relation on a time attribute, except that this does not really have
practical interest.

5.6 Evolution of Data with Respect to Time

The major data-modelling problem addressed in temporal databases is the
definition of operations that yield relations, which show the evolution of data
with respect to time. In general, the conventional relational algebra operations
lack this capability. As an example, if TP is the temporal relation in Figure
5.11(a) then Project[A, T](TP) yields a relation R(A, T) with tuples

(1, [d1, d2]),
(1, [d2, d4]),
(2, [d3, d5]),

Although R is temporal, it does not show precisely how its contents evolved,
as opposed to relation TS in Figure 5.11(b). The same is also true if Union is
applied to S1 and S2, in Figure 5.4. Given that data evolution is an issue
addressed in the next section, formalism is provided next.

Definition 5.7: Let P(A), Q(B) and R(C) be non-temporal relation schemes.
Let also Unary (Binary) be an operation such that

S = Unary(P) (S = Q Binary R).
Consider the set T = {t1, t2, …, tr} of not necessarily successive instants.
Assume also that the contents of P (Q and R)

− at time t1 is
1t

p (
1t

q ,
1t

r),

− at time t2 is
2tp (

2tq ,
2tr),

− . . .
− at time tr is

rtp (
rtq ,

rtr).
Let the application of Unary (Binary) to P (Q and R) at these times return in
S, respectively,

1t
s ,

2ts , ...,
rts . Finally, let TP(A, T), TQ(B, T) and TR(C, T)

 116

be temporal relations that contain exactly all the above data in P, Q and R,
respectively, associated with the relevant instants. Finally, let

TS = TUnary(TP) (TS = TQ TBinary TR).
If TUnary (TBinary) functions in such a way so that from the contents of TS it
is always possible to identify exactly that the contents of S at time ti was

its for all ti ∈T, it is said that TUnary (TBinary) is the evolution of Unary
(Binary) with respect to time.

P
A B
1 1

P
A B
1
1

1
4

P
A B
1
2

4
5

P
A B
1
2

4
5

P
A B
2 5

d2d1 d3 d4 d5
(b) Contents of P at various times.

S
A
1

d1

S
A
1

d2

S
A
1
2
d3

S
A
1
2
d4

S
A
2

d5
(c) Contents of S = [A](P) at various times.Project

TP
A B
1
1
2

1
4
5

T
[d1, d2]
[d2, d4]
[d3, d5]

TS
A
1
2

T
[d1, d4]
[d3, d5]

(a) TS = [T]([A, T](TP)).Fold Project

Figure 5.11: Fold[Time]°Project[A, Time], is the evolution of Project[A]

with respect to time.

Example 5.1: Figure 5.11(b) shows that the contents of P(A, B) at each of the
times d1 − d5 (i.e. at time d1 P contained the tuple (1, 1) or, equivalently, (1,
1) was valid at time d1 etc.). Figure 5.11(c) shows the result obtained in S =
Project[A](P) at each of these times. On the other hand, Figure 5.11(a) shows
TP, a temporal relation, which contains all the data ever recorded in P,
associated with the time during which that data was valid. Finally, TS, again
in Figure 5.11(a), is another temporal relation that contains all the data ever
recorded in S, associated again with the respective time. It is then noticed that

TS = Fold[T](Project[A, T](TP)).

 117

Given that this property is always satisfied, it follows that
Fold[Time]°Project[A, Time] is the evolution of Project[A] with respect to
time, where Operation1°Operation2 denotes composition of operations. In a
similar manner, it can easily be verified that QUnion[Time], QExcept[Time]
and QIntersect[Time] is the evolution of Union, Except and Intersect,
respectively.

This issue of evolution is discussed separately in the next section, where the
operations are applied to relations that contain spatio-temporal data.

5.7 Application to Spatio-temporal Data

As has been pointed out in Section 5.4, one or more attributes of a relation can
be of some spatial or time type. For ease of discussion, a relation with at least
one spatial and at least one time attribute is called spatio-temporal. Relation H
in Figure 5.12, is such a relation, and it is used to record the evolution of a

Name TimeShape

Morpheas
Morpheas
Morpheas
Morpheas

g
g
g
g

1

2

3

4

[d11, d20]
[d21, d40]
[d41, d50]
[d51, d60]

H

[d11, d20] [d21, d40] [d41, d50] [d51, d60]

g1 g2 g3 g4

Figure 5.12: Spatio-temporal relation normalised on space and time.

hydrological event, called Morpheas. The geometric representation of the data
recorded in attribute Shape is also shown in the same figure. Hence, the
geometric representation of the object recorded in the first tuple shows that
during [d11, d20] Morpheas was a spring (point). Then, during [d21, d40], it
was a river (line). Next, during [d41, d50] it was a river pouring into a lake
(hybrid surface) and, finally, during [d51, d60], is was a lake (pure surface).
Two more spatio-temporal relations are shown in Figure 5.13. In all these
relations it is noted that a 2-d spatial object is recorded in attribute Shape and
time, recorded in the last attribute, represents a value of a 1-d space (Section

 118

5.2). It then follows that a pair of (G, T) attributes of a spatio-temporal
relation represents a 3-d space.

(a) Non-normalised spatio-temporal relation.

Name TimeShape

Morpheas
Morpheas
Morpheas
Morpheas
Morpheas

g
g
g
g
g

1

7

8

5

9

[d11, d40]
[d21, d40]
[d21, d50]
[d41, d60]
[d51, d60]

H1

[d11, d40] [d21, d40] [d21, d50]
g1

g7 g8

[d41, d60] [d51, d60]

Name TimeShape

Morpheas
Morpheas
Morpheas
Morpheas

g
g
g
g

1

2

5

6

[d11, d60]
[d21, d60]
[d41, d60]
[d51, d60]

H2

[d11, d60] [d21, d60] [d41, d60] [d51, d60]

(b) Spatio-temporal relation normalized on time and space.

g1 g2

g9

g5

g6

g5

Figure 5.13: Spatio-temporal relations.

In the remainder of this chapter it is shown that the operations defined for the
management of either spatial or temporal data suffice for the management of
spatio-temporal data, i.e. there is no need to define new operations. Note
however that these operations have now to be applied to pairs of (G, T)
attributes, which form a 3-d space. Hence, the interpretation of the result
relation must also be interpreted in this space. This is illustrated by the
following example.

 119

d0 d0

d0 d0

d51

d90

d51

d90

d51

d90

d51

d90

(a) (b)

(c) (d)

(e) (f)

SURF_ALL

g

Figure 5.14: Complementation in a 3-d space.

Example 5.2: Consider a spatial relation S(G), with one tuple (g). Figure
5.14(a) shows the geometric representation of g, which is a subset of
SURF_ALL. If Complementation is applied to S, then the geometric
repesentation of the tuple in the result relation is the one shown in Figure
5.14(b). Since this result was obtained by the application of Complementation
to a spatial, non-temporal relation, let, for ease of discussion, be said that this
is a spatial relational algebra operation.

Now let a spatio-temporal relation be considered. Assume therefore that the
contents of SURF_ALL remains the same at all the times and recall that
TIME_ALL has a single tuple [d0, d90]. Consider also the spatiotemporal
relation ST(G, T) and let it contain one tuple, (g, [d51, d90]). This tuple

 120

shows that the shape of object g remained the same during [d51, d90]. Hence,
the geometric interpretation of the tuple in the 3-d space (SURF_ALL,
TIME_ALL) is that one shown in Figure 5.14(c). It is then obvious that the
complementation of the tuple in this space is the one shown in Figure 5.14(d).
Indeed, the application of Complementation to relation ST (discussed later in
Subsection 5.7.5) yields exactly this result. For ease of discussion, let it be
said that this is a spatio-temporal relational algebra operation. In general, all
the operations defined in Chapter 4 behave this way, when they are applied to
relations, on pairs of (G, T) attributes.

In addition however to the above stated functionality of a spatio-temporal
relational algebra operation, it also has practical interest to obtain the
evolution of the spatial relational algebra operation with respect to time. The
result of the evolution of operation Complementation is illustrated in Figures
5.14(e) and 5.14(f). The first of them shows how object g evolved with
respect to time and the second shows how its spatial complementation
evolved. Due to this observation, in conjunction with the discussion in the
previous section, the spatio-temporal functionality of the operations is
illustrated in the remainder of this section, but operations are also defined that
represent the evolution of the respective spatial operations. For ease of
discussion, a relational algebra operation is called spatial (spatio-temporal) if
it is applied to a relation on a spatial attribute (a pair of a spatial and of a time
attribute). From the illustration of the functionality of Complementation on a
temporal and on a spatio-temporal relation, the validity of the next proposition
is obvious.

Proposition 5.1: If SOperation is a spatial operation and TSOperation is the
relevant spatio-temporal then, in general, TSOperation is not the evolution of
SOperation with respect to time.

5.7.1 Spatio-temporal Unfold and Fold Operations

Definition 5.8: If A1, A2, ..., An is a subset of the attributes of a relation R, the
following are defined [LPS95]:

Unfold[A1, A2, ..., An](R) ≡ Unfold[An](...Unfold[A2](Unfold[A1](R))...)
Fold[A1, A2, ..., An](R) ≡ Fold[An](...Fold[A2](Fold[A1](R))...)
Normalise[A1, A2, ..., An](R) ≡ Fold[A1, A2, ..., An](Unfold[A1, A2, ..., An](R))

Since Normalise is defined in terms of Fold, it follows that
Normalise[A1, A2] ≠ Normalise[A2, A1].

Some properties of these operations can be found in Appendix A, whereas a
further set, associated with an efficient implementation, can be found in
[LPS95, DDL03].

 121

Name TimeShape
Morpheas
. . .
Morpheas
Morpheas
. . .
Morpheas
Morpheas
. . .
Morpheas
Morpheas
. . .
Morpheas
Morpheas
. . .
Morpheas

g
. . .
g
g
. . .
g
g
. . .
g
g
. . .
g
g
. . .
g

1

1

7

7

8

8

5

5

9

9

d11
. . .
d40
d21
. . .
d40
d21
. . .
d50
d41
. . .
d60
d51
. . .
d60

UH1

Name TimeShape

Morpheas
Morpheas
Morpheas
.
.
.
Morpheas
. . .

q g

.

.

.

. . .

1 8

q g
q g

q g

2 8

3 8

n 8

d50
d50
d50
.
.
.
d50
. . .

UH2

*
denotes the set of quanta of
space contained in .

{q g , q g , q g ..., q g }

g

1 8 2 8 3 8 n 8

8

.

(a) [Time](H)Unfold (b) [Shape](UH)Unfold 1
Figure 5.15: Examples of operation Unfold.

Although in [LM97] it has been argued that these operations can be applied to
a relation on some attribute of any data type, for the objectives of this thesis
only spatial and time attributes are considered. To illustrate now the
functionality of these operations, consider relation H1 in Figure 5.13(a). It is a
spatio-temporal relation and, by a careful examination, it can be seen that it
contains duplicate data. As an example, consider its fourth tuple and the
geometric interpretation of object g5. It is then noted that during the period
[d51, d60] (which is a sub-period of the lifespan of g5), object g5 contains the
top left quantum surface. From the geometric interpretation of object g9, it is
noted that during [d51, d60] this quantum surface is also contained in object
g9. Hence, a piece of surface has been recorded redundantly in two distinct
tuples during [d51, d60]. A similar observation applies to objects g7, g8 for the
period [d21, d40]. This data duplication can be eliminated by the use of
Unfold (see Section 5.4) by applying the sequence of operations

UH1 = Unfold[Time](H1)
UH2 = Unfold[Shape](UH1)

UH1 and UH2 are depicted in Figure 5.15. Alternatively, UH2 can be directly
obtained from H1 by applying

UH2 = Unfold[Shape, Time](H1).
Since UH2 does not contain duplicate data, the same is also true for each of

 122

H = Fold[Shape, Time](UH2),
H2 = Fold[Time, Shape](UH2),

shown respectively in Figures 5.12 and 5.13(b). Moreover, a comparison of
the contents of relations H and H2 shows that the application of Fold first on a
spatial and then on a time attribute yields a relation that enables identifying
the evolution of the shape of spatial data with respect to time. Equivalently, H
can be obtained directly from H1 by applying

H = Normalise[Shape, Time](H1).
Finally, H and H2 can be obtained from each other by applying

H = Normalize[Shape, Time](H2),
H2 = Normalize[Time, Shape](H).

Use Shape Time PidOwner TimeShape
Cultivation
Forest
Forest
Industrial
Industrial

[d11, d20]
[d11, d30]
[d31, d50]
[d21, d30]
[d31, d50]

g
g
g
g
g

1

2

4

1

3

John
Peter
Peter
Peter

Susan
Susan

Susan

P2
P1
P1
P3

P1
P2

P3

[d21, d40]
[d21, d30]
[d31, d40]
[d41, d60]

[d41, d60]
[d41, d60]

[d31, d40]

g
g
g
g

g
g

5

6

8

7

8

5

g7

LAND_USE

P_OWNER

Relation
[d11, d20] [d21, d30] [d31, d40] [d41, d50] [d51, d60]

J parcel≡ John's
S parcel≡ Susan's

LAND_USE P_OWNER

C
FF

I
F

I
F
Ig1

g2

g1

g2

g3

g2

g3

g2

J P S

P

J P PS

S

S

Sg5

g6 g5 g5 g5

g7 g7 g7

g8 g8 g8

(a) (b)
Figure 5.16: Spatio-temporal relations and their geometric representation.

To illustrate the functionality of the remainder operations on spaito-temporal
relations, consider two relations. The first of them is LAND_USE in Figure
5.16(a), and it is used to record the evolution of the shape of land uses with
respect to time. The geometric representation of this evolution is shown at the
top of Figure 5.16. Consider also relation

OWNERSHIP(Owner, Pid, Time | PERIOD)

 123

used to record the evolution of the ownership of land parcels with respect to
time. Let also

LAND_PARCEL(Pid, Shape | PSURFACE, Time | PERIOD)
be a second relation used to record the evolution of the shape of land parcels
with respect to time. It is then easy to apply relational algebra operations to
OWNERSHIP and LAND_PARCEL and obtain another relation

P_OWNER(Owner, Pid, Shape | PSURFACE, Time | PERIOD),
where, for each time period, both the shape and the owner of a land parcel is
shown. Let the extension of this relation be the one appearing in Figure
5.16(b). The geometric representation of this extension is also shown in
Figure 5.16. Then the examples given in the remainder sections are primarily
based on relations LAND_USE and P_OWNER.

5.7.2 Spatio-temporal Quantum Operations

Let I (Figure 5.17) be the relation obtained by the following sequence of
operations.

TR1 = Select[Use = 'Industrial'](LAND_USE)
I = Project[Shape, Time](TR1)

Its geometric representation is also shown in the same Figure 5.16. Notice that
two plots of tuple (g3, [d31, 50]) are shown, one for period [d31 d40] and a
second for [d41, d50]. This has been intentional, only to ease the
demonstration of the functionality of the operations that follow. This principle
is also adopted in the sequel.

Let also S (Figure 5.17) be the relation obtained by the following sequence of
operations.

TR1 = Select[Owner = 'Susan'](P_OWNER)
TR2 = Project[Shape, Time](TR1)
S = Normalize[Shape, Time](TR2)

Its geometric representation is also shown in Figure 5.17. Then the result
relations of operations

QU = I QUnion[Shape, Time] S,
QE = I QExcept[Shape, Time] S,
QI = I QIntersect[Shape, Time] S,

and their geometric interpretation as well, are shown in Figure 5.17. The
examples illustrate the following.

Proposition 5.2: QUnion[G, T] (QExcept[G, T], QIntersect[G, T]) is the
evolution with respect to time of QUnion[G] (QExcept[G], QIntersect[G]).

The proof is omitted, as simple.

 124

Relation
Time [d21, d30] [d31, d40] [d41, d50] [d51, d60]

I
(Industrial Areas)

S
(Susan's Land)

QU
(Quantum Union)

QE
(Quantum Except)

QI
(Quantum Intersect)

S
TimeShape

[d31, d40]
[d41, d60]

g
g

7

9

Shape Time
[d21, d30]
[d31, d50]

g
g

1

3

I

QU

[d21, d30]
[d31, d40]
[d41, d50]
[d51, d60]

g
g
g
g

1

17

18

9

TimeShape
QE

[d21, d30]
[d31, d40]
[d31, d40]
[d41, d50]

g
g
g
g

1

11

19

20

TimeShape
QI

[d31, d40]
[d41, d50]
[d41, d50]

g
g
g

20

11

19

TimeShape

g1 g3 g3

g9

g7

g9

g17
g18

g9

g11

g19

g20

g20 g11

g19

g1

Figure 5.17: Result of spatio-temporal quantum operations.

5.7.3 Spatio-temporal Pair-Wise Operations

Consider again the relations in Figure 5.16 and the operations

TR1 = Select[Use = 'Industrial'](LAND_USE)
I = Project[Use, Shape, Time](TR1)
TR2 = Select[Owner = 'Susan' or Owner = 'Peter'](P_OWNER)
TR3 = Project[Owner, Shape, Time](TR2)
S = Normalize[Shape, Time](TR3)

The extension of I, S, and their geometric representation as well, is shown in
Figure 5.18.

 125

Use Shape Time Owner TimeShape
Industrial
Industrial

[d21, d30]
[d31, d50]

g
g

1

3

Susan
Susan
Peter
Peter
Peter

[d31, d40]
[d41, d60]
[d21, d30]
[d31, d40]
[d41, d60]

g
g
g
g
g

7

9

6

8

7

I

S

Relation
[d21, d30] [d31, d40] [d41, d50] [d51, d60]

S parcel≡ Susan's

I S

I I Ig1 g3 g3

P S

P

PS
g6

g7 g7

g8 g9

PS g7

g9

Time

Figure 5.18: Input relations and geometric representation.

Then the result of
SWU = I WUnion[Shape, Time] S,
SWE = I WExcept[Shape, Time] S,

is shown, respectively, in Figures 5.19, 5.20. As can be seen, WUnion[G, T]
and WExcept[G, T] are not, respectively, the evolution of WUnion[G] and
WExcept[G] with respect to time (Proposition 5.1). However, it is easy to see
that this evolution can be implemented by the following sequence of relational
algebra operations.

1. TR1 = Unfold[Time](I)
2. TR2 = Unfold[Time](S)
3. TR3 = TR1(Time1←Time) WUnion[G] TR2(Time2←Time)
4. TR4 = Select[Time1 = Time2](TR3)
5. TR5 = Project[Use, Owner, Shape, Time](TR3(Time←Time1))
6. W = Fold[Time](TR5)

To illustrate this functionality, an example relation W, and its geometric
representation as well, is given in Figure 5.19. However, the definition of a
relational algebra operation, in terms of the above sequence of operations, is
avoided because a relevant syntax is provided in the SQL extension defined in
the next chapter.

 126

Use Owner TimeShape

Industrial
Industrial
Industrial
Industrial
Industrial
Industrial
Industrial
Industrial

Susan
Susan
Susan
Susan
Peter
Peter
Peter
Peter

[d21, d30]
[d31, d40]
[d41, d50]
[d51, d60]
[d21, d30]
[d31, d40]
[d41, d50]
[d51, d60]

g
g
g
g
g
g
g
g

1

17

18

9

22

23

17

7

I

S

Relation
[d21, d30] [d31, d40] [d41, d50] [d51, d60]

S parcel≡ Susan's

SWU

I I Ig1 g3 g3

P S

P

PS
g6

g7 g7

g8 g9

PS g7

g9

g9

Time

g1

In
du

st
ria

l
Su

sa
n

(S
pa

tio
-te

m
po

ra
l)

SW
U

In
du

st
ria

l
Pe

te
r g7

g17
g18

g22

g23

g17

Use Owner TimeShape

Industrial
Industrial
Industrial
Industrial
Industrial

Susan
Susan
Peter
Peter
Peter

[d31, d40]
[d41, d50]
[d21, d30]
[d31, d40]
[d41, d50]

g
g
g
g
g

17

18

22

23

17

W

In
du

str
ia

l
Su

sa
n

In
du

str
ia

l
Pe

te
r

g17
g18

g22

g23

g17

(E
vo

lu
tio

n
w.

r.t
)

W

Figure 5.19: Spatio-temporal WUnion and evolution of WUnion with respect

to time.

Similarly, a sequence of relational algebra operations that can implement the
evolution of WExcept[G] with respect to time is the one obtained if step 3 in
the previous sequence is replaced by

 127

Use Owner TimeShape

Industrial
Industrial
Industrial
Industrial
Industrial
Industrial
Industrial
Industrial

Susan
Susan
Susan
Susan
Peter
Peter
Peter
Peter

[d21, d30]
[d31, d40]
[d31, d40]
[d41, d50]
[d21, d30]
[d31, d40]
[d41, d50]
[d41, d50]

g
g
g
g
g
g

1

11

19

20

11

24

g
g

11

19

I

S

Relation
[d21, d30] [d31, d40] [d41, d50] [d51, d60]

S parcel≡ Susan's

SWE

I I Ig1 g3 g3

P S

P

PS
g6

g7 g7

g8 g9

PS g7

g9

Time

g1

In
du

str
ia

l
Su

sa
n

In
du

str
ia

l
Pe

te
r

g11

g19

g20

g11 g24 g11

g19

In
du

st
ria

l
Su

sa
n

In
du

st
ria

l
Pe

te
r

g11

g19

g20

g11 g24 g11

g19

(S
pa

tio
-te

m
po

ra
l)

SW
E

(E
vo

lu
tio

n
w.

r.t
)

W

Use Owner TimeShape

Industrial
Industrial
Industrial
Industrial
Industrial
Industrial
Industrial

Susan
Susan
Susan
Peter
Peter
Peter
Peter

[d31, d40]
[d31, d40]
[d41, d50]
[d21, d30]
[d31, d40]
[d41, d50]
[d41, d50]

g
g
g
g
g

11

19

20

11

24

g
g

11

19

W

Figure 5.20: Spatio-temporal WExcept and evolution of WExcept with respect

to time.

TR3 = TR1(Time1←Time) WExcept[G] TR2(Time2←Time)
As an example, this new sequence of operations yields relation W in Figure
5.20.

 128

Use Owner TimeShape

Industrial
Industrial
Industrial
Industrial
Industrial
Industrial

Susan
Susan
Susan
Peter
Peter
Peter

[d31, d40]
[d41, d50]
[d41, d50]
[d21, d30]
[d31, d40]
[d41, d50]

g
g
g
g
g
g

20

11

19

25

19

20

I

S

Relation
[d21, d30] [d31, d40] [d41, d50] [d51, d60]

S parcel≡ Susan's

W

I I Ig1 g3 g3

P S

P

PS
g6

g7 g7

g8 g9

PS g7

g9

Time

In
du

str
ia

l
Su

sa
n

W

In
du

str
ia

l
Pe

te
r

g20 g11

g19

g25

g19

g20

Figure 5.21: Example of spatio-temporal WIntersect.

Contrary to WUnion[G, T] and WExcept [G, T], the following proposition is
satisfied.

Proposition 5.3: WIntersect[G, T] is the evolution of WIntersect[G] with
respect to time.

The proof is again omitted, as simple. Note that, alternatively, the same result
can be obtained if step 3 in the previous sequence of operations is replaced by

TR3 = TR1(Time1←Time) WIntersect[G] TR2(Time2←Time).
An example relation W that illustrates this functionality is given in Figure
5.21.

 129

5.7.4 Spatio-temporal Overlay Operations

Consider again the relations in Figure 5.16 and the sequence of operations

TR1 = Select[Use = 'Industrial'](LAND_USE)
I = Project[Use, Shape, Time](TR1)
TR2 = Select[Owner = 'Susan'](P_OWNER)
TR3 = Project[Owner, Shape, Time](TR2)
S = Normalize[Shape, Time](TR3)

Relation
Time [d21, d30] [d31, d40] [d41, d50] [d51, d60]

I
Shape Time

[d21, d30]
[d31, d50]

g
g

1

3

I
(Industrial Areas)

S
(Susan's Land)

Use
Industrial
Industrial

FO
(Full Overlay)

FO
TimeShape

[d21, d30]
[d31, d40]
[d31, d40]
[d41, d50]
[d31, d40]
[d41, d50]
[d41, d50]
[d31, d40]
[d41, d50]
[d51, d60]

g
g
g
g
g
g
g
g
g
g

1

11

19

20

20

11

19

21

22

9

OwnerUse

Industrial
Industrial
Industrial
Industrial
Industrial
Industrial
Industrial

Susan
Susan
Susan
Susan
Susan
Susan

S
TimeShape

[d31, d40]
[d41, d60]

g
g

7

9

Owner
Susan
Susan In

ne
r

Le
ft

R
ig

ht
Fu

ll

g1 g3 g3

g9

g7

g9

g1

g9

g21

g22

g20

g11 g19 g11 g19

g20

Figure 5.22: Result of spatio-temporal overlay operations.

The extension of both I, S and relevant geometric representation are shown in
Figure 5.22. Then

FO = I FOverlay[G, T] S

 130

and its geometric representation is also shown in Figure 5.22. If, instead,
IOverlay (LOverlay, ROverlay)

is applied then the result consists, respectively, of those tuples of FO that have
been marked as Inner (Left, Right). It is easy to prove the following.

Proposition 5.4: IOverlay[G, T] (LOverlay[G, T], ROverlay[G, T],
FOverlay[G, T]) is the evolution with respect to time of IOverlay[G]
(LOverlay[G], ROverlay[G], FOverlay[G]).

The proof is again omitted, as simple

5.7.5 Other Interesting Spatio-temporal Operations

As has already been illustrated in Section 5.7, Complementation[G, T] is not
the evolution of Complementation[G] with respect to time. However, the
following general proposition for unary operations is satisfied.

Name TimeShape

Morpheas
Morpheas
Morpheas
Morpheas

g
g
g
g

1

2

3

4

[d11, d20]
[d21, d40]
[d21, d40]
[d41, d50]

H3

[d11, d20] [d21, d40] [d41, d50]

g1

g2

g3

g4

DT

10
20
20
10

DG

4
1
1
1

Figure 5.23: Input spatio-temporal relation.

Proposition 5.5: If Unary is any of the Complementation, Boundary,
Envelope and Buffer operations then

Fold[T]°Unary[G]°Unfold[T]
is the evolution of Unary[G] with respect to time.

In addition, the following proposition is satisfied.

Proposition 5.6: Boundary[G, T] (Envelope[G, T]) is the evolution with
respect to time of Boundary[G] (Envelope[G]).

 131

Name TimeShape

Morpheas
Morpheas
Morpheas
Morpheas

g
g
g

10

11

12

g13

[d11, d40]
[d41, d50]
[d51, d60]
[d51, d60]

C

[d21, d40] [d41, d50] [d51, d60]

g10

g11

g12

g13

Figure 5.24: Evolution with respect to time of Complementation.

Name TimeShape

Morpheas
Morpheas
Morpheas
Morpheas

g
g
g
g

1

2

14

15

[d11, d20]
[d21, d40]
[d41, d50]
[d51, d60]

B

[d11, d20] [d21, d40] [d41, d50] [d51, d60]
g1 g2 g14 g15

Figure 5.25: Result of operation Boundary on spatio-temporal data.

Name TimeShape

Morpheas
Morpheas
Morpheas
Morpheas

g
g
g
g

1

2

3

5

[d11, d20]
[d21, d40]
[d21, d40]
[d41, d50]

E

[d11, d20] [d21, d40] [d41, d50]

g1

g2

g3

DG

4
1
1
1

g5

DT

10
20
20
10

Figure 5.26: Result of operation Envelope on spatio-temporal data.

 132

g4

Name TimeShape

Morpheas
Morpheas
Morpheas

g
g
g

6

7

8

[d11, d20]
[d21, d40]
[d41, d50]

EB

[d11, d20] [d21, d40] [d41, d50]

DG

4
1
1

g6
g7

g1

g2

g3

Name TimeShape

Morpheas
Morpheas
Morpheas

g
g
g

6

7

8

[d1 , d30]
[d1 , d60]
[d31, d60]

B

[d1, d30] [d1, d60] [d31, d60]

DT

10
20
10

g6
g7

g1

g2

g3

DG

4
1
1

DT

10
20
10

g8

g4

g8

(a) Evolution of with respect to time.Buffer

(b) Spatio-temporal .Buffer
Figure 5.27: Evolution of Buffer and spatio-temporal Buffer.

Again, the proofs are easy. To provide examples, consider relations H in
Figure 5.12 and H3 in Figure 5.23. Then, based on Proposition 5.5, the result
of

C = Fold[Time](Complementation[Shape](Unfold[Time](H))),
shown in Figure 5.24, gives the evolution of the complementation of the data
recorded in H with respect to time.

The result of
B = Boundary[Shape, Time](H),

shown in Figure 5.25, yields the evolution of the boundary of the data
recorded in H with respect to time.

 133

Similarly, the result of
E = Envelope[Shape, Time](H3),

shown in Figure 5.26, yields the evolution of the envelope of the data
recorded in H3 with respect to time.

Finally, the result of
EB = Fold[Time](Buffer[DG, Shape](Unfold[Time](H3))),

shown in Figure 5.27(a), yields the evolution of the buffer of the data
recorded in H3 with respect to time. For comparison reasons, the result of
spatio-temporal Buffer

B = Buffer[DG, DT, Shape, Time](H3)
is shown in Figure 5.27(b).

5.8 Conclusions

A formalism was provided for the management of temporal data. Based on the
definition of time quanta, two generic time data types were defined,
INSTANT and PERIOD. The definition of Unfold and Fold was also given,
regarding their application to temporal relations, on a time attribute. Based on
a developed formalism, a number of propositions were finally given,
regarding the evolution of spatial data with respect to time. The characteristics
of the model formalised in this chapter can be summarised as follows:

− The generic time types, INSTANT and PERIOD, match fully human
perception.

− Temporal, spatial and spatio-temporal data are recorded in non-nested
relations.

− No restriction is imposed on the number of spatial or time attributes of
such relations.

− The definition of operations Unfold and Fold, when applied on
attributes of a time type is a minor adjustment of the relevant definition
of their application to a spatial attribute.

− No other operations had to be defined. Instead, it was shown that a
unique set of operations enables the uniform management of spatial,
temporal and spatio-temporal (and also interval [LM97]) data.

In conclusion, the spatio-temporal model defined in this thesis satisfies all the
relevant properties specified in Section 2.8.

CHAPTER 6

SQL EXTENSION

6.1 Introduction

An SQL extension for the management of spatio-temporal data is defined,
based on the relational algebra of the previous chapter. The syntax extends
further IXSQL [LM97], defined for the management of interval data. It is
assumed that the extension supports directly the data types for space and time
that have been defined in Sections 3.3 and 5.2, respectively, as well as the
relevant predicates and functions (some more can be found in Appendix B and
in [LM97]). Note that only the primitives of the extension are presented in
this chapter, but the full extension details are included in Appendix B. The
extension to the SQL INSERT, DELETE and UPDATE manipulation
operations is not considered here, since it matches the one given in [LM97].
The additional characteristics of SQL are given in bold. The remainder of this
chapter is outlined as follows. In Section 6.2, the syntax of SQL:1999 <query
specification> is extended by two new clauses, that enable the application of
relational algebra operations Unfold, Fold and Normalise. An already
proposed extension [LD96] that enables the formulation of queries that return
data, which evolves with respect to time, is reviewed in Section 6.3. Section
6.4 presents the extension of the SQL:1999 <non-join query expression> that
supports the application of the quantum and pair-wise operations of relational
algebra. In Section 6.5 the SQL:1999 <joined table> is extended in a way that
enables the incorporation of the various types of the overlay operations. A
new type of <query expression>, namely <unary query expression>, is
defined in Section 6.6. It enables the incorporation of the unary operations
Complementation, Boundary, Envelope and Buffer. Syntactic rules for the
proposed extension are given, wherever necessary. Finally, conclusions are
drawn in the last section.

 136

6.2 Query Specification

Two new optional clauses, <reformat clause> and <normalise clause>, have
been added to the syntax of the SQL:1999 query specification, which is thus
extended as follows [LM97]:

SELECT [<set quantifier>] <select list> (1)
FROM <table ref list> (2)
[WHERE <search condition>] (3)
[GROUP BY <grouping column ref list>] (4)
[HAVING <search condition>] (5)
[<reformat clause>] (6)
[<normalise clause>] (7)
[ORDER BY <sort spec list>] (8)

The BNF syntax of the new constructs is as follows:

<reformat clause> ::=
REFORMAT AS <reformat item>

<reformat item> ::=
 FOLD [ALL] <reformat column list> [<reformat item>]
| UNFOLD [ALL] <reformat column list> [<reformat item>]

<normalise clause> ::=
NORMALISE ON [ALL] <reformat column list>

<reformat column list> ::=
<reformat column> [{, <reformat column>}...]

<reformat column> ::=
<column reference>| <unsigned integer>

The following syntactic rule applies:

Rule 6.1: The <reformat column list> must be a sub-list of the attributes that
appear in <select list>.

(Note that in SQL:1999 line (8) is not actually part of <query specification>,
but it has been included here for simplicity reasons.) The semantics and
functionality of this extension is described below.

Reformat Clause

Lines (1)-(5) are executed as in SQL:1999 and next lines (6)-(8) are executed
in this order. The <reformat clause> enables the introduction of a sequence of
Unfold and Fold operations that are applied to the result produced by the
execution of lines (1)-(5). Formally, let TR0(A) be the scheme of the relation

 137

obtained by execution of lines (1)-(5), where A is a set of attributes of any
data type. Let A1, A2, ..., An be n subsets of A. Let also XFOLD denote either
UNFOLD or FOLD. Then, the result obtained by

REFORMAT AS XFOLD A1, XFOLD A2, ..., XFOLD Am
is a relation TRm that matches the result of the sequence of m relational
algebra operations

TRi = XFold[Ai](TRi-1), i = 1, 2, ..., m.

Hence, the following is a valid expression.

REFORMAT AS UNFOLD A1, A2, A3
FOLD A4, A5, A6
UNFOLD A7
FOLD A8, A9

If P_OWNER is the relation in Figure 5.16(b), this functionality is illustrated
by the following examples.

Shape
g9

R1

g9
Figure 6.1: Illustration of REFORMAT AS UNFOLD.

Example 6.1: ‘Give the whole of the area that was owned either by John on
date d25 or by Susan on date d45’.

SELECT Shape
FROM P_OWNER
WHERE (Owner = ‘John’ and Time cp [d25, d25]) or
 (Owner = ‘Susan’ and Time cp [d45, d45])
REFORMAT AS FOLD Shape

A Fold operation on space is applied to the relation returned by the execution
of the first four lines, and yields relation R1 in Figure 6.1.

Time
[d21, d40]
[d21, d60]
[d31, d60]

R2

Owner
John
Peter
Susan

Figure 6.2: Illustration of REFORMAT AS FOLD.

Example 6.2: ‘Give the ownership periods of every individual’.

 138

SELECT Owner, Time
FROM P_OWNER
REFORMAT AS FOLD (Time)

A Fold on Time is applied to the result returned by the execution of the first
two lines, and yields relation R2 in Figure 6.2.

Normalise Clause

The <normalise clause> enables the application of a Normalise operation to
the relation obtained by the execution of lines (1)-(6).

Formally, if TR is the relation obtained by the execution of lines (1)-(6) and
A1, A2, ..., An is a sub-list of <select list>, then the SQL expression

NORMALISE ON A1, A2, ..., An
is equivalent to the relational algebra expression

Normalise[A1, A2, ..., An](TR).

R
TimeA
[1, 4]
[2, 6]
[2, 3]

a
a
a

UNFOLD ALL R
TimeA

1
2
3
4
5
6
2
3
4
2
3

a
a
a
a
a
a
a
a
a
a
a

FOLD ALL R
TimeA
[1, 6]
[2, 4]
[2, 3]

a
a
a

(a) (b) (c)

Figure 6.3 The [ALL] option in UNFOLD, FOLD and NORMALISE.

Example 6.3: Consider LAND_USE in Figure 5.16(a) and the query ‘Give
the evolution of industrial land uses with respect to time’.

SELECT Use, Shape, Time
FROM LAND_USE
WHERE Use = ‘Industrial’
NORMALISE ON Shape, Time

A Normalise operation on Shape and Time is applied to the result returned by
the execution of the first three lines, and yields relation I in Figure 5.18.

 139

Since duplicate tuples are allowed in SQL, a variation of UNFOLD, FOLD
and NORMALISE is also provided below that enables obtaining relations
with duplicate tuples. This functionality is included only for reasons of
completeness and is illustrated by the example that follows, but it is not
considered further.

Example 6.4: Consider the relation R in Figure 6.3(a). Then
SELECT Time
FROM R
REFORMAT AS UNFOLD ALL Time

yields the relation in Figure 6.3(b). If the last line is replaced by
− either ‘REFORMAT AS FOLD ALL Time’
− or ‘NORMALISE ON ALL Time’

then the relation in Figure 6.3(c) is obtained. The functionality of these
options is similar when they are applied on more than one attribute.

The [ALL] option is incorporated in the remainder of the SQL extension but,
its discussion is beyond the objectives of this thesis.

Sort rows on the basis of Space and Time columns

The total ordering defined for spatial objects (Section 3.4) and time periods
(Section 5.3) enables incorporating references to attributes of these types after
the key words ORDER BY. In addition, aggregate functions can be applied to
attributes of these types.

6.3 Query Expression

In [LD96] an extension to the syntax of the SQL:1999 binary operations has
been proposed, which enables the easy formulation of queries that return data,
which evolves with respect to time. The proposed extension obeys the
following algorithm.

Let R(A), S(B) be two non-temporal relations and let
R OPERATION[ALL] S

denote any SQL:1999 binary operation. Let also TR(A, T), TS(B, T) be the
respective temporal relations. It is then defined that

TR OPERATION [ALL] EXPANDING(T) TS
returns a relation with scheme and contents deduced by the execution of the
following five steps:

S1. Let UR = TR UNFOLD [ALL] (T), US = TS UNFOLD [ALL] (T).

 140

S2. Let TIME be the relation returned by the expression
SELECT T FROM UR
UNION
SELECT T FROM US

S3. For every t ∈ TIME, let URt and USt be the relations returned,
respectively, by the expression

SELECT A FROM UR SELECT B FROM US
WHERE T = ‘t‘ WHERE T = ‘t‘

S4. For every t ∈ TIME, let UPt(C) be the scheme of the relation obtained
by the SQL:1999 binary operation

URt OPERATION [ALL] USt.

S5. It is then defined that
TR OPERATION [ALL] EXPANDING(T) TS

returns a relation P(C, T), where the domain of T is of a period type.
The rows of P are those obtained by steps S5.1 and S5.2 below.

S5.1 For every t ∈ TIME,
 if c is a row in UPt
 then add a row (c, t) in UP(C, T).

S5.2 P = UP NORMALIZE [ALL] (T).

By a similar argument, assume now that GR(A, G) and GS(B, G) are two
spatial relations and let

GR SOPERATION [ALL] OF (G) GS
be the syntax of one of the operations defined in Chapter 4. Let also TGR(A,
G, T), TGS(B, G, T) be the respective spatio-temporal relations. By adopting
the above algorithm, it then follows that

TGR SOPERATION [ALL] OF (G) EXPANDING(T) TGS
can be the syntax of the operation that gives the evolution of SOPERATION
OF (G) with respect to time. Indeed, this is the approach followed, in this
thesis.

In SQL:1999 binary operations are involved in a <query expression>, which
can be either a <non-join query expression> or a <joined table>. Here <query
expression> is extended further, by the inclusion of a <unary query
expression>, as follows:

<query expression> ::=
 <IXSQL non-join query expression>
| <IXSQL joined table>
| <IXSQL unary query expression>

 141

The application of the above algorithm to each type of a query expression is
addressed in one on the sections that follow.

6.4 Non-Join Query Expression

The syntax of the SQL:1999 non-join query expression, has been extended so
as to support the quantum and pair-wise relational algebra operations.

Quantum Operations

In a simplified case (full syntax details are given in Appendix B), the syntax,
to incorporate within SQL the quantum operations, is the following:

<non-join query expression>::=
 <query exp 1> UNION [ALL]

[EXPANDING (<reformat column list>)]
<query exp 2>

| <query exp 1> EXCEPT [ALL]
[EXPANDING (<reformat column list>)]
<query exp 2>

| <query exp 1> INTERSECT [ALL]
[EXPANDING(<reformat column list>)]
<query exp 2>

The following syntactic rules apply:

Rule 6.2: <query exp 1> and <query exp 2> must return union compatible
relations.

Rule 6.3: <reformat column list> must form a sub-list of the attributes of the
relations returned by both <query exp 1> and <query exp 2>.

If the EXPANDING option is missing, then the above syntax matches that of
the SQL <non-join query expression>. If this option is present then the
algorithm of Section 6.3 is applied. If R1(A, B), R2(A, B) are the relations
returned by <query exp 1> and <query exp 2>, respectively, then the result
obtained by

<query exp 1> UNION EXPANDING() <query exp 2>,
<query exp 1> EXCEPT EXPANDING() <query exp 2>,
<query exp 1> INTERSECT EXPANDING() <query exp 2>,

matches, respectively, that obtained by the relational algebra operation
R1 QUnion[B] R2,
R1 QExcept[B] R2,
R1 QIntersect[B] R2.

 142

The remainder examples of the chapter are based on relations LAND_USE
and P_OWNER in Figure 5.16. The examples that follow apply quantum
operations to a temporal, a spatial and a spatio-temporal relation. In a similar
manner, any of the quantum operations can be applied to such relations.

Time
[d21, d50]

R4

Figure 6.4: Illustration of UNION EXPANDING (Time).

Example 6.5: ‘Give the periods of time during which there were industrial
areas or John was the owner of some piece of land’.

SELECT Time
FROM LAND_USE
WHERE Use = ‘Industrial’
UNION EXPANDING (Time)
SELECT Time
FROM P_OWNER
WHERE Owner = ‘John’

The SQL expression selects two different sets of temporal data and it then
applies the Quantum Union on time, yielding relation R4 in Figure 6.4.

Use Shape
Industrial g10

R5

g10

Figure 6.5: Illustration of EXCEPT EXPANDING (Shape).

Example 6.6: ‘Give the pieces of land on date d45 whose use was different on
date d25’.

SELECT Use, Shape
FROM LAND_USE
WHERE Time cp [d45, d45]
EXCEPT EXPANDING (Shape)
SELECT Use, Shape
FROM LAND_USE
WHERE Time cp [d25, d25]

The SQL expression selects spatial data valid on two different dates and it
then applies a Quantum Except on space, yielding relation R5 in Figure 6.5.

Example 6.7: ‘Give the pieces of land that were industrial or were owned by
Susan, and the respective periods as well’.

 143

SELECT Shape, Time
FROM LAND_USE
WHERE Use = ‘Industrial’
UNION EXPANDING (Shape, Time)
SELECT Shape, Time
FROM P_OWNER
WHERE Owner = ‘Susan’

The SQL expression selects two different sets of spatio-temporal data and it
then applies Quantum Union on space and time, yielding relation QU in
Figure 5.17.

Pair-Wise Operations

In a simplified case (full syntax details are given in Appendix B), the syntax,
to incorporate within SQL the pair-wise operations, is the following:

<non-join query expression>::=
 <query exp 1> WUNION [ALL] OF (<ref col list 1>)

[EXPANDING (<ref col list 2>)]
<query exp 2>

| <query exp 1> WEXCEPT [ALL] OF (<ref col list 1>)
[EXPANDING (<ref col list 2>)]
<query exp 2>

| <query exp 1> WINTERSECT [ALL] OF (<ref col list 1>)
[EXPANDING(<ref col list 2>)]
<query exp 2>

The following syntactic rules apply:

Rule 6.4: <ref col list 1> and <ref col list 2> must form sub-lists of the list of
attributes of the relations returned by both <query exp 1> and
<query exp 2>.

Rule 6.5: <ref col list 1> and <ref col list 2> may not have attributes in
common.

Note that sets of columns returned by <query exp 1> and <query exp 2> do
not have to be disjoint because SQL:1999 does not impose such a restriction.
If R1(A, C), R2(B, C) are the relations returned by <query exp 1> and <query
exp 2>, respectively, then the result obtained by

<query exp 1> WUNION OF(C) <query exp 2>,
<query exp 1> WEXCEPT OF(C) <query exp 2>,
<query exp 1> WINTERSECT OF(C) <query exp 2>,

matches, respectively, the one obtained by the relational algebra operation
R1 WUnion[C] R2,
R1 WExcept[C] R2,
R1 WIntersect[C] R2.

 144

If R1(A, G, T), R2(B, G, T) are two spatio-temporal relations, it is recalled
that, in the general case, the result obtained by operation R1 WUnion[G, T] R2
does not match the evolution with respect to time of the result obtained by
operation R1

 WUnion[G] R2. The same observation also applies to operations
R1 WExcept[G, T] R2 and R1 WExcept[G] R2. However, this evolution can be
obtained by the use of the EXPANDING option and the application of the
algorithm in Section 6.3. Therefore, the expressions

TABLE R1 WUNION OF (G) EXPANDING(T) TABLE R2,
TABLE R1 WEXCEPT OF (G) EXPANDING(T) TABLE R2,
TABLE R1 WINTERSECT OF (G) EXPANDING(T) TABLE R2,

yield, respectively, the evolution with respect to time of the data returned by
operations

R1 WUnion[G] R2,
R1 WExcept[G] R2,
R1 WIntersect[G] R2.

Use Shape
Industrial
Forest

g
g

11

12

R6

Owner
John
John

g11

g12

Figure 6.6: Illustration of WINTERSECT OF (Shape).

Example 6.8: ‘For each owner, give the land he/she owned on date d25 and
the use of this land on that date’.

SELECT Owner, Shape
FROM P_OWNER
WHERE Time cp [d25, d25]
WINTERSECT OF (Shape)
SELECT Use, Shape
FROM LAND_USE
WHERE Time cp [d25, d25]

The SQL expression selects two sets of spatial data and it then applies Pair-
Wise Intersect on space. Relation R6 in Figure 6.6 shows the result only for
John.

Example 6.9: ‘Give the boundaries between Peter´s and Susan´s parcels on
date d45’.

 145

SELECT Pid AS Peter, Shape
FROM P_OWNER
WHERE Owner = ‘Peter’ and Time cp [d45, d45]
WINTERSECT OF (Shape)
SELECT Pid AS Susan, Shape
FROM P_OWNER
WHERE Owner = ‘Susan’ and Time cp [d45, d45]

As can be seen in relation R7 in Figure 6.7, the spatial intersection yields
lines.

Shape
R7

Peter
P3
P3

Susan
P2
P1

g30

g31

g
g

30

31
Figure 6.7: Illustration of WINTERSECT OF (Shape) yielding pure lines.

Example 6.10: ‘Give the evolution with respect to time of the land use of the
area that parcel P1 occupied on date d25’.

SELECT Use, Shape, Time
FROM LAND_USE
WINTERSECT OF (Shape)
SELECT Shape
FROM P_OWNER
WHERE Pid = ‘P1’ and Time cp [d25, d25]

The SQL expression yields the evolution with respect to time of spatial data in
a given area (R8 in Figure 6.8).

Use Shape Time
Cultivation
Forest
Forest
Industrial
Industrial

[d11, d20]
[d11, d30]
[d31, d50]
[d21, d30]
[d31, d50]

g
g
g
g
g

25

26

28

25

27

[d11, d20] [d21, d30] [d31, d40] [d41, d50]

R8

g25

g26

g27

g28

C
F

g25

g26

F
I I

F
g27

g28

I
F

Figure 6.8: Illustration of the obtaining of evolution of spatial data with

respect to time in a given area.

 146

Time
[d11, d20]
[d21, d30]
[d11, d30]

R9

Use
Cultivation
Industrial
Forest

Figure 6.9: Illustration of WEXCEPT OF (Time).

Example 6.11: ‘Give the life spans of land uses outside the lifespan of parcel
P3’.

SELECT Use, Time
FROM LAND_USE
WEXCEPT OF (Time)
SELECT Time
FROM OWNERSHIP
WHERE Pid = ‘P3’

The SQL expression selects two sets of temporal data and then it applies Pair-
Wise Except on time, yielding relation R9 in Figure 6.9.

Example 6.12: ‘Give the land use of each piece of land while it was not
owned by Peter and while it was not owned by Susan. Give also the respective
time and the name of these two persons who did not own this piece of land’.

SELECT Use, Shape, Time
FROM LAND_USE
WEXCEPT OF (Shape, Time)
SELECT Owner, Shape, Time
FROM P_OWNER
WHERE Owner = ‘Peter’ or Owner = ‘Susan’

Relation SWE in Figure 5.20 contains part of the result, concerning pieces of
industrial use.

Example 6.13: ‘Give the spatial union of the pieces of land of every land use
with every land owner that were valid at the same time. Give also the
respective valid time’.

SELECT Use, Shape, Time
FROM LAND_USE
WUNION OF (Shape) EXPANDING (Time)
SELECT Owner, Shape, Time
FROM P_OWNER

Relation W in Figure 5.19 contains part of the result, concerning pieces of
industrial use and owners Peter and Susan.

 147

6.5 Joined Table

Beyond the extension by the EXPANDING option of the various types of the
SQL:1999 join operations [LD96], a syntax has also been provided for joined
tables, that enables the explicit application of the various types of overlay
operations. This syntax is given below.

<IXSQL overlay> ::=
<table ref 1> [NATURAL][<overlay type>] OVERLAY [ALL]

[OF (<ref col list 1>)]
[EXPANDING (<ref col list 2>)]
<table ref 2>

<overlay type> ::=
 INNER
| {LEFT | RIGHT | FULL} [OUTER]

The following rule applies:

Rule 6.6: Exactly one of the options, either NATURAL or OF (<ref col list
1>) must be specified.

If the option <overlay type> is not specified then INNER is assumed by
default. The option NATURAL is equivalent to the option OF (<ref col
list>), where <ref col list> is the list of all attributes in the result of both
<query exp 1> and <query exp 2>. Recall that <ref col list 1> and <ref col list
2> must be disjoint sub-lists of the attributes of the relations returned by
<query exp 1> and <query exp 2> (Rules 6.4 and 6.5). If R1(A, C), R2(B, C)
are the relations returned by <query exp 1> and <query exp 2>, respectively,
then the result obtained by

<table ref 1> INNER OVERLAY OF(C) <table ref 2>,
<table ref 1> LEFT OVERLAY OF(C) <table ref 2>,
<table ref 1> RIGHT OVERLAY OF(C) <table ref 2>,
<table ref 1> FULL OVERLAY OF(C) <table ref 2>,

matches, respectively, the one obtained by the relational algebra operation

R1 IOverlay[C] R2,
R1 LOverlay[C] R2,
R1 ROverlay[C] R2,
R1 FOverlay[C] R2.

If R1(A, G, T), R2(B, G, T) are two spatio-temporal relations, it is recalled
(Proposition 5.4) that operation R1 FOverlay[G, T] R2 yields the evolution
with respect to time of operation R1 FOverlay[G] R2. The same observation

 148

applies to all the other types of overlay operations. It is therefore deduced that
the following two expressions are equivalent:

R1 FULL OVERLAY OF(G, T) R2.
R1 FULL OVERLAY OF(G) EXPANDING(T) R2.

It is also easy to realise that the first of them is equivalent to

R1 FULL JOIN EXPANDING(G, T) R2 ON (1=1)

Therefore, all three of them are equivalent. The same observation applies to
all the other types of overlay operations.

Use Shape
Industrial
Forest
Industrial
Forest

g
g
g
g

11

12

13

14

R10

Owner
John
John
Peter
Peter

g11
g12

g13

g14

Figure 6.10: Illustration of FULL OVERLAY EXPANDING (Shape).

Example 6.14: ‘Give the uses of all the areas and their owner on date d25’.
(SELECT Owner, Shape
 FROM P_OWNER
 WHERE Time cp [d25, d25])
FULL OVERLAY OF (Shape)
(SELECT Use, Shape
 FROM LAND_USE
 WHERE Time cp [d25, d25])

The result relation can be seen in Figure 6.10.

Example 6.15: ‘For all the recorded times, associate industrial land with
land owned by Susan’.

(SELECT Use, Shape, Time
 FROM LAND_USE
 WHERE Use = ‘Industrial’)
FULL OVERLAY OF (Shape, Time)
(SELECT Owner, Shape, Time
 FROM P_OWNER
 WHERE Owner = ‘Susan’)

This yields relation FO in Figure 5.22. In a similar manner, it is also possible
to apply any of the other overlay operations.

 149

6.6 Unary Query Expression

The definition of <unary query expression> enables incorporating in SQL the
functionality of the relational algebra operations Complementation, Boundary,
Envelope and Buffer. An obvious revision of the algorithm given in Section
6.3 is also considered, which enables defining the evolution of these
operations with respect to time. Hence, the syntax is as follows:

<unary query expression> ::=
(<unary query expression>)

| <table ref> { COMPLEMENTATION
| BOUNDARY
| ENVELOPE [ALL]}
 OF (<ref col list 1>)
 [EXPANDING (<ref col list 2>)]

| <table ref> BUFFER [ALL]
 OF (<ref col list 1>)
 WITHIN DISTANCE (<ref col list 3>)
 [EXPANDING (<ref col list 2>)]

The following rules apply:

Rule 6.7: <ref col list 1>, <ref col list 2> and <ref col list 3> must form
disjoint sub-lists of the attributes of the relations returned by <table
ref>.

Rule 6.8: The data type of attributes in <ref col list 3> must be numeric.

Rule 6.9: The number of attributes in <ref col list 2> must be identical to the
number of attributes in <ref col list 3>.

If R is the relation obtained by <table ref>, then the result obtained by
<table ref> COMPLEMENTATION OF (<ref col list 1>),
<table ref> BOUNDARY OF (<ref col list 1>),
<table ref> ENVELOPE OF (<ref col list 1>),
<table ref> BUFFER OF (<ref colist 1>)

WITHIN DISTANCE (<ref col list 3>),
matches, respectively, that obtained by the relational algebra operation

Complementation[<ref col list 1>](<table ref>),
Boundary[<ref col list 1>](< table ref >),
Envelope[<ref col list 1>](< table ref >),
Buffer[<ref col list 3>, < ref col list 1>](<table ref >).

Recall that Boundary[G, T] (Envelope[G, T]) yields the evolution with respect
to time of operation Boundary[G] (Envelope[G]). Hence,

R BOUNDARY OF (G, T) and

 150

R ENVELOPE OF (G, T)
are, respectively, equivalent to

R BOUNDARY OF (G) EXPANDING (T)
R ENVELOPE OF (G) EXPANDING (T)

Shape
g16

R11

g16

Figure 6.11: Illustration of BOUNDARY OF (Shape).

Example 6.16: ‘Give the boundary of the area owned by either John or Peter
on date d35’.

(SELECT Shape
 FROM P_OWNER
 WHERE Time cp [d35, d35] and
 (Owner = ‘John’ or Owner = ‘Peter’))
BOUNDARY OF (Shape)

The result is relation R11 in Figure 6.11.

Example 6.17: ‘Give the boundary of the land owned by Susan on various
dates’.

(SELECT Shape, Time
 FROM P_OWNER
 WHERE Owner = ‘Susan’)
BOUNDARY OF (Shape) EXPANDING (Time)

[d31, d40] [d41, d50] [d51, d60]R12

TimeShape
[d31, d40]
[d41, d60]

g
g

25

16
g16 g16g25

Figure 6.12: Illustration of BOUNARY OF (Shape) EXPANDING (Time).

The result is relation R12 in Figure 6.12. In a similar manner, it is also possible
to apply any of the unary operations.

Note that the proposed syntax enables the application of a sequence of
operations Complementation, Boundary, Envelope, Buffer, to an input
relation. Thus, the SQL expression of Example 6.17 can be extended as
follows.

Example 6.18: ‘Give a buffer area of 10 around the boundary of the land
owned by Susan on various dates’.

 151

((SELECT 10 AS D, Shape, Time
 FROM P_OWNER
 WHERE Owner = ‘Susan’)
 BOUNDARY OF (Shape) EXPANDING (Time))
BUFFER OF (Shape) WITHIN DISTANCE (D) EXPANDING (Time)

6.7 Conclusions

An SQL extension for the management of spatial and spatio-temporal data
was presented. The work is a further extension, and also fully compatible, to
another extension [LM97, LD96], which aimed at the management of
temporal and, more generally, interval data. The extension is fully compatible
with the ISO SQL:1999 standard [Iso99] and enables incorporating the whole
power of the relational algebra operations, defined in Chapters 4 and 5, within
SQL.

CHAPTER 7

COMPARISON WITH OTHER APPROACHES

7.1 Introduction

The model proposed in this thesis is now compared with known spatial and
spatio-temporal approaches. To achieve this, the properties identified in
Chapter 2 are considered as a yardstick. Hence, both the various spatial and
spatio-temporal approaches and also the model proposed in this thesis are
evaluated with respect to them. This way, it is shown that this model inherits
the functionality of almost all other approaches. The evaluation with respect
to some property is marked as follows:

− Y (Yes): The property is satisfied.
− N (No): The property is not satisfied.
− P (Partially): The property is satisfied partially.
− N/A (Not Applicable): The property is not applicable.
− E (Estimated) : It is not explicitly stated in the literature that the

property is satisfied, but it is estimated so.
− ? (Not clear): It is not clear from the literature whether the

property is satisfied.

Effort has been made for the evaluation to be objective. Note that this has not
been an easy task, since many approaches lack formalism.

The remainder of the chapter is organized as follows: In Section 7.2 each of
the spatial approaches reviewed in Section 2.2 are classified according to the
characteristics analysed in Section 2.4 and are evaluated with respect to the
properties specified in Section 2.8. In Section 7.3 each of the spatio-temporal
approaches reviewed in Section 2.3 are classified according to the
characteristics analysed in Section 2.6 and are evaluated with respect to the
properties specified in Section 2.8. Note that the use of arcs in vector based
spatial approaches has been neglected in the evaluation of user-friendly data
types. In Section 7.4, the model formalised in this thesis is also classified and
evaluated. In Section 7.5 the proposed model is evaluated with respect to the

 154

functionality of other approaches. Additional characteristics of the model are
presented in Section 7.6. Similarities with other approaches are identified in
Section 7.7. Finally, conclusions are drawn in the last section.

7.2 Classification and Evaluation of Spatial Approaches

Short explanations are given, wherever this is estimated to be necessary, in the
classification and evaluation of each model.

7.2.1 ROSE Algebra

References: [GS93, GS95] Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Definition of a set of spatial data types and operations between
them.

C3. Database or GIS Centric: Data types integrated in Database-centric
architecture.

P2.1 Point, Pure Line, Pure Surface: Set-valued spatial objects allowed.

P4. Spatial Data Validation Mechanisms: It is not satisfied. For example, the
domain of G_city in CAPITAL_CITIES(city_name, country_name, G_city)
has to be of a set of points data type. Clearly, however, more than one spatial
point can be recorded for a given city name.

P8. No Data Loss in Operations: Note that distinct operations have to be
applied to obtain the surface, line and point parts of the spatial intersection of
two surfaces.

P9.2 Fold: Supported by combination of Fusion and Decompose. Applied
only to spatial objects of the same type.

P9.4-P9.13 Quantum, Pair-Wise and Overlay Operations: All are supported
indirectly by functions for spatial union, difference and intersection.
Limitations are identified: Spatial union and difference must be applied to
spatial objects of the same data type. Overlay is applied only to pure surfaces
and gives again only pure surfaces.

 155

Fi
gu

re
 7

.1
(a

):
C

la
ss

ifi
ca

tio
n

an
d

ev
al

ua
tio

n
of

 sp
at

ia
l a

pp
ro

ac
he

s.

 156

Fi
gu

re
 7

.1
(b

):
C

la
ss

ifi
ca

tio
n

an
d

ev
al

ua
tio

n
of

 sp
at

ia
l a

pp
ro

ac
he

s.

 157

Fi
gu

re
 7

.1
(c

):
C

la
ss

ifi
ca

tio
n

an
d

ev
al

ua
tio

n
of

 sp
at

ia
l a

pp
ro

ac
he

s.

 158

Fi
gu

re
 7

.1
(d

):
C

la
ss

ifi
ca

tio
n

an
d

ev
al

ua
tio

n
of

 sp
at

ia
l a

pp
ro

ac
he

s.

 159

7.2.2 Tomlin’s Map Algebra (TMA)

References: [To90, To91, To94, To97] Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Abstract description of a classification of operations for the
management of maps of any type.

C1. Discrete or Continuous Change in Space: The set of operations enables
the management of data that changes continuously in space.

C2. Vector or Raster-Based: Both vector and raster representations are
possible at implementation level.

C3. Database or GIS Centric: The approach considers operations on maps.

P2.1 Point, Pure Line, Pure Surface: Only one type of zone (set of points) is
supported in maps.

P9.2 Fold: Points with the same thematic value are automatically coalesced
into the same zone.

P9.4-P9.9 Quantum and Pair-Wise Operations: This model aims at defining
operations on maps. Therefore, these properties are not applicable.

P9.10-P9.13 Overlay Operations: Supported by operation LocalCombination.

P10. Limited Number of Kernel Operations: The set of operations is too long
and does not intend to be complete.

P11. Dimension Independent Spatial Types and Operations: It is estimated
that the model can easily be generalized to an n-d space.

7.2.3 Erwig and Schneider’s Spatial Partition Model (ESSPM)

References: [ES97, ES00] Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Formalism for spatial partitions (thematic maps) and operations.

C2. Vector or Raster-Based: Conceptual model.

C3. Database or GIS Centric: The approach considers operations on
partitions.

P2.1(a), P2.1(b) Point, Pure Line: Spatial Partitions contain only pure
surfaces.

 160

P2.2 Compatibility between Spatial Data Types: N/A, due to previous remark.

P3. Support of Hybrid Surfaces: Not satisfied, due to previous remark.

P8. No Data Loss in Operations: The spatial intersection of pure surfaces
(achieved by operation Intersection on spatial partitions) yields only pure
surfaces.

P9.2 Fold: Points and pure lines are not supported.

P9.4-P9.9 Quantum and Pair-Wise Operations: They are not applicable
because they are operations on relations whereas the approach defines a map
model.

P9.10-P9.13 Overlay Operations: Only pure surfaces are supported.

P9.14, P9.15 Complementation and Boundary: See Properties P9.4-P9.9.

7.2.4 Hadzilacos and Tryfona’s GIS Model (HTGIS)

References: [HT96, DHT94, HT92] Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Combination of the map model defined in [DHT94] with the
relational model.

P1. Formalism for Spatial Types and Operations: Only the concept of layer
and some operations are formalized.

P3. Support of Hybrid Surfaces: Overlapping is not allowed between spatial
objects of the same layer. Thus, a hybrid surface can be represented indirectly
as a set of pure lines and pure surfaces.

P7. No Limitations on Data Structures: Only one spatial attribute is allowed
in a layer (recall that a layer is a relation with only one spatial attribute).

P6. Complex Data Structures not Required: Different data structures are used
for the modelling of spatial and conventional data.

P8. No Data Loss in Operations: The spatial intersection of two pure surfaces
yields only pure surfaces.

P9.1 Basic Relational: They are supported for conventional data but they
cannot be applied to layers.

P9.2 Fold: It can be applied only to layers of either pure lines or of pure
surfaces.

 161

P9.4-P9.9 Quantum and Pair-Wise Operations: Spatial union, difference and
intersection are applied to spatial objects of the same data type. Conventional
attributes of input layers are not maintained in the result.

P9.10-P9.13 Overlay Operations: The overlay of two layers of pure surfaces
yields only pure surfaces. Similar observation applies to other spatial data
types.

7.2.5 ESRI ArcInfo 8

References: [Esri99, Esri00, Ze99,
Ma99, Tu00, MSW99,
Esri02a, Esri02b]

Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Providing functionality for the development of GIS applications.

P2.1(b, c) Pure Line, Pure Surface: Actually sets of pure lines and pure
surfaces are supported.

P4. Spatial Data Validation Mechanisms: Not supported due to the previous
remark.

P6. Complex Data Structures not Required: Same set of tools for
conventional and spatial structures.

P7. No Limitations on Data Structures: Only one spatial attribute at a time is
considered in spatial operations.

P8. No Data Loss in Operations: The spatial intersection of two pure surfaces
yields only pure surfaces.

P9.2 Fold: Operation Dissolve applies explicitly either to pure surfaces or to
pure lines.

P9.4, P9.7 Quantum and Pair-Wise Union: Achieved with operation Dissolve,
but the operation applies explicitly to either pure surfaces or pure lines.

P9.5, P9.8 Quantum and Pair-Wise Except: Operation Erase does not enable
achieving Quantum or Pair-Wise Except.

P9.6, P9.9 Quantum and Pair-Wise Intersect, Overlay: Only pure surfaces
must be recorded in the second feature class and data loss was identified in
Property P8.

 162

7.2.6 Intergraph Geomedia 5

References: [LH98, Int02] Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Providing functionality for the development of GIS applications.

The behaviour of this approach is close to the one of the previous subsection,
therefore, only main differences are addressed below.

P2.1(a) Point: Sets of points are supported.

P2.2 Compatibility between Spatial Data Types: Data type COMPOUND
enables recording spatial objects of any type in the same relation.

P3. Support of Hybrid Surfaces: Objects HS in Figures 2.12(c-d) are valid.

P8. No Data Loss in Operations: Satisfied.

P9.2, P9.4, P9.7 Fold, Quantum and Pair-Wise Union: Supported.

P9.6, P9.9-P9.13 Quantum and Pair-Wise Intersect and Overlay Operations:
Supported.

7.2.7 MapInfo Professional 7

References: [Mapi01, Mapi02] Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Providing functionality for the development of GIS applications.

The behaviour of this approach is close to the one of the previous subsection,
therefore, only main differences are addressed below.

P2.1 Point, Pure Line, Pure Surface: Only one spatial data type is supported.

P2.4 Empty Set not a Valid Spatial Object: Not clear.

P5. Non-Connected Spatial Objects not Required: Not clear.

P8. No Data Loss in Operations: Relevant operations not provided.

P9. Functionality of Spatial Operations: Relevant operations not provided.

7.2.8 Bentley Microstation Geographics 7.2

References: [Bent01] Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Providing functionality for the development of GIS applications.

 163

The behaviour of this approach is close to the one in Subsection 7.2.6,
therefore, only main differences are addressed below.

P6. Complex Data Structures not Required: Conventional data is stored in
relations whereas spatial data is stored in CAD files.

P7. No Limitations on Data Structures: Only one attribute to record spatial
data is allowed.

P9.6, P9.9-P9.13 Quantum and Pair-Wise Intersect and Overlay Operations:
They are supported only for pure surfaces.

7.2.9 Grid Based Commercial GIS Tools (GRIDGIS)

References: [Esri01, MJ01, Keig02,
Gras02, Lo00, BK01,
RHS01]

Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Providing functionality for the management of maps with
properties that change continuously in space.

P2.1(a), P2.1(b) Point and Pure Line: Only pure surfaces are supported.

P8. No Data Loss in Operations: Points and pure lines are not supported.

P9.2 Fold: Conceptually, cells with identical value are automatically
coalesced into zones.

P9.10-P9.13 Overlay Operations: The Combine operation supports overlay
for maps of pixels.

7.2.10 Geosabrina

References: [LPV93, CVL+94, YC94a] Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Description of the characteristics of a spatial extension of a
relational DBMS (Formalism not provided).

P2.1 Point, Pure Line, Pure Surface: Although the set of data types is
extensible, only one spatial data type, GEOMETRY, is supported.

P2.4 Empty Set not a Valid Spatial Object: It is explicitly declared that spatial
objects are “sets of elements that are either points, connected lines or
connected regions accepting holes”. One predicate checks whether the result
of a spatial intersection is the empty set [LPV93].

P3. Support of Hybrid Surfaces: Objects HS in Figures 2.12(c-d) are valid.

 164

P8. No Data Loss in Operations: Operations are not defined.

P9.2,P9.4-P9.13 Fold, Quantum, Pair-Wise and Overlay Operations: Spatial
union, difference and intersection are supported as functions. Spatial union
and intersection are also supported as aggregate functions but they are not
formalised.

7.2.11 Egenhofer’s Spatial SQL (ESSQL)

References: [Eg94, Eg89, EF91] Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Description of requirements for a spatial SQL, with particular
interest to spatial data presentation issues. It does not aim at defining a set of
spatial data types and operations.

P2.1, P2.2 Point, Pure Line, Pure Surface and Compatibility: Not clear, since
spatial data types are not defined.

P2.4 Empty Set not a Valid Spatial Object: The boundary of a point is the
empty set [Eg89].

P8. No Data Loss in Operations: Operations are not defined.

P9.2-P9.13 Fold, Quantum, Pair-Wise and Overlay Operations: Not
mentioned.

P9.15 Boundary: The boundary of a pure line is a set of points and the
boundary of a point is the empty set.

Further Observations: The boundary of a point is the empty set and that of a
pure line is a set of points. Note however that in mathematics, the boundary of
a point is the point itself and the boundary of a pure line is the pure line itself.

7.2.12 Pictorial SQL (PSQL)

References: [RFS88] Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Efficient management of spatial data by the use of R+trees rather
than the formalization of spatial data types and operations.

Only the main differences from the previous approach are described here.

C2. Vector or Raster-Based: Both representations are supported internally.

P8. No Data Loss in Operations: Spatial intersection of two lines gives only
points.

 165

P9.6, P9.9, P9.10 Quantum Intersect, Pair-Wise Intersect and Inner Overlay:
Only one function is provided that computes the intersection points of two
pure lines.

7.2.13 Scholl and Voisard’s Relational Approach (SVRA)

References: [SV92] Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Reporting the experience of implementing a relational-like model
in an object-oriented DBMS.

P2.1 Point, Pure Line, Pure Surface: Set-valued spatial objects supported for
the three primitive data types.

P2.3 Set Theoretically Closed Spatial Objects: The support of open or closed
spatial objects is left open in the approach.

P8. No Data Loss in Operations: The function for spatial intersection of two
pure surfaces returns only pure surfaces.

P9.4, P9.5, P9.7, P9.8 Quantum and Pair-Wise Union and Except:
Functionality for spatial union and difference is supported.

P9.9, P9.10 Pair-Wise Intersect and Inner Overlay: Functions for spatial
intersection have limitations: (i) they cannot be applied to data of any two
spatial data types and (ii) data loss is identified (see Property P8).

P9.11-P9.13 Left, Right and Full Overlay: Spatial difference is not supported.

7.2.14 Gargano, Nardelli and Talamo’s Relational Model (GNTRM)

References: [GNT91a, GNT91b] Classification-Evaluation Tables:
Figures 7.1(a-b)

Objective: Definition of a relational model for spatial data management.

P2.1 Point, Pure Line, Pure Surface: Only pure surfaces are supported, as sets
of raster pixels.

P5. Non-Connected Spatial Objects not Required: Operations G-Compose and
G-Fusion produce non-connected pure surfaces.

P8. No Data Loss in Operations: Only pure surfaces are supported.

P9. Functionality of Spatial Operations: Boundary is not supported, since
pure lines are not supported either. Basic relational operations are fully

 166

supported. The remainder are partially supported, since they are applied only
to pure surfaces.

P10. Limited Number of Kernel Operations: Only three primitive operations.

7.2.15 GeoSAL

References: [SH91, HSH92, HS93] Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Definition of a many sorted algebra for the manipulation of spatial
objects.

C1. Discrete or Continuous Change in Space: Operations for continuous
change are defined between raster grids.

C2. Vector or Raster-Based: Although raster grids are included in the model,
their representation is vector-based.

P2.1(b), P2.1(c) Pure Line and Pure Surface: Lines must be simple and
surfaces may not have holes.

P8. No Data Loss in Operations: The spatial intersection of two pure surfaces
yields only pure surfaces. However, the intersection of two pure lines yields
only isolated intersection points.

P9.2 Fold: It is supported only for lines or polygons.

P9.4 – P9.13 Quantum, Pair-Wise and Overlay Operations: They are
supported only between spatial objects of the same data type, either LINE or
POLYGON.

P9.15 Boundary: Supported only for polygons without holes.

7.2.16 Geo Relational Algebra (GRAL)

References: [Gu88, Gu89] Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Definition of a many sorted algebra for the manipulation of spatial
objects.

Only main differences from previous approach are described here.

P9.2 Fold: It is not supported.

P9.6, P9.9, P9.10 Quantum and Pair-Wise Intersect and Inner Overlay:
Operation Intersection resembles Pair-Wise Intersection. Limitations are: (i)

 167

It cannot be applied to any two spatial types and (ii) Data loss has been
identified.

P9.15 Boundary: Not supported.

7.2.17 QLG

References: [CZ96, CW96] Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Definition of data types and operations that enable the management
of spatial data in a Nested Relational model.

P3. Support of Hybrid Surfaces: Spatial object HS in Figures 2.12(c-d) is
valid. However, after the application of spatial union and intersection
redundant data can be eliminated.

P6. Complex Data Structures not Required: Set-valued attributes are required
for some operations such as spatial intersection.

7.2.18 Dedale

References: [GRSS97, GRS98a,
GRS98b, GRS00,
RSSG02]

Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Definition of a nested constraint-based model and query language
for the management of spatial and spatio-temporal data.

C2. Vector or Raster-Based: Spatial representation is based on linear
constraints.

P2.1 Point, Pure Line, Pure Surface: Only one spatial data type is supported.

P2.3 Set Theoretically Closed Spatial Objects: The use of “=” and “≤” in
linear constraints disallows open sets.

P2.4 Empty Set not a Valid Spatial Object: After an operation, tuples
containing an empty linear constraint relation are discarded.

P5. Non-Connected Spatial Objects not Required: Spatial union of two spatial
objects may yield a non-connected spatial object. The same observation
applies to spatial difference and spatial intersection.

P6. Complex Data Structures not Required: Spatial data management is based
on the complexity of the spatial objects, represented by linear constraint
relations.

 168

P9. Functionality of Spatial Operations: They are all supported. The only
difference is that non-connected spatial objects may be produced.

7.2.19 CALG

References: [KRSS98] Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Definition of a nested constraint-based model and query language
for the management of spatial and spatio-temporal data.

The behaviour of this approach is very close to that of the previous, hence
only main differences are given.

P2.4 Empty Set not a Valid Spatial Object: The empty set is a valid linear
constraint relation in this approach.

7.2.20 van Roessel’s Conceptual Model (RCM)

References: [Ro93, Ro94] Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Defining a conceptual model to support the Overlay operation in
both raster and vector implementations.

C2. Vector or Raster-Based: Spatial objects are sets of R2 points.

P2.1(b), P2.1(c) Pure Line and Pure Surface: Set of points includes both pure
lines and surfaces.

P2.3 Set Theoretically Closed Spatial Objects: Sets of points can be opened.

P6. Complex Data Structures not Required: Complex data structures are
required for the definition of operation Fold.

P9. Functionality of Spatial Operations: They are all indirectly supported,
based on Fold and Unfold. However, non-closed spatial objects may be
obtained in the result. This property disallows the support of operation
Boundary.

 169

7.2.21 Scholl and Voisard’s Thematic Map Model (SVTMM)

References: [SV89] Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Defining a complex object model for the manipulation of maps
containing 2-d spatial objects.

C2. Vector or Raster-Based: Spatial objects are subsets of R2.

P2.1 Point, Pure Line and Pure Surface: Only one data type of subsets of R2
is supported.

P2.3 Set Theoretically Closed Spatial Objects: Open subsets of R2 are
supported.

P5. Non-Connected Spatial Objects not Required: Spatial union may yield
non-connected spatial objects. Same applies to spatial difference and to spatial
intersection.

P6. Complex Data Structures not Required: The support of operation Fold is
based Nest operation for nested models.

P9. Functionality of Spatial Operations: They all are supported. However,
non-closed spatial objects may be obtained.

7.2.22 ISO SQL Multimedia Standard: Spatial (ISOSQLMM)

References: [ME01, Iso02] Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Specification of a Standard set of SQL:1999 object types for the
manipulation of 2-d spatial objects.

P2.1(b) Pure Line: Pure lines have just one pair of end points.

P2.2 Compatibility between Spatial Data Types: Data type ST_GEOMETRY
enables storing spatial values of any spatial data type in the same column.

P3. Support of Hybrid Surfaces: Spatial object HS in Figures 2.12(c-d) is
valid.

P6. Complex Data Structures not Required: Spatial data manipulation is based
on complex spatial objects.

P9.4, P9.5, P9.7, P9.8, P9.11-P9.13 Quantum and Pair-Wise Union and
Except and Left, Right and Full Overlay: The lack of the support of operation
Fold does not allow achieving the full functionality of these operations.

 170

P9.15 Boundary: The boundary of a pure line is a set of points and the
boundary of a point is the empty set.

Further Observations: The boundary of a point is the empty set whereas that
of a pure line is a set of points. Note however that in mathematics the
boundary of a point is the point itself and the boundary of a pure line is the
pure line itself.

7.2.23 OpenGis Simple Features Specification for SQL (OGISSQL)

References: [Ogis99, Ogis01a] Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Specification of a standard spatial SQL extension.

The functionality is identical with that of the previous approach.

7.2.24 Oracle8i Spatial Cartridge (ORACLE)

References: [ORA00] Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Developing a spatial extension of the object relational DBMS
ORACLE.

P2.1 Point, Pure Line, Pure Surface: Only one spatial data type,
SDO_GEOMETRY, is supported.

P2.4 Empty Set not a Valid Spatial Object: The empty set is not a valid spatial
object, but if the result of some function is the empty set the null value is
returned.

P3. Support of Hybrid Surfaces: Spatial objects HS in Figures 2.12(c-d) valid.

P6. Complex Data Structures not Required: Although the model supports
complex data structures, the manipulation of spatial data is based on the
complexity of spatial objects.

P9. Functionality of Spatial Operations: The functionality of the operations is
close to that of the approach in Subsection 7.2.22. The difference is that
function boundary is not supported here.

 171

7.2.25 IBM Informix Spatial DataBlade (INFORMIX)

References: [Inf01] Classification-Evaluation Tables:
Figures 7.1(c-d)

The functionality of this system is very close to that of the approach in
Subsection 7.2.22, hence only main differences are addressed below.

Objective: Developing a spatial extension of the object relational DBMS
INFORMIX.

P8. No Data Loss in Operations: The spatial intersection of a line with a
surface yields only lines. A similar observation also applies to other data
types, for operations spatial union and spatial difference.

P9.2 Fold: Aggregate function st_dissolve cannot be applied to spatial objects
of any data type and non-connected spatial objects may appear in the result.

P9.4 - P9.13 Quantum, Pair-Wise and Overlay Operation: They are supported
partly, due to the partial support of operation Fold and of the partial support
of spatial union, difference and intersection. However, two limitations are
identified: (i) Data loss, which has already been identified above. (ii) Spatial
union and spatial difference have to be applied to spatial objects of the same
data type. In addition, non-connected spatial objects may appear in the result.

7.2.26 IBM DB2 Spatial Extender (DB2)

References: [Ibm01] Classification-Evaluation Tables:
Figures 7.1(c-d)

The functionality is very close to that of previous, hence only main
differences are addressed.

Objective: Developing a spatial extension of the object relational DBMS DB2.

P9.2, P9.11-P9.13 Fold, Left, Right and Full Overlay: Operation st_dissolve
is not provided in DB2.

7.2.27 PostgreSQL

References: [Post01, SR86, RS87,
SRH90]

Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Developing an open-Source Object Relational DBMS with spatial
capabilities.

P2.1(b) Pure Line: Pure lines have just one pair of end points.

 172

P2.1(c) Pure Surface: Only pure surfaces without holes are supported.

P6. Complex Data Structures not Required: Complex object relational data
structures are required to support the manipulation of complex non-connected
spatial objects.

P8. No Data Loss in Operations: The intersection of two rectangles is either
the empty set or one rectangle.

P9.6, P9.9, P9.10 Quantum and Pair-Wise Intersect and Inner Overlay: Only
the spatial intersection of either two line segments or of two rectangles is
directly supported.

P9.15 Boundary: It is supported only for pure surfaces without holes.

7.2.28 GEO++

References: [VO92] Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Developing a GIS on top of the Object Relational DBMS Postgres.

The classification and evaluation matches that of PostgreSQL (Subsection
7.2.27).

7.2.29 GEUS

References: [PLL+98] Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Extending a commercial object relational DBMS with new spatial
data types, operations and spatial indexes (R*-tree).

The classification and evaluation is very close to that of the previous
approach. Only one difference is described below.

P9. Functionality of Spatial Operations: Functions for the computation of
spatial union, spatial difference, spatial intersection and boundary are not
provided.

 173

7.2.30 Object-Oriented Geographic Data Model (OOGDM)

References: [Vo97, BVH96, DBVH97,
VBH97]

Classification-Evaluation Tables:
Figures 7.1(c-d)

Objective: Design and implementation of an object-oriented database kernel
for spatio-temporal data management.

C1. Discrete or Continuous Change in Space: Both supported by vector and
raster data types, respectively.

P2.1(b) Pure Line: Pure lines have just one pair of end points.

P3. Support of Hybrid Surfaces: Spatial object HS in Figures 2.12(c-d) is
valid.

P6. Complex Data Structures not Required: The formalization of spatial
operations is based on the definition of complex spatial types, features sets.

P8. No Data Loss in Operations: If the spatial intersection of two pure
surfaces contains pure surfaces, pure lines and points, only the pure surfaces
can be obtained. The same observation applies to the spatial intersection of
two pure lines.

P9.6, P9.9, P9.10 Quantum and Pair-Wise Intersect and Inner Overlay: Three
different methods are defined to compute the spatial intersection of spatial
objects. Data loss has been identified in Property P8.

P9.15 Boundary: The boundary of a point is the empty set and the boundary
of a pure line is the set of its end points.

Further Observations: The boundary of a point is the empty set whereas that
of a pure line is a set of points. Note however that in mathematics, the
boundary of a point is the point itself and the boundary of a pure line is the
pure line itself.

7.3 Classification and Evaluation of Spatio-temporal
Approaches

Again, short explanations are given, wherever this is estimated to be
necessary, in the classification and evaluation of each model

 174

D
D

D
D

D
D

D
D

D
V

|R
?

V
N

/A
V

?
V

V
?

D
D

D
?

G
D

D
D

D

Y
N

N
Y

N
N

Y
N

/A
N

Y
N

N
Y

N
N

Y
N

/A
N

Y
?

N
N

Y
?

Y
Y

N
N

?
N

Y
P

?
N

P
N

N
?

N
Y

Y
?

N
Y

N
N

?
Y

N
N

?
Y

Y
Y

Y
?

Y
Y

Y
?

Y
Y

?
N

?
N

Y
Y

?
Y

Y
E

N
?

Y
N

N
?

Y
N

?
N

?
N

Y
Y

?
N

Y
N

N
?

N
N

/A
Y

Y
Y

N
/A

N
Y

?
Y

N
/A

N
N

Y
N

/A
Y

Y
Y

Y
N

/A
N

P
Y

Y
Y

N
N

/A
Y

N
/A

N
/A

Y
Y

N
/A

Y

Fi
gu

re
 7

.2
(a

):
Cl

as
si

fic
at

io
n

an
d

ev
al

ua
tio

n
of

 sp
at

io
-te

m
po

ra
l a

pp
ro

ac
he

s.

 175

N
/A

N
/A

N
/A

N
/A

Y
Y

Y
Y

P
P

N
N

P
N

Y
P

N
P

P
N

P
N

N
P

N
N

Y
P

N
P

N
N

P
N

N
Y

Y
N

P
N

N
P

Y
N

Y
P

N
P

N
N

P
N

N
Y

P
N

P
N

N
P

N
N

Y
Y

N
P

N
N

P
Y

N
Y

Y
N

P
N

N
P

Y
N

Y
P

N
N

N
N

P
Y

N
Y

P
N

N
N

N
P

Y
N

Y
P

N
N

N
N

Y
Y

N
Y

N
N

N
N

N
N

N
N

N
Y

N
?

N
N

N
N

N
N

N
N

N
N

N
Y

N
N

Y
N

N
N

E
N

E
N

N
E

Y
N

E
N

Y
N

N
Y

N

Y
N

N
N

N
N

N
N

N
N

N
N

N
N

N
Y

N
N

Fi
gu

re
 7

.2
(b

):
C

la
ss

ifi
ca

tio
n

an
d

ev
al

ua
tio

n
of

 sp
at

io
-te

m
po

ra
l a

pp
ro

ac
he

s.

 176

G+STM

MRASTM

WSTM

ESSTPM

OPTMM

THTGIS

KKTGIS

STSQL

SQLST

DEDALE

YCSTM

GEODETIC

ORPARADB

TOOGDM

TRIPOD

MOST

C
1

D
is

cr
et

e
(D

) o
r C

on
tin

uo
us

 (C
) C

ha
ng

e
in

 T
im

e
C

C
D

C
D

D
D

D
D

C
C

D
D

D
D

C
C

2
O

nl
y

Va
lid

 T
im

e
(V

) o
r B

ite
m

po
ra

l (
B

T)
 S

em
an

tic
s

V
V

B
V

V
B

B
B

V
V

?
V

V
B

B
V

C
3

Tu
pl

e
(T

) o
r A

ttr
ib

ut
e

(A
) L

ev
el

 o
f T

im
e

R
ec

or
di

ng
A

A
A

T
T

T
T

T
T

A
A

A
A

TA
TA

A

P1
Fo

rm
al

is
m

 fo
r T

im
e

Ty
pe

s
an

d
O

pe
ra

tio
ns

P1
(a

)
Fo

rm
al

 T
im

e
D

at
a

Ty
pe

s
Y

N
N

Y
Y

N
N

N
Y

Y
N

N
/A

N
N

Y
N

P1
(b

)
Fo

rm
al

 T
im

e
O

pe
ra

tio
ns

Y
N

P
Y

Y
N

N
N

Y
Y

N
N

/A
N

N
Y

N
P2

Ti
m

e
Ty

pe
s

M
at

ch
in

g
 H

um
an

 P
er

ce
pt

io
n

P2
.1

U
se

r-
fr

ie
nd

ly
 T

im
e

D
at

a
Ty

pe
s

N
N

N
P

P
P

P
N

P
N

N
N

N
Y

Y
N

P2
.2

Em
pt

y
se

t n
ot

 a
 V

al
id

 T
im

e
Pe

ri
od

N
?

N
Y

Y
Y

Y
?

N
/A

Y
Y

Y
Y

Y
N

Y
P3

Su
pp

or
t o

f V
ar

io
us

 G
ra

nu
la

rit
ie

s
of

 T
im

e
N

?
N

N
N

Y
Y

E
Y

Y
N

N
E

N
N

N
P4

Sp
at

io
-te

m
po

ra
l D

at
a

Ty
pe

s n
ot

 R
eq

ui
re

d
N

N
N

N
/A

N
/A

N
/A

N
/A

Y
Y

Y
Y

N
/A

N
N

/A
Y

N
/A

P5
C

om
pl

ex
 D

at
a

St
ru

ct
ur

es
 n

ot
 R

eq
ui

re
d

Y
Y

Y
N

/A
N

/A
N

/A
N

/A
N

Y
Y

N
N

/A
Y

N
/A

N
N

/A
P6

G
en

er
ic

 S
up

po
rt

of
 T

em
po

ra
l D

at
a

Y
?

N
N

N
Y

Y
Y

Y
Y

Y
N

Y
Y

Y
Y

P7
N

o
Li

m
ita

tio
ns

 o
n

D
at

a
St

ru
ct

ur
es

Y
Y

Y
N

/A
N

/A
N

N
P

N
Y

Y
Y

Y
Y

Y
Y

P8
N

o
N

ee
d

to
 R

ed
ef

in
e

C
on

ve
nt

io
na

l O
pe

ra
tio

ns
Y

Y
Y

N
/A

N
/A

Y
Y

Y
Y

Y
N

Y
N

Y
Y

Y
P9

Ev
ol

ut
io

n
w

ith
 R

es
pe

ct
 to

 T
im

e
of

 S
pa

tia
l O

pe
ra

tio
ns

Y
N

Y
Y

Y
N

N
Y

Y
Y

N
N

Y
N

Y
N

P1
0

Li
m

ite
d

N
um

be
r o

f K
er

ne
l O

pe
ra

tio
ns

N
N

N
Y

N
N

/A
N

/A
Y

Y
Y

Y
N

Y
N

N
N

/A
P1

1
Im

pl
em

en
ta

tio
n

Av
ai

la
bl

e
P

N
P

N
N

N
N

N
N

Y
?

Y
N

Y
N

Y

M
od

el
 C

la
ss

ifi
ca

tio
n

M
od

el
 E

va
lu

at
io

n

Fi
gu

re
 7

.2
(c

):
Cl

as
si

fic
at

io
n

an
d

ev
al

ua
tio

n
of

 sp
at

io
-te

m
po

ra
l a

pp
ro

ac
he

s.

 177

7.3.1 Güting et al Spatio-temporal Model (G+STM)

References: [GBE+00, FGNS00,
CFG01]

Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Formalization of a set of data types and operations for the
management of moving objects.

Classification and Evaluation With Respect to Spatial Properties

The behaviour with respect to the spatial properties is almost identical to that
of the ROSE algebra, evaluated in Subsection 7.2.1. Only differences are
given below.

C2. Vector or Raster-Based: Spatial representation at conceptual level.

P2.1(a) Point: It is supported.

Classification and Evaluation With Respect to Spatio-temporal Properties

C3. Tuple or Attribute Level of Time Recording: Time and space integrated in
the definition of spatio-temporal data types.

P2.1 User-friendly Time Data Types: Non-connected time periods are valid.

P3. Support of Various Granularities of Time: Only one domain for time,
isomorphic to the set of real numbers.

P4. Spatio-temporal Data Types Not Required: Data types defined for moving
objects.

P9. Evolution with Respect to Time of Spatial Operations: Supported by the
functionality of Lifting spatial operations.

P11. Implementation Available: Partial results are discussed in [FGNS00,
CFG01].

7.3.2 Moreira, Ribeiro and Abdessalem’s Spatio-temporal Model
(MRASTM)

References: [MRA00, MSR99] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Classification of the set of operations required for the manipulation
of moving objects.

 178

In general, no formalism is provided.

7.3.3 Worboys’s Spatio-temporal Model (WSTM)

References: [Wo94] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Definition of a data model for the representation and manipulation
of spatial objects that change discretely with respect to time.

Classification and Evaluation With Respect to Spatial Properties

P2.1(a), P2.1(b), P2.1(c) Point, Pure Line, Pure Surface: Only one spatial
data type is supported.

P2.4 Empty Set not a Valid Spatial Object: Not supported as this is implied by
the definition of a spatial object as a collection of points, straight line
segments and triangles.

P5. Non-Connected Spatial Objects not Required: Spatial union of two spatial
objects may yield a non-connected spatial object.

P9.2 Fold: It is not defined.

P9.4 Quantum and Pair-Wise Operations: In spite of the support of functions
for spatial union, difference and intersection, the lack of operation Fold
disallows achieving the full functionality of these operations.

P9.10 Inner Overlay: Same observation as above.

P9.11 Left, Right and Full Overlay: It is not possible to subtract from a spatial
object the set of spatial objects stored in one relation. Therefore, these
operations are not supported.

P12. Implementation Available: Reported as part of current work.

Classification and Evaluation With Respect to Spatio-temporal Properties

The approach is very close to that in Subsection 7.3.1, therefore, only main
differences are discussed below.

P1. Formalism for Time Types and Operations: Only the spatio-temporal
operations are formalized.

P6. Generic Support of Temporal Data: Only spatio-temporal formalism.

P11. Implementation Available: Reported as part of current work.

 179

7.3.4 Erwig and Schneider’s Spatio-temporal Partition Model
(ESSTPM)

References: [ES99] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Formalism for spatio-temporal partitions (temporal thematic maps)
and operations.

Classification and Evaluation With Respect to Spatial Properties

See Subsection 7.2.3.

Classification and Evaluation With Respect to Spatio-temporal Properties

C3. Tuple or Attribute Level of Time Recording: Mapping from a time domain
to the set of spatial partitions.

P2. Time Types Matching Human Perception: Only time instants.

P3. Support of Various Granularities of Time: One domain for time is
supported, isomorphic to the set of reals.

P6. Generic Support of Temporal Data: Only evolution of spatial partitions is
covered.

7.3.5 d’Onofrio and Pourabbas’s Temporal Map Model (OPTMM)

References: [OP01] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Formalism for temporal thematic maps and operations between
them.

The functionality is very close to that of the previous approach, therefore,
only major differences are discussed below.

Classification and Evaluation With Respect to Spatial Properties

P2.1(b) Pure Line: Thematic maps of lines are also supported.

P2.2 Compatibility between Spatial Data Types: Lines and surfaces may not
coexist in the same map.

P8. No Data Loss in Operations: Only Fold is supported.

P9. Functionality of Spatial Operations: Only Fold is supported when applied
to either surfaces or lines.

 180

Classification and Evaluation With Respect to Spatio-temporal Properties

C1. Discrete or Continuous Change in Time: Discrete changes are considered.

7.3.6 Tryfona and Hadzilacos’s Temporal GIS Approach (THTGIS)

References: [TH98] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Generalization of a GIS approach, so as to apply to spatio-temporal
data.

Classification and Evaluation With Respect to Spatial Properties

See Subsection 7.2.4.

Classification and Evaluation With Respect to Spatio-temporal Properties

P2.1 User Friendly Time Data Types: Only period of time is supported.

P4. Spatio-temporal Data Types not Required: The evolution of spatial
operations is not supported.

P7. No Limitations on Data Structures: A relation may have at most one valid
time attribute and one transaction time attribute.

7.3.7 Kemp and Kowalczyk’s Temporal GIS Approach (KKTGIS)

References: [KK94] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Design and implementation of a temporal GIS on top of the object-
relational DBMS.

The functionality is very close to that of the previous approach, therefore,
only major differences are addressed below.

Classification and Evaluation With Respect to Spatial Properties

P2.1(b-c) Pure Line: Pure lines restrict to straight line segments.

P2.2 Compatibility between Spatial Data Types: A combination of points,
lines and surfaces is not a valid spatial object.

P8. No Data Loss in Operations: Operations, relevant to the work in the
present thesis, are not provided.

 181

P9. Functionality of Spatial Operations: Operations, relevant to the work in
the present thesis, are not provided.

Classification and Evaluation With Respect to Spatio-temporal Properties

Identical to the previous approach.

7.3.8 STSQL

References: [BJS98, BJ96] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: SQL extension for the management of spatio-temporal data.

Classification and Evaluation With Respect to Spatial Properties

The approach is very close to that in Subsection 7.2.20.

P1. Formalism for Spatial Types and Operations: Spatial data representation
and operations are not formalized.

P6. Complex Data Structures not Required: Spatial explicit and implicit
attributes are considered.

P7. No Limitations on Data Structures: Spatial explicit and implicit attributes
are considered.

Classification and Evaluation With Respect to Spatio-temporal Properties

P2.1 User-friendly Time Data Types: Only one type, PERIOD, is provided.

P5. Complex Data Structures not Required: Implicit and explicit attributes are
considered.

P7. No Limitations on Data Structures: Time data types are implicit.

P9. Evolution with Respect to Time of Spatial Operations: Supported by
explicit expanding of tuples by the use of the keyword REDUCIBLE.

7.3.9 SQLST

References: [CZ00, CZ99] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: SQL extension for the management of spatio-temporal data.

 182

Classification and Evaluation With Respect to Spatial Properties

P2.1(b-c) Pure Line, Pure Surface: Data type LINE also includes points, and
data type REGION also includes lines and points.

P9. Functionality of Spatial Operations: Relevant to the spatial functionality
proposed in the present thesis, only one spatial function is provided,
intersection. In conjunction with Fold that that is involved in insertions, it
enables achieving the functionality of Quantum Intersection, Pair-Wise
Intersection and Inner Overlay.

Classification and Evaluation With Respect to Spatio-temporal Properties

P2.1 User-friendly Time Data Types: Only the time instant data type is
supported.

P2.2 Empty set not a Valid Time Period: Time period data type is not defined.

P7. No Limitations on Data Structures: At most one valid time attribute is
allowed in a relation.

P9. Evolution with Respect to Time of Spatial Operations: It is supported by
the internal use of automatic expanding of tuples.

7.3.10 Dedale

References: [GRS98b, GRS00] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Formalism for a spatio-temporal model, based on constraints.

Classification and Evaluation With Respect to Spatial Properties

Given in Subsection 7.2.18.

Classification and Evaluation With Respect to Spatio-temporal Properties

P2.1 User-friendly Time Data Types: Only one data type, set of time instants,
is supported.

P2.2 Empty set not a Valid Time Period: Tuples containing empty linear
constraint relations are automatically discarded when produced by some
operation.

P4. Spatio-temporal Data Types not Required: At the user’s level, spatio-
temporal data appears in a relation-valued attribute R(x, y, t), where x and y
are spatial coordinates and t is the time coordinate.

 183

7.3.11 Yeh and de Cambray’s Spatio-temporal Model (YCSTM)

References: [YC95, YC94b] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Presentation of a data model to manage highly variable spatio-
temporal data.

Classification and Evaluation With Respect to Spatial Properties

See Subsection 7.2.10.

Classification and Evaluation With Respect to Spatio-temporal Properties

C2. Only Valid Time (V) or Bitemporal (BT): It is not clear.

P2.1 User-friendly Time Data Types: Only one period data type is supported.

P3. Support of Various Granularities of Time: Only one domain for time is
supported, isomorphic to the set of real numbers.

P5. Complex Data Structures not Required: A spatio-temporal object is
recorded as a set of tuples in a complex object model.

P8. No Need to Redefine Conventional Operations: Operations Union, Except
and Intersect are redefined for the management of temporal data.

P9. Evolution with Respect to Time of Spatial Operations: Automatic
expanding is used only for time periods and not for spatial objects.

7.3.12 Informix Geodetic DataBlade (GEODETIC)

References: [Inf00] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Extending a commercial DBMS by providing spatio-temporal data
types and operations.

Classification and Evaluation With Respect to Spatial Properties

The approach is very close to that in Subsection 7.2.25. Functions for spatial
union, difference and intersection are not supported.

P9. Functionality of Spatial Operations: They are not supported.

Classification and Evaluation With Respect to Spatio-temporal Properties

P2.1 User-friendly Time Data Types: Only one period data type is supported.

 184

P3. Support of Various Granularities of Time: Time ranges are defined only
for the DATE type.

P6. Generic Support of Temporal Data: Spatio-temporal specific datablade.

7.3.13 ORParaDB

References: [CG94, CGN93] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Definition of an object-relational data model and pattern matching
query language for the management of spatial data.

Classification and Evaluation With Respect to Spatial Properties

C2. Vector or Raster-Based: Spatial representation is not specified.

P2.1(a-c) Point, Pure Line, Pure Surface: Only one spatial domain.

P2.4 Empty Set not a Valid Spatial Object: Spatial values are closed under
operations spatial union, spatial difference and spatial intersection. However,
it is estimated that tuples with a spatial object that matches the empty set are
not recorded.

P9.1 Basic Relational: The functionality of operations Union, Except and
Intersect resemble those of the respective operation Quantum operations.

P9.2, P9.4-P9.13 Fold, Quantum, Pair-wise and Overlay Operations: They
are supported, due to the implicit use of Fold.

P9.14, P9.15 Complementation and Boundary: Not defined.

P11. Dimension Independent Spaital Types and operations: It is estimated
that a generalization to n-d is not difficult.

Note that one additional limitation in [CG94] is that conventional algebra
operations have been redefined for the management of spatial data.

Classification and Evaluation With Respect to Spatio-temporal Properties

P2.1 User-friendly Time Data Types: Only one data type is supported whose
elements are sets of time instants.

P4. Spatio-temporal Data Types not Required: Operations set union, set
difference and set intersection are applied to spatio-temporal objects.

P8. No Need to Redefine Conventional Operations: Operations Union, Except
and Intersect have been redefined for the management of temporal data.

 185

P9. Evolution with Respect to Time of Spatial Operations: It is supported due
to the automatic expanding.

7.3.14 Temporal Object-Oriented Geographic Data Model (TOOGDM)

References: [Vo97, BVH96] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Design and implementation of an object-oriented database kernel
for spatio-temporal data management.

Classification and Evaluation With Respect to Spatial Properties

See Subsection 7.2.30.

Classification and Evaluation With Respect to Spatio-temporal Properties

C3. Tuple or Attribute Level of Time Recording: Valid time is used at the
attribute level and transaction time is used at the tuple level.

Attribute level for valid time and tuple level for transaction time.

P3. Support of Various Granularities of Time: Only one domain for time is
considered.

P9. Evolution with Respect to Time of Spatial Operations: Only selection is
supported, and it incorporates temporal predicates.

7.3.15 Tripod

References: [GFDP01, GFP+01a,
GFP+01b]

Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Definition of data types and operations for the management of
spatio-temporal data in an Object-oriented model.

Classification and Evaluation With Respect to Spatial Properties

See Subsection 7.2.1.

Classification and Evaluation With Respect to Spatio-temporal Properties

C3. Tuple or Attribute Level of Time Recording: Both levels are allowed.

P2.2 Empty set not a Valid Time Period: The intersection of two time periods
may be the empty set.

 186

P3. Support of Various Granularities of Time: Only one time domain is
supported.

P5. Complex Data Structures Not Required: The management of transaction
time is based on the manipulation of complex structures, called Histories.

7.3.16 MOST

References: [SWCD97, WXCJ98] Classification-Evaluation Tables:
Figures 7.2(a-c)

Objective: Defining a data model for the management of the future evolution
of spatial objects.

Classification and Evaluation With Respect to Spatial Properties

Spatial data types and operations are not defined.

Classification and Evaluation With Respect to Spatio-temporal Properties

P2.1 User-friendly Time Data Types: Only time periods are supported which
are open to the right up the infinite future.

P3. Support of Various Granularities of Time: Only one domain for time is
supported.

P9. Evolution with Respect to Time of Spatial Operations: Only selection is
supported, and it incorporates temporal predicates.

7.4 Classification and Evaluation of the Proposed Model

In this section the model formalized in the present thesis is classified
according to the characteristics analysed in Sections 2.4 and 2.6 and is
evaluated with respect to the properties specified in Section 2.8.

7.4.1 Classification and Evaluation with Respect to Spatial Properties

C1. Discrete Change in Space: The model has been defined for the support of
properties that change discretely in space. However, the indication is that it
can also be used for the management of data that changes continuously in
space [VL03b]. This issue is discussed further in Section 8.3.5.

 187

C2. Raster-like Representation of Space: In terms of the formalization
undertaken, the proposed model fits better the raster-based representation
(Section 3.2). Note however that beyond surfaces, which are defined in such
approaches, the proposed model also considers additional spatial objects such
as lines and hybrid surfaces. Note also that the formalism undertaken does not
necessarily imply that it is only a raster-based implementation that has to be
undertaken. This issue is discussed in more detail in Section 8.3.2

C3. Database-centric Spatial Data Management: This is also obvious from
the formalization followed (Chapter 4).

P1. Formalism for Spatial Types and Operations: This is true for both data
types and operations (Chapters 3 and 4).

P2. Spatial Data Types Matching Human Perception: It is satisfied in that
Point, Line and Surface are defined as primitive spatial types and they are
spatially compatible. Also, all the spatial objects are set-theoretically closed
and the empty set is not included in them (Section 3.3).

P3. Support of Hybrid Surfaces: Satisfied (Section 3.3).

P4. Spatial Data Validation Mechanisms: They are inherent in the definition
of the spatial data types (Section 3.3).

P5. Non-Connected Spatial Objects not Required: Satisfied (Section 3.3).

P6. Complex Data Structures not Required: The model considers only non-
nested relations (Section 4.2).

P7. No Limitations on Data Structures: The scheme of a relation may have
arbitrarily many spatial attributes (Section 4.2).

P8. No Data Loss in Operations: It is also satisfied from the way the
operations have been defined. This has also been demonstrated by examples
(Section 4.3).

P9. Full Functionality of all Spatial Operations: It is satisfied because all the
operations can be applied to all types of spatial data, point, line, surface and
combinations of them, as has also been shown in Section 4.3.

P10. Limited Number of Kernel Operations: Indeed, the kernel consists of the
operations of the non-nested relational model plus operations Unfold and
Fold. Note that these operations had been defined in previous work on
temporal databases [LM97]. Within this thesis it was only necessary to define
how they can be applied to spatial data. All the remainder operations have
been defined in terms the kernel operations. Definitely, more non-kernel
operations can also be defined (Section 4.3).

 188

P11. Dimension Independent Spatial Types and Operations: The thesis
restricted to the management of only 2-d spatial data. However the
management of n-d data is straightforward. It suffices to consider n-d spatial
data types (Section 3.3) and specify the functionality of Unfold and Fold
(Subsection 4.3.2): Both of them are simple. As an example, a 3-d space
requires defining 3-d quanta, i.e. 3-d quantum points, lines, surfaces and
cubes. The application of Unfold to 3-d objects is trivial. Consequently, it is
argued that this property is also satisfied.

P12. Implementation Available: Initially, it has to be taken into consideration
that an implementation of the proposed model was beyond the objectives of
this thesis. However, it is argued that its implementation is possible. It is
noted in particular that, beyond the conventional operations of the relational
model, all the others, defined in this thesis, can be expressed in terms of
operations Unfold and Fold. Predicate conductive is also used in the definition
of some of these operations. For a prototype implementation therefore, it
suffices to implement Unfold, Fold and conductive. Indeed, pseudo code, to
implement them all, is provided in Appendix C.

7.4.2 Classification and Evaluation with Respect to Spatio-temporal
Properties

C1. Discrete Change in Time: The model has been designed to support the
modelling of spatial data that changes discretely with respect to time.
However, it is estimated that it can also be used in applications where spatial
data changes continuously with respect to time. Related issues are addressed
in Section 8.3.5.

C2. Valid Time Semantics: The semantics for the time elements in the model
are assumed to be those of valid time (Section 5.4). However, transaction time
data and bitemporal data can also be handled [LM03] by the same set of
operations.

C3. Tuple Level of Time Recording: Time is recorded explicitly at the level of
tuple in non-nested relations (Section 5.4).

P1. Formalism for Time Types and Operations: Formalism has been
developed for both time types and operations (Section 5.4).

P2. Time Types Matching Human Perception: It is satisfied, in that time
instants and time periods are supported as distinct data types. Besides, time
periods are defined as connected. Finally, the empty set is not a valid time
period (Section 5.2).

 189

P3. Support of Various Granularities of Time: Various granularities of time
are supported as specific instances of the generic types INSTANT and
PERIOD (Section 5.2).

P4. Spatio-temporal Data Types not Required: Spatio-temporal operations are
defined without the need of defining spatio-temporal data types (Section 5.7).
Instead, only spatial and time types have been defined (Sections 3.3 and 5.2).

P5. Complex Data Structures not Required: Only non-nested relations are
required for the storage and management of time data (Section 5.4).

P6. Generic Support of Temporal Data: The operations are generic in that
they can also be applied to other types of data [LM97].

P7. No Limitations on Data Structures: A relation may have arbitrarily many
attributes of some time type (Section 5.4).

P8. No Need to Redefine Conventional Operations: No operations had to be
redefined. The full functionality has been achieved by the definition of two
more operations Unfold and Fold (Section 5.4).

P9. Evolution with Respect to Time of Spatial Operations: It is supported, as it
has been shown in Section 5.7.

P10. Limited Number of Kernel Operations: As in the case of spatial data, the
kernel consists of operations of the non-nested relational model and
operations Unfold and Fold (Section 5.4).

P11. Implementation Available: In the proposed model, spatial objects and
time are recorded in distinct attributes. The implementation of the temporal
component has already been addressed in previous research. In particular,
[LM97] reports on an implementation on a SUN workstation, with SUNOS
4.1.3. One time period data type is supported, DATEINTERVAL, whose
format is [yyyy-mm-dd, yyyy-mm-dd). DATEINTERVAL, as well as a series
of predicates and functions for periods have been implemented directly within
the kernel of INGRES, release 6.4. Optimisation has also been incorporated in
the implementation. In particular the operations, which are theoretically
defined in terms of Unfold, incorporate internally a user-transparent operation,
split [LPS95, LPS94], which reduces drastically the execution time. Main
storage structures are also used, to reduce disk I/O operations [LM94].
Finally, certain Unfold or Fold operations, explicitly issued by the user, are
internally eliminated, if they are determined to be redundant for the derivation
of the result relation. Details of this implementation are reported in
[VLGM94]. Further optimisation solutions are also proposed in [LM97] and,
moreover, an implementation that also supports transaction and concurrency
control is reported in [VLG98]. It is concluded therefore that the temporal
aspect of the model has been implemented.

 190

7.5 Comparison with Functionality of Other Approaches

In this section an inverse evaluation is undertaken, in that the model
formalised in the present thesis is evaluated with respect to the functionality
proposed in other approaches.

7.5.1 Predicates and Functions

It is recalled (Section 3.4, Section 3.5) that it was beyond the objective of this
thesis to define a full set of predicates and functions. Relevant to those
defined, however, the following have to be noticed.

(i) Predicate has_holes (Section 3.4) can be applied to spatial objects
of any data type, hence it is more general that the one defined in
[Inf01, Ibm01, Ogis99, Iso02].

(ii) None of the predicates defined in other approaches has a
functionality equivalent to that of conductive and surrounds,
defined in Section 3.4. It is estimated, however, that these two
predicates have practical interest.

(iii) To the best of this author’s knowledge, defining comparison
predicates <, <=, >, >= (Section 3.4) between spatial objects has
not been defined in any other approach. However, their definition
now enables using them uniformly in comparisons between any
two elements of the same data type. Moreover, this use has
practical interest, as is shown in Section 7.5.2 and in [VL03b].

7.5.2 Relational Algebra Operations

Functionality defined in other approaches, which is not supported in the
model proposed in this thesis, includes the aggregate functions mbr [Inf01]
and intersection [SH91, GRS98a, KRSS98] and the operations simple_path
[CZ96], distance_along_path [CF93], Delaunay triangulation [VO92],
projection in space [CZ96, Inf01], move [SH91, MO86], rotate [SH91], scale
[SH91] and convex_hull [Eg94, VO92, Gu88, Ora00, Inf01, Ibm01, Ogis99,
Iso02]. The justification is that the above functionality can be useful to few
specialized applications. In this author’s opinion, however, a data model must
have a high degree of abstraction. As such, it must consist of few, general-
purpose operations, independent of some specific application, that enable
facing a wide range of requirements. At the other end, it can be noticed that
Arc/Info supports too many operations but only few of them are widely used.

 191

Finally, it is noticed that, no matter how many operations can be defined,
programming will always be unavoidable.

FUNCTIONALITY APPROACHES

Holes CZ96, Vo97

EndPoints SH91, Inf01, Ibm01, Ogis99, Iso02, Cz96, CF93, PLL+98

Split CZ96, SH91, Esri00
Nearest Neighbors Gu88, Ora00, Inf01, RFS88, GS95

Voronoi Gu88, CZ96, Vo92, SH91, Esri01, Keig02, Gras02, Lo00, Bk01
Figure 7.3: Additional functionality proposed in other approaches.

On the other hand, the operations defined in this thesis are satisfactorily
powerful, in that they enable formulating queries that have practical interest.
This is illustrated by a number of examples, which are provided in the
remainder of this section. The illustration also includes expressions that
enable achieving the functionality defined in other approaches, in particular
those provided in Figure 7.3. In what follows, therefore, an informal
description of some functionality is initially given. Next, it is shown how the
same functionality can be expressed by the use of the SQL extension that was
defined in Chapter 6. In some cases it is pointed out that the functionality
achieved in the present model is more general than that originally defined in
some other approach. Note that SQL is used only for ease of presentation,
since a set of equivalent relational algebra operations could be lengthy.

Pure Surface Parts: Get the pure surface parts of a set of spatial objects.

Input: R(A, G).

Output: A relation with attributes A, G.

Description: For each set of tuples {(a, gi)} in R, the result relation consists of
a set of tuples {(a, gj)}, where gj is one of the elements of the spatial union of
all the pure quantum surfaces that are subsets of some gi. As an example, if R
consists of all the spatial objects depicted in Figure 7.4(a) then the result
relation consists of all the spatial objects depicted in Figure 7.4(b).

SQL Statement:
WITH pure_surface_parts(A, G) AS (1)
 (SELECT A, G (2)
 FROM (SELECT A, G (3)
 FROM R (4)
 REFORMAT AS UNFOLD G) (5)
 WHERE is_pure_surface(G) (6)
 REFORMAT AS FOLD G) (7)

SELECT A, G (8)
FROM pure_surface_parts (9)

 192

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

g1

g2

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

g3

g5

(a) Input spatial objects

(c) Pure line parts

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

g10

g11

(b) Pure surface parts

(d) Holes

g4

g6

g7

g8

g9

g12

g13

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

(e) End points

g14

g15 g16

g17

g18

g21

g19

g20
g22

g23
g24

Figure 7.4: Illustration of additional functionality.

Explanation: The sub-query of lines (3)-(5) retrieves all the quanta in R. Next,
the WHERE clause of line (6) restricts to the quanta of a PSURFACE type.
Finally, line (7) folds on attribute G to obtain the final result. The use of the
WITH clause simplifies the formulation of subsequent statements that follow
below.

Remark: The above functionality is generic, in that it can be applied to a
relation that contains any type of spatial data.

Pure Line Parts: Get the pure line parts of a set of spatial objects.

Input: R(A, G).

 193

Output: A relation with attributes A, G.

Description: For each set of tuples {(a, gi)} in R, the result relation consists of
a set of tuples {(a, gj)}, where gj is one of the elements of the spatial union of
all the pure quantum lines that are subsets of some gi and not contained in
some pure quantum surface contained in some gi. As an example, if R consists
of all the spatial objects depicted in Figure 7.4(a) then the result relation
consists of all the spatial objects depicted in Figure 7.4(c).

SQL Statement:
SELECT A, G (1)
FROM (SELECT A, G (2)
 FROM R (3)
 REFORMAT AS UNFOLD G) (4)
WHERE is_pure_line(G) (5)
EXCEPT EXPANDING (G) (6)
SELECT A, G (7)
FROM pure_surface_parts (8)

Explanation: Similarly as in the previous query, lines (1)-(5) retrieve all the
(a, qk) where qk are pure line quanta. Finally, the QExcept operation of line (6)
subtracts the pure surface parts retrieved in lines (7)-(8) (see previous query
for derivation of pure-surface-parts) from the quantum lines retrieved in lines
(1)-(5).

Remark: The previous functionality is generic in that it can be applied to a
relation that contains any type of spatial data.

Holes: Get the holes of a set of pure surfaces.

Input: R(A, G).

Output: A relation with attributes A, G.

Description: For each set of tuples {(a, gi)} in R, the result relation has one or
more tuples of the form (a, gj) where gj is a hole of some spatial object in the
spatial union of {gi}. As an example, if R consists of all the spatial objects
depicted in Figure 7.4(b) then the result relation consists of all the spatial
objects depicted in Figure 7.4(d).

SQL statement:
SELECT A, G (1)
FROM pure_surface_parts (2)
 ENVELOPE OF (G) (3)
EXCEPT EXPANDING (G) (4)
SELECT A, G (5)
FROM R (6)

 194

Explanation: In line (4), the spatial objects in R, which are retrieved in lines
(5), (6) are subtracted from their spatial envelope, which is retrieved in lines
(1)-(3). The expression, which retrieves the pure surface parts of the spatial
objects in R, was given earlier.

Remark: The functionality is more general than that in [CZ96, Vo97] because
it can be applied to spatial objects of any type.

End Points: Give the end points of a set of pure lines.

Input: R(A, G)

Output: A relation with attributes A, G.

Description: For each set of tuples {(a, gi)} in R, the result relation has one or
more tuples of the form (a, gj) where gj is an end point of some pure line in the
spatial union of {gi}. As an example, if R consists of all the spatial objects
depicted in Figure 7.4(c) then the result relation consists of all the spatial
objects depicted in Figure 7.4(e).

SQL statement:
WITH UR(A, G) AS (1)
 (SELECT A, G (2)
 FROM R (3)
 REFORMAT AS UNFOLD G) (4)

SELECT UR1.A, UR1.G (5)
FROM UR AS UR1 (6)
WHERE is_point(G) AND (7)
 1 = (SELECT count(*) (8)
 FROM UR AS UR2 (9)
 WHERE is_pure_line(UR2.G) AND (10)
 UR2.A = UR1.A AND (11)
 UR2.G cp UR1.G) (12)

Explanation: The query of lines (2)-(4) retrieve all the quanta in R. Next, the
conditions in lines (7)-(12) restricts to those quanta of type POINT that
intersect with just one quantum line.

Remark: The above expression is general in that it can be applied to any kind
of pure lines. Contrary to this, only simple pure lines can be considered in
[SH91, Inf01, Ibm01, Ogis99, Iso02, CZ96, CF93, PLL+98].

Split: Split each set of spatial objects recorded in a relation R1(A, G) with
respect to each set of objects recorded in a relation R2(B, G).

Input: R1(A, G), R2(B, G)

Output: A relation with attributes A, B, G.

 195

Description: For each set of tuples {(a, gi)} in R1 and for each set of tuples
{(b, gj)} in R2, the result relation contains a set of tuples {(a, b, gk)}, where
for each pair of quanta q1, q2 in some gk, which is contained in some gi, and
for each gj, the predicate conductive(q1, q2, gi, gj) evaluates to true. As an
example, if R1 consists of all the objects in Figure 7.5(a) that are subscripted
by Ai and R2 consists of all the objects in Figure 7.5(a) that are subscripted by
Bj, then the result relation contains all the spatial objects depicted in Figure
7.5(b).

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

(a) Input spatial objects

gA1

gB1

gB2 gB3
gA2

gB4

gB5

gB6

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

(b) Split

gS1

gS2

gS3

gS4

gS5

gS6

gS7

gS8

gS9

Figure 7.5: Illustration of the functionality of Split.

SQL statement:
WITH R(A, B, G1, G2) AS (1)
 (SELECT TR.A, TR.B, TR.G1, TR.G2 (2)
 FROM (3)
 (SELECT A, B, R1.G AS G, R1.G AS G1, R1.G AS G2 (4)
 FROM R1, R2 (5)
 REFORMAT AS UNFOLD G1, G2) AS TR (6)
 WHERE NOT EXISTS (7)
 (SELECT R2.G (8)
 FROM R2 (9)
 WHERE NOT conductive(TR.G1, TR.G2, TR.G, R2.G) (10)
 AND TR.B = R2.B) (11)
 REFORMAT AS FOLD G1, G2) (12)

SELECT A, B, G1 as G (13)
FROM R (14)

Explanation: The sub-query of lines (4)-(6) retrieves a relation with attributes
A, B, G, G1, G2, containing tuples of the form (a, b, g, qi, qj), where (a, g)
belongs to R1, the pairs (qi, qj) yield the combinations of every quantum in g
with all the quanta in g and there exists some (b, gr) in R2. The condition
expressed in lines (7)-(11) restricts to those tuples (a, b, g, qi, qj) for which
there does not exist some tuple (b, gr) in R2 for which conductive(qi, qj, g, gr)
evaluates to false. In line (12) the result of the previous selection is folded on
attributes G1, G2, in order to retrieve the spatial objects of the result. Finally,

 196

lines (13)-(14) project out attribute G2, since it contains the same data as
attribute G1.

Remark: The above statement is general in that it can be applied to any kind
of spatial data. Contrary to this, the relevant functionality in [SH91] splits
with respect to a pure line either a simple pure line or a pure surface without
holes. The relevant functionality in [CZ96] splits either a pure surface with
respect to a set of pure lines or a pure line with respect to a set of points.

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

gA1

gA2

gB1 gB2

gB3

gB4
Figure 7.6: Illustration of functionality of Nearest Neighbours.

Nearest Neighbours: For each set {(a, gi)} in R1(A, G) retrieve from R2(B,
G) all the tuples {(b, gj)} for which the distance between gi and gj is minimum.

Input: R1(A, G), R2(B, G)

Output: A relation with attributes A, B, G1, G2.

Description: For each set of tuples {(a, gi)} in R1 the result relation contains a
set of tuples (a, b, gi, gj) such that the distance between gi and each gj matches
the minimum distance between any pair of gi, gr, where (br, gr) belongs to R2.
As an example, if R1 consists of the set of tuples {(a, gA1), (a, gA2)} and R2
consists of the set of tuples {(b1, gB1), (b2, gB2), (b3, gB3), (b4, gB4)}, where gAi
and gBj are depicted in Figure 7.6, then the result relation contains the tuples
{(a, b2, gA1, gB2), (a, b3, gA2, gB3)}.

SQL statement:
SELECT TR1.A, TR2.B, TR1.G AS G1, TR2.G AS G2 (1)
FROM R1 AS TR1, R2 AS TR2 (2)
WHERE distance(TR1.G, TR2.G) = (3)
 (SELECT min(distance(TR3.G, TR4.G)) (4)
 FROM R1 AS TR3, R2 AS TR4 (5)
 WHERE TR1.A = TR3.A) (6)

Explanation: The from clause in line (2) retrieves the Cartesian product of
objects in R1 and R2. Then the condition in lines (3)-(6) restricts to those
combinations for which the distance between the objects matches the
minimum distance between each object in R1 and every object in R2.

 197

Remark: The above statement is general in that it can be executed against any
kind of spatial data. Contrary to this, the relevant functionality in [Gu88,
RFS88] retrieves the points which are nearest to a given point. Also, the
relevant functionality in [GS95, Ora00, Inf01] considers minimum distances
only between one spatial object and a set of spatial objects.

14
29
44
59
74
89

104
119
134
149
164
179
194
209
224

0
15
30
45
60
75
90

105
120
135

150
165
180
195
210

g1

gV1 g2gV2

g3

g5

g4

g6

gV3

gV4

gV6

gV5

Figure 7.7: Illustration of the functionality of Voronoi.

Voronoi: For each spatial point gi in some tuple of R1(A, G), retrieve from
R2(G) the pure surface that consists of all the quantum surfaces which are
closest to gi rather than to any other point gj in some other tuple of R1(A, G).

Input: R1(A, G), R2(G), where the data type of R1.G is POINT and the data
type of R2.G is PSURFACE.
Output: A relation with attributes A, G, G1
Description: For tuple (a, g1) in R1 the result relation contains a tuple (a, gv1)
where gv1 consists of all those quantum surfaces in some tuple of R2 that are
closer to g1 rather than to any other gi in R1. In case that a quantum surface q
has the same distance from both some gi and some gj, it is assigned to the
minimum of them, according to the total ordering defined in Section 3.4. Note
that the pure surfaces in the result relation are either adjacent or disjoint. As
an example, if R contains the points gi in Figure 7.7, then the result relation
contains the pure surfaces gvi in the same figure.

SQL statement:
SELECT A, G1 AS G, G2 AS G1 (1)
FROM (SELECT A, R1.G AS G1, R2.G AS G2 (2)
 FROM R1, R2 (3)
 REFORMAT AS UNFOLD G2) AS TR (4)
WHERE distance(G1, G2) = (5)
 (SELECT min(distance(R1.G1, TR.G2)) (6)
 FROM R1) AND (7)
 G1 = (SELECT min(G) (8)
 FROM R1 (9)
 WHERE distance(TR.G1, TR.G2) = (10)
 distance(R1.G, TR.G2)) (11)
REFORMAT AS FOLD G2

 198

Explanation: The sub-query in lines (2)-(4) retrieves, for each point in R1, all
the quantum surfaces in R2. Then, the condition expressed in lines (5)-(7)
restricts to those quanta whose distance from the relevant point matches the
minimum distance between the same quantum and any point in R1. The
condition expressed in lines (8)-(11) disallows assigning one quantum q to
more than one point. From all the points with the same distance from quantum
q the minimum is chosen.

7.6 Additional Characteristics

Additional characteristics of the proposed model can be summarized as
follows:

1. With reference to the management of spatial data, it is estimated
that the model integrates fully spatial data within the relational
model and a map can be seen as a (base or derived) relation.
Hence, the model combines fully the flexibility of GIS-Centric
approaches, dedicated to the manipulation of maps, with the
advantages of database technology. This combination includes the
incorporation of relevant optimisation strategies.

2. A simple relational structure, that of non-nested relations, suffices
for the representation of spatial, temporal and spatio-temporal data.
The management of spatial data actually reduces to the
management of relations. Hence, a unique set of operations
suffices for the management of all the above types of data. Recall
in addition that operations originally defined for the management
of spatial data proved to also have practical interest when applied
to temporal data, as has been shown in Section 5.3. As has also
been shown in [LM97] the same set of operations has practical
interest when applied to any other type of data. Hence, all types of
data can be represented and be manipulated in a uniform way. To
this author’s knowledge, no other approach satisfies this property.
Moreover, it is estimated that the model is user-friendly because
applications, in their majority, consider non-nested relations.

3. It has been shown (Section 7.6) that some operations, defined in
other approaches, can also be expressed in the model proposed in
this thesis, by the use of its kernel operations. Moreover, it has
been shown that the functionality achieved in the proposed model
is more general than that of the operations defined in the original
approaches. Hence, the estimation is that the model is not open-

 199

ended, in that the set of its kernel operations does not have to be
increased.

4. The use of the Replicate operation (Subsection 4.3.7) has enabled a
further increase of the functionality of the proposed model.

5. Given that there are few kernel operations, the estimation is that
optimisation techniques can easily be incorporated.

6. Generally, nested relational structures are more powerful that the
relevant non-nested. However, an initial investigation has shown
that all the work undertaken in this thesis can straightforwardly be
integrated within a nested relational model, the one that has been
proposed in [LD98].

7. Finally, initial investigation has shown that the model can also be
applied for the management of data related to continuous changes
in space and in time, as is briefly discussed in Section 8.3.5.

7.7 Similarities with Other Approaches

Similarities with the data types proposed in this thesis can be identified in the
areas of Computer Graphics, Image Processing and Spatial Data Structures.
For example, the term pure quantum surface of the present model could be
associated to what is commonly called pixel [Pa82, Sa90c]. However, pixels
have been considered only for image processing and spatial data plotting
purposes. Contrary to this the various types of spatial quanta of the present
work aimed at defining spatial data types and a spatial relational algebra. To
this author’s knowledge, spatial data types have not been defined in terms of
quanta in any other data modelling approach.

Spatial objects that resemble the pure quantum surfaces of the present work
are incorporated in [Wi98, WF99, WF00]. However, the objective of [Wi98,
WF99, WF00] is the development of a hybrid-raster representation that
incorporates the 9-intersection model [EH92].

As already reported, operations Unfold and Fold were originally defined for
the management of temporal and interval data [LJ88a, LM97]. One first
approach, to incorporate them in spatial data modelling, has been reported in
[Ro93, Ro94] (see Subsection 2.2.21). However, the characteristics of [Ro93,
Ro94], show that the approach differs radically from that in the present thesis:
Firstly, five different spatial data types are considered, one of a point and four
of the form sets of points, but the latter have nothing in common with the line
and surface types defined in this thesis. Secondly, Unfold returns an infinite
set of tuples. Thirdly, two types of a Fold operation are defined, which return

 200

elements of some set of points type. Finally, the description concerns a
conceptual model, as the author also admits. The reason is that Unfold returns
an infinite number of tuples.

The approach undertaken in [GNT91a] (Subsection 2.2.14) considers two
operations, Decompose and Compose, which have similarities with Unfold
and Fold, respectively, defined in this thesis. However, spatial quanta are not
considered in [GNT91a] and only one spatial data type is defined,
GEOMETRY(S), whose elements are sets of raster cells. Consequently,
operation Decompose decomposes each tuple of a relation into so many tuples
as the number of raster cells that are contained in the relevant
GEOMETRY(S) value. The second operation performs the inverse, it merges
tuples with matching values on a given conventional attribute.

Finally, similarities can also be identified with the QLG approach [CZ96,
CW96, CN97] (Subsection 2.2.17) but important differences are the
following: A nested data model is considered. All the operations in QLG are
primitive. Only informal descriptions of the operations are given. Hybrid
surfaces are supported only partially (Section 7.2.17). Spatial difference is not
defined. Finally, a vector-based representation is considered.

7.8 Conclusions

A classification and evaluation of various spatial and spatio-temporal
approaches, as well as of the model defined in this thesis, has been undertaken
with respect to the classification and properties specified in Chapter 2. This
has not been an easy task, due to the lack of formalism in various approaches.
The conclusion is that the proposed model inherits a number of advantages.

It has also been shown that the proposed model supports the majority of the
functionality provided in other approaches and, in most cases, it provides a
more general functionality. Finally, the model enables the uniform
representation and management of any type of data.

CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Introduction

The findings of the research undertaken in the present thesis are summarized
in Section 8.2 and topics for further research are outlined in Section 8.3.

8.2 Summary

In this thesis a data model has been formalised for the management of spatial
and spatio-temporal data. Its characteristics can be summarised as follows:

1. It considers discrete change in space and in time.
2. Regarding the management of space, it is closer to raster-based

approaches and it is database-centric.
3. Regarding the management of time it considers valid time at the

level of tuple.

As opposed to other approaches, the model satisfies the following properties:

1. The definition of spatial types has been based on the prior
definition of spatial quanta.

2. The spatial types are user-friendly, in that:
(i) They match the ordinary point, line and surface that are used

in daily practice.
(ii) They are spatially compatible, in that a line can be seen as a

degenerate surface and a point can be seen as either a
degenerate surface or a degenerate line. Due to this, spatial
objects whose geometry is either a point or a line or a surface
can be recorded under the same attribute of a relation.

(iii) They are set-theoretically closed, in that a line with missing
points or a surface with either missing lines or missing points
are invalid spatial objects.

 202

(iv) A hybrid surface, a connected spatial object composed of
surfaces and lines, is a valid spatial object.

(v) The empty set is not a valid spatial object.
3. Time data types are also user-friendly in that:

(i) They consist of instant and period types.
(ii) The empty set is not a valid time period.

4. By definition, various granularities for time are supported.
5. There was no need to define distinct spatio-temporal data types.
6. Spatial, temporal and spatio-temporal data can be recorded and be

manipulated in the simple structures of non-nested relations.
7. No limitations are enforced by the relation scheme, in that it may

have more than one attribute of either a spatial or time type.
8. A map can be seen as one or more relations that contain spatial

data.
9. Formalism is provided for the relational algebra operations.
10. A set of few kernel operations achieves full functionality. This set

consists of the known relational algebra operations and two more,
Unfold and Fold. All the remainder operations have been defined
in terms of those in the kernel set.

11. Operations on spatial data reduce to operations on relations.
12. Spatial data loss, identified in other approaches when operations

are applied to spatial data, has been alleviated.
13. The full functionality of all the operations has been achieved, in

that they all can be applied to pieces of spatial data of any data
type.

14. The model achieves, and generalizes further, the functionality of
other spatial models.

15. Regarding the management of spatio-temporal data, the model
supports the evolution of spatial operations with respect to time.

16. The model does not restrict to the management of spatial or spatio-
temporal data, but it can also be applied to the management of pure
temporal data. Moreover, it has been shown that operations,
originally defined for the management of spatial data, can also be
applied to temporal data and, in some cases, this application has
practical interest.

17. Regarding the management of temporal data, it did not necessitate
to redefine the functionality of conventional algebra operations.

18. The model enables the management of 2-d spatial data but its
extension to n-d data is straightforward.

19. In conjunction with previous research [LM97], the model enables
the uniform management of any type of data.

 203

20. Although discrete spatial changes have been considered, the
indication is that the model can also be used for the management of
continuous spatial changes (Subsection 8.3.5).

21. The indication is that the model can be the basis for the definition
of a general-purpose nested relational model.

22. Based on an earlier extension, a further extension of SQL:1999
was proposed that achieves the full functionality of the proposed
relational algebra.

23. It has been shown that the model can be implemented.

8.3 Future Work

Topics for further research are outlined in the following subsections.

8.3.1 Definition of Predicates and Functions

The definition of a satisfactory set of predicates and functions was beyond the
objectives of this thesis. Only few were defined and some more can be found
in Appendix A. However, a basic set of spatial predicates can enable testing
topological relationships between two spatial objects. One first effort, called
the four intersection model (4IM), has been defined in [Eg89, EF91]. This
work has been extended further in [HT92]. Another extension of the 4IM,
called the nine intersection model (9IM), has been defined in [EH92]. Further
extensions of the 4IM and the 9IM are the dimension extended 4IM (DE4IM)
[CFO93] and the dimension extended 9IM (DE9IM) [CF94]. In [CF94], a
calculus based method (CBM) is developed and it is proved that it can express
the set of relationships defined in the DE9IM. The CBM has also been
slightly modified in [CF96], so as to support pure surfaces with holes and sets
of spatial objects.

It is estimated that further research can combine the results of the above
approaches so as to be applied to the data types defined in this thesis,
especially to hybrid surfaces. It is also estimated that the total ordering of
spatial quanta, which has been formalized in this thesis, can provide an
alternative approach in the definition of directional predicates [PZ87, TPS96].
Finally, it is estimated that the definition of functions is also an issue of
further research

 204

8.3.2 Investigation of Efficient Storage Structures

Vector-based and raster-based approaches consider a tight coupling between
the logical and the physical level, in that the operations defined at the logical
level depend fully on the internal representation of spatial data. However, in
the area of databases such a view contradicts data independence. The model
proposed in this thesis is estimated to overcome many problems of spatial
data modelling at the logical level. However, it is also estimated that an
implementation of it should not necessarily be based on a raster-based
approach, to which it is closer. Some initial investigation has already been
undertaken in a vector-based implementation. Moreover, alternative solutions
have to be considered, related to the use of efficient storage structures for the
data types and the operations defined in this thesis.

8.3.3 Investigation of Optimisation Techniques

The major objective of this thesis has been the modelling of spatial and of
spatio-temporal data. Consequently, the study of optimisation techniques,
related to an efficient implementation, has fully been neglected. Regarding the
optimisation of operations that can be applied to temporal relations, research
work has been reported in [VLGM94] and in [LM97] and part of it has also
been considered in an implementation. Two facts of major importance are the
following: Firstly, in [LM97] it has been shown that, in many cases, the
execution of an explicitly issued Unfold operation can be avoided. Secondly,
operations whose definition has been based on Unfold, have actually been
implemented in terms of an internal Split operation [LPS94, LPS95], which
reduces drastically the execution time. In this thesis, however, additional
operations have been defined in terms of Unfold. Hence, further research is
worth undertaking both for these operations and also for the application of
operation Split to spatial data.

8.3.4 Implementation

Based on the research results of the two previous sections, it is worth
undertaking an efficient implementation, in a way similar to that for temporal
data [VLGM94]. Alternative solutions have also to be investigated, related to
the way the data types and operations can be integrated within a DBMS.

 205

8.3.5 Modelling Continuous Change in Space and in Time

The spatial data model formalized in this thesis aimed at overcoming
problems related to applications that require discrete spatial changes, such as
cartography and cadastral systems (Section 2.8 and Subsection 7.4.1). In
(Subsection 2.4.1) it has also been pointed out that the functionality required
for the management of data, which changes discretely in space, is different
than that for the management of data that changes continuously in space. As
has however been reported (Subsection 7.4.1), an initial investigation
[VL03b] has shown that operations originally defined for the management of
continues changes in space can be expressed in the SQL extension defined in
Chapter 6. To express some of these operations, advantage is also taken of the
recursive capabilities of SQL:1999. However, it is estimated that further
research has to be undertaken related to the following issues:

− Exhaustive investigation, to determine whether new fundamental
operations are really needed or not.

− Development of new storage structures and optimisation techniques
that fit better continuous changes in space.

Regarding the management of spatio-temporal (and temporal data as well),
discrete time has also been considered (Section 2.8 and Subsection 7.4.2), as
is the common case in temporal models. However, initial investigation has
shown that the combination of the proposed model with interpolation
functions enables the modelling of moving objects. Again, however, it is
estimated that the above research issues for continuous changes in space have
also to be investigated for continuous changes in time.

REFERENCES

[AB95] S. Abiteboul, C. Beeri, “The Power of Languages for the
Manipulation of Complex Values”. VLDB Journal 4(4), pp. 727-
794, 1995.

[Al83] J.F. Allen, “Maintaining Knowledge about Temporal Intervals”,
Communications of the ACM 26(11), pp. 832-843, 1983.

[Ar86] G. Ariav, “A temporally oriented data model”, ACM Transactions
on Database Systems 11(4), pp. 499-527, 1986.

[AS93] K. K. Al-Taha, R. T. Snodgrass, M. D. Soo, “Bibliography on
Spatiotemporal Databases.” SIGMOD Record 22(1), pp. 59-67,
1993.

[BBC97] O. Balovnev, M. Breunig, A.B. Cremers, “From GeoStore to
GeoToolKit: The Second Step”, Proc. 5th International
Symposium on Large Spatial Databases (SSD’97), Berlin,
Germany, July 15-18 1997, M. Scholl, A. Voisard (eds.),
Advances in Spatial Databases, Lecture Notes in Computer
Science 1262, Springer-Verlag, pp. 223-237, 1997.

[Be82] J. Ben-Zvi, The time relational model, Ph.D. Dissertation,
Department of Computer Science, University of California, 1982.

[Bent01] MicroStation GeoGraphics User´s Guide, Version 7.2, Bentley
Systems Inc., 2001.

[BJ96] M.H. Böhlen, C.S. Jensen, “Seamless Integration of Time into
SQL”, Technical Report R-96-49, Department of Computer
Science, Aalborg University, 1996.

[BJS98] M.H. Böhlen, C.S. Jensen, B. Skjellaug, “Spatio-temporal
database support for legacy applications”, Proc. of the 1998 ACM
symposium on Applied Computing (SAC’98), February 27 - March
1 1998, pp. 226-234.

[BK01] J.K. Berry, J. Kensinger, “Academic MapCalc: Educational
Materials for Instruction in Grid-Based Map Analysis”, Proc. 15th
Annual Conference on Geographic Information Systems,
Vancouver, British Columbia, Canada, February 19-22, 2001.

 208

[BM98] P.A. Burrough, R.A. McDonnell, Principles of Geographical
Information Systems, Spatial Information Systems Series, Oxford
University Press, 1998.

[BVH96] L. Becker, A. Voigtmann, K. Hinrichs, “Temporal Support for
Geo-Data in Object-Oriented Databases”, Proc. 7th International
Conference Database and Expert Systems Applications
(DEXA’96), Zurich, Switzerland, September 9-13 1996, R.
Wagner, H. Thoma (eds.): Database and Expert Systems
Applications, Lecture Notes in Computer Science 1134, pp. 79-93,
1996.

[CC93] J. Clifford, A. Croker, “The historical relational data model
(HRDM) revisited”, A. Tansel, J. Clifford, S. Gadia, A. Segev, R.
Snodgrass (eds.), Temporal Databases: Theory, Design and
Implementation, Benjamin / Cummings, pp. 6-27, 1993.

[CCF+96] G. Camara, M.A. Casanova, U.M. Freitas, J.P.C. Cordeiro, L.
Hara, “A Presentation Language For Gis Cadastral Data”, Proc.
4th ACM workshop on Advances on Advances in Geographic
Information Systems (GIS’96), Rockville, Maryland, USA,
November 15 - 16 1996, pp. 139-146.

[CF93] E. Clementini, P. Di Felice, “An Object Calculus for Geographic
Databases”, Proc. of the 1993 ACM/SIGAPP Symposium on
Applied Computing: States of the Art and Practice (SAC’93),
Indianapolis, USA, February 14-16 1993, pp. 302-308.

[CF94] E. Clementini, P. Di Felice, “A Comparison of Methods for
Representing Topological Relationships”, Information Sciences
80, pp. 1-34, 1994.

[CF96] E. Clementini, P. Di Felice, “A Model for Representing
Topological Relationships Between Complex Geometric Features
in Spatial Databases”, Information Sciences 90 (1-4), pp. 121-136,
1996.

[CFG01] J.A. Cotelo Lema, L. Forlizzi, R.H. Güting, E. Nardelli, M.
Schneider, “Algorithms for Moving Objects Databases”,
Informatik-Report 289, FernUniversität Hagen, 2001. To appear in
The Computer Journal.

[CFO93] E. Clementini, P. Di Felice, P. van Oosterom, “A Small Set of
Formal Topological Relationships Suitable for End-User
Interaction”, Proc. 3th International Symposium on Large Spatial
Databases (SSD’93), Singapore, June 23-25 1993, D. Abel, B. C.

 209

Ooi (eds.), Advances in Spatial Databases, Lecture Notes in
Computer Science 692, Springer-Verlag, pp. 277-295, 1993.

[CG94] T.S. Cheng, S.K. Gadia, “A Pattern Matching Language for
Spatio-Temporal Databases”, Proc. 3th International Conference
on Information and Knowledge Management (CIKM’94),
Gaithersburg, Maryland, November 29 - December 2 1994, pp.
288-295.

[CGN93] T.S. Cheng, S.K. Gadia, S.S. Nair, “Object Identity and
Dimension Alignment in Parametric Databases”, Proc. 2th
International Conference on Information and Knowledge
Management (CIKM’93), Washington, DC, USA, November 1-5
1993, pp. 615-624.

[CN97] E.P.F. Chan, J.N.H. Ng, “A General and Efficient Implementation
of Geometric Operators and Predicates”. Proc. 5th International
Symposium on Large Spatial Databases (SSD’97), Berlin,
Germany, July 15-18 1997, M. Scholl, A. Voisard (eds.),
Advances in Spatial Databases, Lecture Notes in Computer
Science 1262, Springer-Verlag, pp. 69-93, 1997.

[Co70] E. F. Codd, “A Relational Model of Data for Large Shared Data
Banks”, Communications of the ACM 13(6), 1970.

[Co72] E.F. Codd, “Relational completeness of data base sublanguages”,
R. Rustin (ed.), Data Base Systems 6, Courant Computer
Symposia Series, Prentice-Hall, Englewood Cliffs, pp. 65-98,
1972.

[Co79] E. F. Codd, “Extending the Database Relational Model to Capture
More Meaning”, ACM Transactions on Database Systems 4(4),
pp. 397-434, 1979.

[CSFG96] G. Camara, R.C.M. Souza, U.M. Freitas, J. Garrido, “Spring:
integrating remote sensing and GIS by object-oriented data
modelling”, Computers and Graphics 20(3), pp. 395-403, 1996.

[CT85] J. Clifford, A.U. Tansel, “On an algebra for historical relational
databases: Two views”, Proc. of the 1985 ACM SIGMOD
International Conference on Management of Data, Austin, Texas,
USA, May 28-31 1985, S. B. Navathe (ed.), SIGMOD Record
14(4), pp. 247-265, 1985.

[CVL+94] D. Chrétien, Y. Viémont, T. Larue, R. Legoff, D. Pastre, “The
GéoSabrina design: the way to build a GIS above a spatial data
server”, Proc. of the 1994 ACM Symposium on Applied

 210

Computing (SAC’94), Phoenix, AZ, USA, March 6-8 1994, pp.
328-332.

[CW96] E.P.F. Chan, J.M.T. Wong, “Querying and Visualization of
Geometric Data”, Proc. 4th ACM workshop on Advances on
Advances in Geographic Information Systems (GIS’96),
Rockville, Maryland, USA, November 15-16 1996, pp. 129-138.

[CZ96] E.P.F. Chan, R. Zhu, “QL/G – A Query Language for Geometric
Data Bases”, Proc. 1st International Conference on GIS, Urban
Regional and Environmental Planning, Samos, Greece, April
1996, pp. 271-286.

[CZ99] C.X. Chen, C. Zaniolo, “Universal Temporal Extensions for
Database Languages”, Proc. 15th International Conference on
Data Engineering (ICDE’99), Sydney, Australia, March 23-26
1999, IEEE Computer Society Press, pp. 428-437.

[CZ00] C.X. Chen, C. Zaniolo, “SQLST: A Spatio-Temporal Data Model
and Query Language”, Proc. 19th International Conference on
Conceptual Modeling (ER-2000), Salt Lake City, Utah, USA,
October 9-12 2000, A. H. F. Laender, S. W. Liddle, V. C. Storey
(eds.), Conceptual Modeling - ER 2000, Lecture Notes in
Computer Science 1920, Springer-Verlag, pp. 96-111, 2000.

[Da98] J.R. Davis, “IBM's DB2 Spatial Extender: Managing Geo-Spatial
Information within the DBMS”, Technical Report, IBM
Corporation, May 1998.

[DBVH97] H. Ditt, L. Becker, A. Voigtmann, K. Hinrichs, “Constraints and
Triggers in an Object-Oriented Geo Database Kernel” Proc. 8th
International Workshop on Database and Expert Systems
Applications (DEXA’97), Toulouse, France, September 1-2, 1997,
IEEE Computer Society Press, pp. 508-513.

[DDL03] C. J. Date, H. Darwen, N.A. Lorentzos, Temporal Data and the
Relational Model, ISBN 1-55860-855-9, Morgan Kaufmann
Publishers, San Fransisco, California, 2003.

[DHT94] V. Delis, T. Hadzilacos, N. Tryfona, “An Introduction to Layer
Algebra”, Proc. of the 6th International Symposium on Spatial
Data Handling (SDH’94), Edinburgh, UK, September 1994, pp.
1020-1041.

[EB95] M.J. Egenhofer, T. Bruns, “Visual Map Algebra: A Direct-
Manipulation User Interface for GIS”, Proc. 3th IFIP 2.6 working
conference on visual database systems (IFIP’95), Lausanne,

 211

Switzerland, March 27-29 1995, S. Spaccapietra, R. Jain (eds.),
Visual Database Systems 3, Visual Information Management, IFIP
Conference Proceedings 34 Chapman & Hall , pp. 235-253, 1995.

[EF91] M. Egenhofer, R. Franzosa, “Point-set topological spatial
relations”, International Journal of Geographic Information
Systems 2, pp. 161-174, 1991.

[Eg89] M.J. Egenhofer, “A formal definition of binary topological
relationships”, Proc. 3rd International Conference Foundations of
Data Organization and Algorithms (FODO’89), Paris, France,
June 21-23 1989, W. Litwin, H.-J. Schek (eds.), Lecture Notes in
Computer Science 367, Springer-Verlag, pp. 457-472, 1989.

[Eg94] M.J. Egenhofer, “Spatial SQL: A Query and Presentation
Language”, IEEE Transactions on Knowledge and Data
Engineering 6(1), pp. 86-95, 1994.

[EH92] M. J. Egenhofer, J. R. Herring, “Categorizing Binary Topological
Relations Between Regions, Lines, and Points in Geographic
Databases”, Technical Report, Department of Surveying
Engineering, University of Maine, 1992.

[EJS98] O. Etzion, S. Jajodia, S.M. Sripada (eds.), Temporal Databases:
Research and Practice, Lecture Notes in Computer Science 1399,
Springer, 1998.

[ELNR88] H.-D. Ehrich, F. Lohmann, K. Neumann, I. Ramm, “A Database
Language for Scientific Map Data”, R. Vinken (ed.), Construction
and Display of Geosientific Maps Derived from Databases, (Proc.
Int. Coll. Dinkelsbühl 1986), pp. 139-152, 1988.

[ES97] M. Erwig, M. Schneider, “Partition and Conquer”, Proc.
International Conference On Spatial Information Theory
(COSIT’97), Laurel Highlands, Pennsylvania, USA, October 15-
18 1997, S. C. Hirtle, A. U. Frank (eds.), Spatial Information
Theory: A Theoretical Basis for GIS, Lecture Notes in Computer
Science 1329, pp. 389-407, 1997.

[ES99] M. Erwig, M. Schneider, “The Honeycomb Model of Spatio-
Temporal Partitions”, Proc. International Workshop Spatio-
Temporal Database Management (STDBM’99), Edinburgh,
Scotland, September 10-11 1999, M. H. Böhlen, C. S. Jensen, M.
Scholl (eds.), Lecture Notes in Computer Science 1678, Springer-
Verlag, pp. 39-59, 1999.

 212

[ES00] M. Erwig, M. Schneider, “Formalization of Advanced Map
Operations”, Proc. 9th International Symposium on Spatial Data
Handling (SDH’2000), Beijing, China, August 10-12 2000, pp.
8a.3-17.

[Esri99] “Features and Functions of ArcInfo 8”, White paper,
Environmental Systems Research Institute, Inc., 1999.

[Esri00] “ArcInfo 8: A New GIS for the New Millennium”, White paper,
Environmental Systems Research Institute, Inc., 2000.

[Esri01] “Geospatial Analysis with ArcGIS Desktop Extensions”, White
paper, Environmental Systems Research Institute, Inc., 2001.

[Esri02a] ArcSDE OnLine, URL: http://arconline.esri.com /arcsdeonline,
Environmental Systems Research Institute , Inc. 2002.

[Esri02b] ArcObject OnLine, URL: http://arcobjectsonline.esri. com
/ArcObjectsOnline, Environmental Systems Research Institute,
Inc. 2002.

[FGG+99] A.U. Frank, S. Grumbach, R.H. Güting, C.S. Jensen, M.
Koubarakis, N.A. Lorentzos, Y. Manolopoulos, E. Nardelli, B.
Pernici, H.-J. Schek, M. Scholl, T.K. Sellis, B. Theodoulidis, P.
Widmayer, “Chorochronos: A Research Network for
Spatiotemporal Database Systems”, SIGMOD Record 28(3), pp.
12-21, 1999.

[FGNS00] L. Forlizzi, R.H. Güting, E. Nardelli, M. Schneider, “A Data
Model and Data Structures for Moving Objects Databases”, Proc.
of the 2000 ACM SIGMOD International Conference on
Management of Data, Dallas, Texas, USA, May 16-18 2000, W.
Chen, J. F. Naughton, P. A. Bernstein (eds.), SIGMOD Record
29(2), ACM, pp. 319-330, 2000.

[FVM97] A.U. Frank, G.S. Volta, M. McGranaghan, “Formalization of
Families of Categorical Coverages”, International Journal of
Geographical Information Science 11(3), pp. 215-231, 1997.

[Ga88] S.K. Gadia, “A homogeneous relational model and query
languages for temporal databases”, ACM Transactions on
Database Systems 13(4), pp. 418-448, 1988.

[GBE+00] R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A.
Lorentzos, M. Schneider, M. Vazirgiannis, “A Foundation for
Representing and Querying Moving Objects”, ACM Transactions
on Database Systems 25(1), pp. 1-42, 2000.

 213

[GFDP01] T. Griffiths, A.A.A. Fernandes, N. Djafri, N.W. Paton, “A Query
Calculus for Spatio-Temporal Object Databases”, Proc. 8th
International Symposium on Temporal Representation and
Reasoning (TIME-01), Civdale del Friuli, Italy, June 14-16 2001,
IEEE Computer Society, pp. 101-110..

[GFP+01a] T. Griffiths, A.A.A. Fernandes, N.W. Paton, K.T. Mason, B.
Huang, M.F. Worboys, “Tripod: A Comprehensive Model for
Spatial and Aspatial Historical Objects”, Proc. 20th International
Conference on Conceptual Modeling (ER 2001), Yokohama,
Japan, November 27-30 2001, H. S. Kunii, S. Jajodia, A. Sølvberg
(eds.), Conceptual Modeling - ER 2001, Lecture Notes in
Computer Science 2224, Springer-Verlag, pp. 84-102, 2001.

[GFP+01b] T. Griffiths, A.A.A. Fernandes, N.W. Paton, K.T. Mason, B.
Huang, M.F. Worboys, C. Johnson, J.G. Stell, “Tripod: A
Comprehensive System for the Management of Spatial and
Aspatial Historical Objects”, Proc. 9th ACM International
Symposium on Advances in Geographic Information Systems (GIS
2001), Atlanta, GA, USA, November 9-10 2001, pp. 118-123.

[GJ00] G. Garani, R. Johnson “Joining Nested Relations and
Subrelations”, Information Systems 25(4), pp. 287-307, 2000.

[GNT91a] M. Gargano, E. Nardelli, M. Talamo, “Abstract data types for the
logical modeling of complex data”, Information Systems 16(6), pp.
565-583, 1991.

[GNT91b] M. Gargano, E. Nardelli, M. Talamo, “A Model for Complex
Data: Completeness and Soundness Properties”, Proc.
International Workshop on Geographic Database Management
Systems, Capri, Italia, May 1991, pp. 56-78.

[Go92] M.F. Goodchild, “Geographical Data Modeling”, Computers and
Geosciences 18(4), pp. 401-408, 1992.

[GR93] O. Günther, W. Riekert, “The Design of GODOT: An Object-
Oriented Geographic Information System”, Data Engineering
Bulletin 16(3), pp. 4-9, 1993.

[Gras02] GRASS Homepage, URL: http://www.geog.uni-hannover.de/grass/
index2.html, 2002.

[GRSS97] S. Grumbach, P. Rigaux, M. Scholl, L. Segoufin, “DEDALE, A
Spatial Constraint Database”. Proc. 6th International Workshop
Database Programming Languages (DBLP-6, 1997), Estes Park,
Colorado, USA, August 18-20 1997, S. Cluet, R. Hull (eds.),

 214

Lecture Notes in Computer Science 1369 Springer-Verlag, pp. 38-
59, 1998.

[GRS98a] S. Grumbach, P. Rigaux, L. Segoufin, “The DEDALE System for
Complex Spatial Queries”, Proc. ACM SIGMOD International
Conference on Management of Data, Seattle, Washington, USA,
June 2-4 1998, ACM Press, pp. 213-224.

[GRS98b] S. Grumbach, P. Rigaux, L. Segoufin, Spatio-Temporal Data
Handling with Constraints”, Proc. 6th international symposium on
Advances in Geographic Information Systems (GIS’98),
Washington, DC, USA, November 6-7 1998, ACM, pp. 106-111.

[GRS00] S. Grumbach, P. Rigaux, L. Segoufin, “Manipulating Interpolated
Data is Easier than You Thought”, Proc. 26th International
Conference on Very Large Data Bases (VLDB 2000), Cairo,
Egypt, September 10-14 2000, Morgan Kaufmann, pp. 156-165,
2000.

[GS93] R.H. Güting, M. Schneider, “Realms: A Foundation for Spatial
Data Types in Database Systems”. Proc. 3th International
Symposium on Large Spatial Databases (SSD’93), Singapore,
June 23-25 1993, D. J. Abel, B. C. Ooi (eds.), Advances in Spatial
Databases, Lecture Notes in Computer Science 692, Springer-
Verlag, pp. 14-35, 1993.

[GS95] R.H. Güting, M. Schneider, “Realm-Based Spatial Data Types:
The ROSE Algebra”, VLDB Journal 4, pp. 100-143, 1995.

[Gu88] R.H. Güting, “Geo-Relational Algebra: A Model and Query
Language for Geometric Database Systems”, Proc. International
Conference on Extending Database Technology (EDBT’88),
Venice, Italy, March 14-18 1988, J. W. Schmidt, S. Ceri, M.
Missikoff, (eds.), Advances in Database Technology – EDBT’88,
Lecture Notes in Computer Science 303, Springer-Verlag, pp.
506-527, 1988.

[Gu89] R.H. Güting, “Gral: An Extensible Relational Database System for
Geometric Applications”, Proc. 15th International Conference on
Very Large Data Bases (VLDB’89), Amsterdam, The
Netherlands, August 22-25 1989, Morgan Kaufmann, pp. 33-44,
1989.

[Gu94] R.H. Güting, “An Introduction to Spatial Database Systems”,
VLDB Journal 3(4), pp. 357-399, 1994.

 215

[HS93] Z. Huang, P. Svensson, “Neighborhood Query and Analysis with
GeoSAL, a Spatial Database Language” Proc. 3th International
Symposium on Large Spatial Databases (SSD’93), Singapore,
June 23-25 1993, D. J. Abel, B. C. Ooi (eds.), Advances in Spatial
Databases, Lecture Notes in Computer Science 692, Springer-
Verlag, pp. 413-436, 1993.

[HSH92] Z. Huang, P. Svensson, H. Hauska, “Solving Spatial Analysis
Problems with GeoSal, A Spatial Query Language”, Proc. 6th
International Working Conference on Scientific and Statistical
Database Management (SSDBM’92), Monte Verita, Switzerland,
1992, pp. 1-17.

[HT92] T. Hadzilacos, N. Tryfona, “A Model for Expressing Topological
Integrity Constraints In Geographic Databases”, Proc.
International Conference GIS - From Space to Territory: Theories
and Methods of Spatio-Temporal Reasoning, Pisa, Italy,
September 21-23 1992, A. U. Frank, I. Campari, U. Formentini
(eds.), Theories and Methods of Spatio-Temporal Reasoning in
Geographic Space, Lecture Notes in Computer Science 639,
Springer-Verlag, pp. 252-268, 1992.

[HT96] T. Hadzilacos, N. Tryfona, “Logical Data Modeling for
Geographical Applications”, International Journal in
Geographical Information Systems 10(2), pp. 179-203, 1996.

[Ibm01] IBM DB2 Spatial Extender User's Guide and Reference, Version
7, International Business Machines Corporation, 2001.

[Inf00] Informix Geodetic DataBlade Module User's Guide, Version 3,
Informix Corporation, 2001.

[Inf01] IBM Informix Spatial DataBlade Module User's Guide, Version
8.11, International Business Machines Corporation 2001.

[Int95] MGE-PC Getting Started, Intergraph Corporation, 1995.

[Int02] Working with Geomedia Proffesional, Intergraph Corporation,
2002.

[Iso92] ISO/IEC 9075:1992, Information Technology−Database
Languages−SQL, The International Organization for
Standardization, 1992.

[Iso96a] ISO/IEC JTC 1/SC 21/WG 3: MCI-009, SQL3 Part 7: Temporal,
J. Melton, ISO Working Draft, 1996.

 216

[Iso96b] ISO/IEC JTC 1/SC 21/WG 3: MCI-044, More Elements of Type
PERIOD, J. M. Sykes, Expert’s Contribution, 1996.

[Iso96c] ISO/IEC JTC 1/SC 21/WG 3: MAD-151, Periods of Integers, J.
M. Sykes, Expert’s Contribution, 1996.

[Iso99] ISO/IEC 9075:1999, Information Technology−Database
Languages−SQL, The International Organization for
Standardization, 1999.

[Iso02] ISO/IEC JTC 1/SC 32/WG 4: VIE-008, SQL Multimedia and
Application Packages (SQL/MM) Part 3: Spatial, M. Ashworth
(Ed.), ISO/IEC Committee Draft, 2002.

[JJ92] Y.P. Jang, R.G. Johnson, “Nested relation based temporal data
representation”, Proceedings 4th International Hong Kong
Computer Society Database Workshop, pp. 94-111, 1992.

[JM80] S. Jones, P.S. Mason, “Handling the time dimension in a data
base”, S.M. Deen, P. Hammersley, (eds.), International
Conference on Data Bases, June 1980, British Computer Society,
pp. 65-83.

[JS82] G. Jaeschke, H.-J Schek, “Remarks on the Algebra of Non First
Normal Form Relations”, Proc. of the ACM Symposium on
Principles of Database Systems (PODS 1982), Los Angeles,
California, March 29-31 1982, pp. 124-138.

[Keig02] MFWorks, URL: http://www.keigansystems.com/tech.html,
Keigan Systems, 2002.

[KK94] Z. Kemp, A. Kowalczyk, “Incorporating the Temporal Dimension
in a GIS”, M. Worboys (ed.), Innovations in GIS 1, Taylor &
Francis, pp. 89-102, 1994.

[KKR95] P. Kanellakis, G. Kuper, P. Revesz, “Constraint Query
Languages”. Journal of Computer and System Sciences 51(1), pp.
26-52, 1995.

[Kl93] N. Kline, “An Update of the Temporal Database Bibliography.”
SIGMOD Record 22(4), pp. 66-80, 1993.

[KP90] K.C. Kirby, M. Pazner, “Graphic Map Algebra”, Proc. 4th
International Symposium on Spatial Data Handling (SDH’90)
Zurich, Switzerland, 1990, Vol. 1, pp. 413-422.

[KRSS98] G.M. Kuper, S. Ramaswamy, K. Shim, J. Su, “A Constraint-Based
Spatial Extension to SQL”, Proc. 6th international symposium on

 217

Advances in Geographic Information Systems (GIS’98),
Washington, DC, USA, November 6-7 1998, pp. 112-117.

[La92] G. Langran, Time in Geographic Information Systems, Taylor and
Francis, 1992.

[LD96] N.A. Lorentzos, H. Darwen, “Extension to SQL2 Binary
Operations for Temporal Data”. Invited paper, Proc. 3rd HERMIS
Conference, Athens, September 26-28 1996, pp. 462-469.

[LD98] N.A. Lorentzos, K.A. Dondis, “Query by Example for Nested
Tables”, Proc. 9th International Conference Database and Expert
Systems Applications (DEXA’98), Vienna, Austria, August 24-28
1998, G. Quirchmayr, E. Schweighofer, T.J.M. Bench-Capon
(eds.), Database and Expert Systems Applications, Lecture Notes
in Computer Science 1460 Springer-Verlag, pp. 716-725, 1998.

[LGMR01] P.A. Longley, M.F. Goodchild, D.J. Maguire, D.W. Rhind,
Geographic Information Systems and Science, John Wiley and
Sons, Ltd, 2001.

[LH98] W. F. Limp, D. Harmon, Inside Geomedia, OnWord Press, 1998.

[LJ88a] N.A. Lorentzos, R.G. Johnson, “Extending Relational Algebra to
Manipulate Temporal Data”, Information Systems 13(3), pp. 289-
296, 1988.

[LJ88b] N.A. Lorentzos, R.G. Johnson, “TRA: A model for a temporal
relational algebra”, Proc. of the IFIP TC 8/WG 8.1 Working
Conference on Temporal Aspects in Information Systems, Sophia-
Antipolis, France, May 13-15, Rolland, F. Bodart, M. Leonard,
(eds.), Temporal Aspects in Information Systems, North-
Holland/Elsevier, 203-215, 1988.

[LM94] N. A. Lorentzos, Y. Manolopoulos, “Efficient Management of 2-d
Interval Relations”, Proc. 5th International Conference Database
and Expert Systems Applications (DEXA’94), Athens, Greece,
September 7-9 1994, D. Karagiannis (ed.), Database and Expert
Systems Applications, Lecture Notes in Computer Science 856,
Springer-Verlag, pp. 72-82, 1994.

[LM95] N. A. Lorentzos, Y. Manolopoulos, “Functional Requirements for
Historical and Interval Extensions to the Relational Model”, Data
and Knowledge Engineering 17, pp. 59-86, 1995.

[LM97] N.A. Lorentzos, Y.G. Mitsopoulos, “SQL Extension for Interval
Data”, IEEE Transactions on Knowledge and Data Engineering
9(3), pp. 480-499, 1997.

 218

[LM03] N.A. Lorentzos, Y.G. Mitsopoulos, “Modelling Transaction Time
in the Relational Model”, Internal Report, Informatics Laboratory,
Agricultural University of Athens, May 2003.

[Lo88] N.A. Lorentzos, A Formal Extension of the Relational Model for
the Representation and Manipulation of Generic Intervals, Ph.D
Dissertation, Birkbeck College, University of London, 1988.

[Lo93] N.A. Lorentzos, “The Interval Extended Relational Model and Its
Application to Valid Time Databases”, A. Tansel, J. Clifford, S.
Gadia, A. Segev, R. Snodgrass (eds.) Temporal Databases:
Theory, Design and Implementation, Benjamin / Cummings, pp.
67-91, 1993.

[Lo00] E. J. Lorup, IDRISI Tutorial on WWW, URL: http://www.sbg.
ac.at/geo/idrisi/wwwtutor/tuthome.htm, 2000.

[LPS94] N.A. Lorentzos, A. Poulovassilis, C. Small, “Implementation of
Update Operations for Interval Relations”, Computer Journal
37(3), pp. 163-176, 1994.

[LPS95] N.A. Lorentzos, A. Poulovassilis, C. Small, “Manipulation
Operations for an Interval-Extended Relational Model”, Data and
Knowledge Engineering 17, pp. 1-29, 1995.

[LPV93] T. Larue, D. Pastre, Y. Viémont, “Strong Integration of Spatial
Domains and Operators in a relational Database System”, Proc.
3rd International Symposium on Large Spatial Databases
(SSD’93), Singapore, June 23-25, D. J. Abel, B. C. Ooi (eds.),
Advances in Spatial Databases, Lecture Notes in Computer
Science 692, pp. 53-72, 1993.

[LR94] H.-C. Liu, K. Ramamohanarao, “Algebraic Equivalences among
Nested Relational Expressions”, Proc. of the 3rd International
Conference on Information and Knowledge Management
(CIKM’94), Gaithersburg, Maryland, November 29 - December 2,
1994, ACM, pp. 234-243.

[LT92] R. Laurini, D. Thompson, Fundamentals of Spatial Information
Systems, The A.P.I.C. series Number 37, Academic Press, 1992.

[LTV99] N. A. Lorentzos, N. Tryfona, J. R. R. Viqueira, “Relational
Algebra for Spatial Data Management”, Proc. International
Workshop Integrated Spatial Databases, Digital Images and GIS,
Portland, Maine, USA, June 14-16, 1999, P. Agouris, A.
Stefanidis, (eds.), Lecture Notes in Computer Science 1737, pp.
192-208, 1999.

 219

[LVT99] N. A. Lorentzos, J. R. R. Viqueira, N. Tryfona, “Quantum-Based
Spatial Extension to the Relational Model”, Proc. 7th Panhellenic
Conference on Informatics, Ioannina (Greece), August 26-29,
1999, III 34-44.

[LVT00] N. A. Lorentzos, J. R. R. Viqueira, N. Tryfona, “Quantum-Based
Extension to the Relational Model”. D. I. Fotiadis, S. D.
Nikolopoulos, (eds.), Advances in Informatics, World Scientific,
pp. 188-199, 2000.

[LVT03] N. A. Lorentzos, J. R. R. Viqueira, N. Tryfona, “On a Spatio-
temporal Relational Model Based on Quanta”, T. Sellis, M.
Koubarakis, A. Frank, S. Grumbach, R. H. Güting, C. Jensen, N.
Lorentzos, Y. Manolopoulos, E. Nardelli, B. Pernici, H.-J. Schek,
M. Scholl, B. Theodoulidis, N. Tryfona (eds.), Spatio-temporal
Databases: The Chorochronos Approach, Lecture Notes in
Computer Science, Vol. 2520, Springer-Verlag, pp. 139-141
(forthcoming, summer 2003).

[Ma99] A. MacDonald, Building a Geodatabase, Environmental Systems
Research Institute, 1999.

[Mapi01] “Enterprise Mapping Deployments, Managing Spatial Data in a
Relational Database Management System”, White Paper, MapInfo
Corporation, 2001.

[Mapi02] MapInfo Professional User’s Guide 7.0, MapInfo Corporation,
2002.

[ME01] J. Melton, A. Eisenberg, “SQL Multimedia and Application
Packages (SQL/MM)”, SIGMOD Record 30(4), pp. 97-102, 2001.

[MJ94] C.B. Medeiros, G. Jomier, “Using Versions in GIS”, Proc. 5th
International Conference Database and Expert Systems
Applications (DEXA’94), Athens, Greece, September 7-9 1994,
D. Karagiannis (ed.), Database and Expert Systems Applications,
Lecture Notes in Computer Science 856, Springer-Verlag, pp.
465-474, 1994.

[MJ01] J. McCoy, K. Johnston, Using ArcGis Spatial Analyst,
Environmental Systems Research Institute, 2001.

[MO86] F. Manola, J.A. Orenstein, “Toward a General Spatial Data Model
for an Object-Oriented DBMS”, Proc. 12th International
Conference on Very Large Data Bases (VLDB’86), Kyoto, Japan,
August 25-28 1986, Morgan Kaufmann, pp. 328-335.

 220

[MRA00] J. Moreira, C. Ribeiro, T. Abdessalem, “Query operations for
moving objects database systems”, Proc. of the 8th ACM
Symposium on Advances in Geographic Information Systems (GIS
2000), Washington D.C., USA, November 10-11 2000, ACM, pp.
108-114.

[MS91] E. McKenzie, R. Snodgrass, “Evaluation of relational algebras
incorporating the time dimension in databases”, ACM Computing
Surveys 23(4), pp. 501-543, 1991.

[MS02] J. Melton, A. R. Simon, SQL:1999 - Understanding Relational
Language Components, Morgan Kaufmann Publishers, Academic
Press, 2002.

[MSR99] J. Moreira, J.-M. Saglio, C. Ribeiro, “Representation and
Manipulation of Moving Points: An Extended Data Model for
Location Estimation”, Journal of Cartography and Geographic
Information Systems, ACSM, 26(2), 1999.

[MSW99] M. Minami, M. Sakala, J. Wrightsell, Using ArcMap,
Environmental Systems Research Institute, 1999.

[NA93] S.B. Navathe, R. Ahmed, “Temporal extensions to the relational
Model and SQL”, A. Tansel, J. Clifford, S. Gadia, A. Segev, R.
Snodgrass, (eds.), Temporal Databases: Theory, Design and
Implementation, Benjamin / Cummings, pp. 92-109, 1993.

[NTE92] R.G. Newell, D. Theriault, M. Easterfield, “Temporal GIS –
Modeling the Evolution of Spatial Data in Time”, Computers and
Geosciences 18(4), pp. 427-433, 1992.

[Ogis99] The OpenGIS Implementation Specification: Simple Features
Specification for SQL, Revision 1.1, OpenGIS Project Document
99-049, Open GIS Consortium Inc., 1999.

[Ogis00] The OpenGIS Abstract Specification Topic 6: The Coverage Type
and its Subtypes, version 6, OpenGIS Project Document 00-106,
Open GIS Consortium Inc., 2000.

[Ogis01a] The OpenGIS Abstract Specification Topic 1: Feature Geometry
(ISO 19107 Spatial Schema), Version 5, OpenGIS Project
Document 01-101, Open GIS Consortium Inc., 2001.

[Ogis01b] The OpenGIS Implementation Specification: Grid Coverage,
Revision 1.00, OpenGIS Project Document 01-004, Open GIS
Consortium Inc., 2001.

[OP01] A. d'Onofrio, E. Pourabbas, “Formalization of Temporal Thematic
Map Contents”, Proc. of the 9th ACM International Symposium on

 221

Advances in Geographic Information Systems (GIS 2001),
Atlanta, GA, USA, November 9-10 2001, ACM, pp. 15-20.

[Ora00] Oracle Spatial: Users Guide and Reference. Release 8.1.7. Oracle
corporation, 2000.

[Pa82] T. Pavlidis, Algorithms for graphics and image processing,
Computer Science Press, 1982.

[PA86] P. Pistor, F. Andersen, “Designing A Generalized NF2 Model
with an SQL-Type Language Interface”, Proc. 12th International
Conference on Very Large Data Bases (VLDB’86), Kyoto, Japan,
August 25-28 1986, Morgan Kaufmann, pp. 278-285.

[Pe90] D.J. Peuquet, “A conceptual framework and comparison of spatial
data models”, D.J. Peuquet, D.F. Marble (eds.), Introductory
readings in Geographic information systems, Taylor and Francis,
pp. 250-285, 1990.

[Pf00] D. Pfoser, Issues in the Management of Moving Point Objects,
PhD Dissertation, Department of Computer Science, Aalborg
University, 2000.

[PLL+98] K. Park, J. Lee, K. Lee, K. Ahn, J. Lee, J. Kim, “The
Development of GEUS: A Spatial DBMS Tightly Integrated with
an Object-Relational Database Engine”, Proc. Annual Conference
Urban & Regional Information Systems Association (URISA’98),
Charlotte, North Carolina, July 1998, pp. 256-267.

[Post01] PostgreSQL 7.2 User’s Guide, PostgreSQL Global Development
Group, 2001.

[PT98] D. Pfoser, N. Tryfona, “Requirements, Definitions, and Notations
for Spatiotemporal Application Environments”, Proc. 6th
international symposium on Advances in Geographic Information
Systems (GIS’98), Washington, DC, USA, November 6-7 1998,
ACM, pp. 124-130.

[PTS94] D. Papadias, Y. Theodoridis, T. Sellis, “The Retrieval of Direction
Relations Using R-treesProc. 5th International Conference
Database and Expert Systems Applications (DEXA’94), Athens,
Greece, September 7-9 1994, D. Karagiannis (ed.), Database and
Expert Systems Applications, Lecture Notes in Computer Science
856, Springer-Verlag, pp. 173-182, 1994.

[PZ87] D. Peuquet, C.X. Zhan, “An Algorithm to Determine the
Directional Relationship Between Arbitrarily-Shaped Polygons in
the Plane”, Pattern Recognition 20(1), pp. 65-74, 1987.

 222

[RFS88] N. Roussopoulos, C. Faloutsos, T. K. Sellis, “An Efficient
Pictorial Database System for PSQL”. IEEE Transactions on
Software Engineering 14(5), pp. 639-650, 1988.

[RHS01] MapCalc User´s Guide. Red Hen Systems Inc., 2001.

[RK98] A. Raza, W. Kainz, “Design and Implementation of Temporal GIS
for Monitoring the Urban Land Use Change”, Proc. Spatial
Information Technology Towards 2000 and Beyond, Beijing
China, June 17-19 1998, pp. 417-427.

[RKS88] M.A. Roth, H.F. Korth, A. Silberschatz, “Extended Algebra and
Calculus for Nested Relational Databases”, ACM Transactions on
Database Systems 13(4), pp. 389-417, 1988.

[Ro93] J.W. van Roessel, “Conceptual Folding and Unfolding of Spatial
Data for Spatial Queries”, Towards SQL Database Extensions for
Geographic Information Systems, V.B. Robinson, H. Tom (eds.),
National Institute of Standards and Technology Report NISTIR
5258, pp. 133-148, 1993.

[Ro94] J.W. van Roessel, “An Integrated Point-Attribute Model for Four
Types of Areal GIS Features”, Proc. 6th International Symposium
on Spatial Data Handling (SDH’94), Edinburg, Scotland, UK,
1994, vol. 1, pp. 127-144.

[RS87] L. Rowe, M. Stonebraker, “The POSTGRES Data Model”, Proc.
13th International Conference on Very Large Data Bases
(VLDB’87), Brighton, England, September 1-4, 1987, Morgan
Kaufmann, pp. 83-96.

[RSSG02] P. Rigaux, M. Scholl, L. Segoufin, S. Grumbach, “Building a
Constraint-Based Spatial Database System Model, Languages, and
Implementation”, To appear in Information System Journal, 2002.

[RSV02] P. Rigaux, M. Scholl, A. Voisard, Spatial Databases: with
application to GIS, Morgan Kaufmann Publishers, Academic
press, 2002.

[Sa90a] N.L. Sarda, “Algebra and query language for a historical data
model”, Computer Journal 33(1), pp. 11-18, 1990.

[Sa90b] N. L. Sarda, “Extensions to SQL for historical databases”, IEEE
Transactions on Knowledge and Data Engineering 2(2), pp. 220-
230, 1990.

[Sa90c] H. Samet, Applications of Spatial Data Structures, Computer
Graphics, Image Processing and GIS, Addison Wesley, 1990.

 223

[SA95] H. Samet, W.G. Aref, “Spatial Data Models and Query
Processing”, W. Kim (ed.), Modern Database Systems: The Object
Model, Interoperability, and Beyond, ACM Press and Addison-
Wesley, pp. 338-360, 1995.

[SCR99] S. Shekhar, S. Chawla, S. Ravada, “Spatial Databases:
Accomplishments and Research Needs”, IEEE Transactions on
Knowledge and Data Engineering 11(1), pp. 45-55, 1999.

[SDS00] Z. Stojanovic, S. Djordjevic-Kajan, D. Stojanovic, “Visual Query
and Analysis Tool of the Object-Relational GIS Framework”,
Proc. of the 2000 ACM CIKM International Conference on
Information and Knowledge Management (CIKM 2000), McLean,
VA, USA, November 6-11 2000, pp. 328-335.

[SH91] P. Svensson, Z. Huang “Geo-SAL - a Query Language for Spatial
Data Analysis”, Proc. 2nd International Symposium on Large
Spatial Databases (SSD’91), Zürich, Switzerland, August 28-30
1991, O. Gunther, H.J. Schek (eds.), Advances in Spatial
Databases, Lecture Notes in Computer Science 525. Springer-
Verlag, pp. 119-140, 1991.

[Sn87] S. Snodgrass, “The temporal query language TQUEL”, ACM
Transactions on Database Systems 12(2), pp. 247-298, 1987.

[Sn95] R.T. Snodgrass, The TSQL2 Temporal Query Language, Kluwer,
1995.

[SR86] M. Stonebraker, L. Rowe, “The Design of POSTGRES”, Proc. of
the 1986 ACM SIGMOD International Conference on
Management of Data, Washington, D.C., May 28-30, 1986, pp.
340-355.

[SRH90] M. Stonebraker, L. Rowe, M. Hirohama, “The implementation of
Postgres”. IEEE Transactions on Knowledge and Data
Engineering 2(1), pp. 125-142, 1990.

[SS86] H.-J. Schek, M.H. Scholl, “The Relational Model with Relation-
Valued Attributes”, Information Systems 11(2), pp. 137-147, 1986.

[SS88] R. Stam, R. Snodgrass, “Α Βibliography on Temporal Databases”,
IEEE/Data Engineering 11(4), pp. 53-61, 1988.

[SS96] E. Stefanakis, T. Sellis, “A DBMS repository for the application
domain of Geographic Information Systems”, Proc. 7th
International Symposium on Spatial Data Handling (SDH’96),
Delft, The Netherlands, August 12-16 1996, Taylor-Francis, pp.
119-130.

 224

[SV89] M. Scholl, A. Voisard, “Thematic Map Modeling”, Proc. 1st
International Symposium on Large Spatial Databases (SSD’89),
Santa Barbara, California, July 17-18 1989, A. Buchmann et al.
(eds.), Design and Implementation of Large Spatial Databases,
Lecture Notes in Computer Science 409, Springer-Verlag, pp.
167-190, 1990.

[SV92] M. Scholl, A. Voisard, “Object-Oriented Database Systems for
Geographic Applications: An Experiment with O2”, F. Bancilhon,
C. Delobel, P. C. Kanellakis (eds.), The O2 Book, Morgan
Kaufman, 1992.

[SW86] H.-J. Schek, W. Waterfeld, “A Database Kernel System For
Geoscientific Applications”, Proc. 2nd International Symposium
on Spatial Data Handling (SDH’86), Seattle, USA, June 1986.

[SWCD97] P. Sistla, O. Wolfson, S. Chamberlain, S. Dao, “Modeling and
Querying Moving Objects”, Proc. of the 13th International
Conference on Data Engineering (ICDE’97), Birmingham, U.K.,
April 7-11 1997, IEEE Computer Society, pp. 422-432.

[Ta86] A.U. Tansel, “Adding time dimension to relational model and
extending relational algebra”, Information Systems 11(4), pp. 343-
355, 1986.

[TC90] A. Tuzhilin, J. Clifford, “A Temporal Relational Algebra as a
Basis for Temporal Relational Completeness”, Proc. 16th
International Conference on Very Large Data Bases (VLDB’90),
Brisbane, Queensland, Australia, August 13-16 1990, Morgan
Kaufmann, pp. 13-23.

[TCG+93] A.U. Tansel, J. Clifford, S. Gadia, A. Segev, R. Snodgrass,
Temporal Databases: Theory, Design and Implementation,
Benjamin / Cummings, 1993.

[TG89] A.U. Tansel, L. Garnett, “Nested historical relations”, Proc. of the
1989 ACM SIGMOD International Conference on Management of
Data, Portland, Oregon, May 31 - June 2 1989, SIGMOD Record
18(2), pp. 284-293, 1989.

[TH98] N. Tryfona, T. Hadzilacos “Logical Data Modelling of Spatio
Temporal Applications: Definitions and a Model”, Proc. of the
1998 International Database Engineering and Applications
Symposium (IDEAS 1998), Cardiff, Wales, U.K., July 8-10 1998,
IEEE Computer Society, pp. 14-23.

 225

[TL82] D.C. Tsichritzis, F.H. Lochovsky, Data Models, Prentice Hall,
1982.

[To90] C.D. Tomlin, Geographic Information Systems and Cartographic
Modeling, Prentice Hall, 1990.

[To91] C.D. Tomlin, “Cartographic Modeling”, D. Maguire, M.
Goodchild, D. Rhind, eds., Geographical Information Systems:
Principles and Applications, Longman Group Ltd., Harlow, Essex,
U.K., pp. 361-374, 1991.

[To94] C.D. Tomlin, “Map Algebra: one perspective”, Landscape and
Urban Planning, an International Journal of Landscape Ecology,
Landscape Planning and Landscape Design 30, pp. 3-12, 1994.

[To97] C.D. Tomlin, “Cartographic modeling techniques for highway
corridor planning”, 2nd Annual International Seminar on GIS
Applications in the Public Sector, Korea Research Institute for
Human Settlements, 1997.

[TPS96] Y. Theodoridis, D. Papadias, E. Stefanakis, “Supporting Direction
Relations in Spatial Database Systems”, Proc. 7th International
Symposium on Spatial Data Handling (SDH’96), Delft, The
Netherlands, August 12-16 1996, Taylor-Francis, II:12A. 1-15.

[TT96] V.J. Tsotras, A. Kumar, “Temporal Database Bibliography
Update.” SIGMOD Record 25(1), pp. 41-51, 1996.

[Tu00] C. Tucker, Using ArcToolbox, Environmental Systems Research
Institute, 2000.

[VBH97] A. Voigtmann, L. Becker, K. Hinrichs, “Physical Design Aspects
of an Object-Oriented Geo-Database Kernel”, Proc. 8th
International Workshop on Database and Expert Systems
Applications (DEXA’97), Toulouse, France, September 1-2, 1997,
IEEE Computer Society Press, pp. 529-534.

[VE93] G. Volta, M. Egenhofer, “Interaction with GIS Attribute Data
Based on Categorical Coverages”, Proc. International Conference
On Spatial Information Theory (COSIT’93), Marciana Marina,
Elba Island, Italy, September 19-22 1993, A. Frank, I. Campari
(eds.), Spatial Information Theory: A Theoretical Basis for GIS,
Lecture Notes in Computer Science 716, Springer-Verlag, pp.
215-233, 1993.

[Vi00] J. R. R. Viqueira, “Relational Algebra for Spatio-temporal Data
Management”, Proc. of the EDBT 2000 PhD Workshop, March 31

 226

- April 1, 2000. http://www.edbt2000.uni-konstanz.de/phd-
workshop/

[VL01] J. R. R. Viqueira, N. A. Lorentzos, “Spatio-temporal SQL
Extension”, Proc. 8th Panhellenic Conference on Informatics,
Cyprus, November 8-10, 2001, Vol. 1, pp. 264-273.

[VL03a] J. R. R. Viqueira, N. A. Lorentzos, “Spatio-temporal SQL”, Y.
Manolopoulos, S. Evripidou, A. Kakas (eds.), Advances in
Informatics - Post-proceedings 8th Panhellenic Conference in
Informatics, Lecture Notes in Computer Science 2563 Springer-
Verlag, pp. 50-63, 2003.

[VL03b] J.R.R. Viqueira, N.A. Lorentzos, “Management of Continuous
Spatial Changes”, Submitted to the 9th Panhellenic Conference on
Informatics, Salonica, Greece, November 21-23, 2003.

[VLG98] C. Vassilakis, N.A. Lorentzos, P. Georgiadis, “Implementation of
Transaction and Concurrency Control Support in a Temporal
DBMS”, Information Systems 23(5), pp. 335-350, 1998.

[VLGM94] C. Vassilakis, N.A. Lorentzos, P. Georgiadis, Y.G. Mitsopoulos,
“ORES: Design and Implementation of a Temporal DBMS”,
Technical Report, Department of Informatics, University of
Athens, 1994.

[VLT01] J.R.R. Viqueira, N.A. Lorentzos, N. Tryfona, “Formalism for
Spatio-Temporal Data Management”, Proc. HERCMA
Conference, Athens, September 20-22, 2001.

[VO92] T. Vijlbrief, P. van Oosterom, “The GEO++ system: An
Extensible GIS”, Proc. 5th International Symposium on Spatial
Data Handling (SDH’92), Charleston, South Carolina, August
1992. pp. 40-50.

[Vo97] A. Voigtmann, An Object-Oriented Database Kernel for Spatio-
Temporal Geo-Applications. PhD Dissertation, Westf. Wilhelms-
Universität Münster, Germany, 1997.

[Wi98] S. Winter, “Bridging Vector and Raster Representation in GIS”
Proc. 6th international symposium on Advances in Geographic
Information Systems (GIS’98), Washington, DC, USA, November
6-7 1998, ACM, pp. 57-62.

[WF99] S. Winter, A.U. Frank, “Functional Extensions of a Raster
Representation for Topological Relations”, Proc. 2nd
International Conference Interoperating Geographic Information
Systems (INTEROP'99), Zurich, Switzerland, March 10-12 1999,

 227

A. Vckovski, K. Brassel, H.-J. Schek, (eds.), Interoperating
Geographic Information Systems, Lecture Notes of Computer
Science 1580, Springer-Verlag, pp. 293-304, 1999.

[WF00] S. Winter, A.U. Frank, “Topology in Raster and Vector
Representation”, GeoInformatica 4(1), pp. 35-65, 2000.

[WH94] M. Wachowicz, R.G. Healey, “Towards Temporality in GIS”, M.
Worboys (ed.), Innovations in GIS 1, Taylor & Francis, pp. 105-
115, 1994.

[Wo94] M.F. Worboys, “A Unified Model for Spatial and Temporal
Information”, The Computer Journal 37(1), pp. 36-34, 1994.

[Wo95] M.F Worboys, GIS: A Computing Perspective, Taylor and Francis,
1995.

[WS92] W. Waterfeld, H.-J. Schek, “The DASDBS Geokernel – An
Extensible Database System for GIS”, A.K. Turner (ed.), Three-
Dimensional Modeling with Geoscientific Information Systems,
Kluwer Academic Publishers, pp. 69-84, 1992.

[WXCJ98] O. Wolfson, B. Xu, S. Chamberlain, L. Jiang, “Moving Objects
Databases: Issues and Solutions”, Proc. 10th International
Conference on Scientific and Statistical Database Management
(SSDBM’98), Capri, Italy, July 1-3 1998, IEEE Computer
Society, pp. 111-122.

[YC94a] T.-S. Yeh, B. de Cambray, “Managing Multidimensional (2D,
2.5D, and 3D) Data in a Geographical Database”. Proc. 6th
International Conference on Management of Data (COMAD’94),
Windsor Manor Sheraton & Towers, Bangalore, India, December
19-21 1994, pp. 19-21.

[YC94b] T.-S. Yeh, B. de Cambray, “How to Model Highly Variable Data
in a Complex Object Data Model”, Proc. 6th International
Conference on Management of Data (COMAD’94), Windsor
Manor Sheraton & Towers, Bangalore, India, December 19-21
1994, pp. 169-186.

[YC95] T.-S. Yeh, B. de Cambray, “Modeling Highly Variable Spatio-
Temporal Data”, Proc. 6th Australasian Database Conference
(ADC’95), Glenelg/Adelaide, South Australia 1995, Australian
Computer Science Communications, Vol 17, No. 2, pp. 221-230,
1995.

[Ze99] M. Zeiler, Modeling Our World: The ESRI Guide to Geodatabase
Desing, Environmental Systems Research Institute, Inc. 1999.

 228

APPENDIX A

IMPORTANT TAUTOLOGIES

• Unfold[A](Unfold[A](R)) = Unfold[A](R)

• Unfold[A1, A2](R) = Unfold[A2, A1](R)

• Unfold[A](Fold[A](R)) = Unfold[A](R)

• If only quanta are contained in attributes A then Unfold[A](R) = R

• Fold[A](Fold[A](R)) = Fold[A](R)

• Fold[A1, A2](R) ≠ Fold[A2, A1](R)

• Fold[A](Unfold[A](R)) = Fold[A](R)

• Normalise[A](Normalise[A](R)) = Normalise[A](R)

• Normalise[A1, A2](R) ≠ Normalise[A2, A1](R)

• Normalise[A1, A2](R) = Fold[A1, A2](Unfold[A2](R))

• R1 QUnion[A] R2 = Normalise[A](R1 Union R2)

APPENDIX B

BNF FOR SQL EXTENSION

B.1 GENERAL REMARKS

− Only the extensions to SQL:1999 are given. Hence, it is assumed that
the SQL:1999 documentation is available for reference. The extension
is given in bold.

B.2 QUERY EXPRESSIONS

<query expression> ::=
 <IXSQL non-join query expression>
| <IXSQL joined table>
| <IXSQL unary query expression>

<IXSQL non-join query expression> ::=
(<non-join query expression>) [<reformat clause>] [<normalise clause>]

| <non-join query expression>

<non-join query expression> ::=
<non-join query term>

| <query expression> UNION [ALL]
[EXPANDING (<reformat column list>)]
[<corresponding spec>]
<IXSQL query term>

| <query expression> EXCEPT [ALL]
[EXPANDING (<reformat column list>)]
[<corresponding spec>]
<IXSQL query term>

| <query expression> WUNION [ALL]
 OF (<reformat column list>)
 [EXPANDING (<reformat column list>)]
<IXSQL query term>

 232

| <query expression> WEXCEPT [ALL]
 OF (<reformat column list>)
 [EXPANDING (<reformat column list>)]
<IXSQL query term>

<IXSQL query term> ::=
<IXSQL non-join query term>

| <IXSQL joined table>
| <IXSQL unary query expression>

<IXSQL non-join query term> ::=
<non-join query term>

| (<non-join query term>) [<reformat clause>] [<normalise clause>]

<non-join query term> ::=
<non-join query primary>

| <IXSQL query term> INTERSECT [ALL]
[EXPANDING(<reformat column list>)]
[<corresponding spec>]
<IXSQL query primary>

| <IXSQL query term> WINTERSECT [ALL]
 OF (<reformat column list>)
 [EXPANDING(<reformat column list>)]
<IXSQL query primary>

<IXSQL query primary> ::=
<non-join query primary>

| <IXSQL joined table>
| <IXSQL unary query exp>

<non-join query primary> ::=
<simple table>

| (<IXSQL non-join query expression>)

<simple table> ::=
<IXSQL query specification>

| <IXSQL table value constructor>
| <IXSQL explicit table>

<IXSQL query specification> ::=
<query specification>[<reformat clause>] [<normalise clause>]

<query specification> ::=
SELECT <set quantifier> <select list> <table expression>

<table expression> ::=
<from clause> [<where clause>] [<group by clause>] [<having clause>]

 233

<from clause> ::=
FROM <table reference> [{, <table reference>}...]

<table reference> ::=
<table name> [[AS] <correlation name> [(derived column list)]]

| <table subquery> [[AS] <correlation name> [(derived column list)]]
| <IXSQL joined table>
| <IXSQL unary query expression>

<IXSQL row value constructor> ::=
(<row value constructor>)[<reformat clause>][<normalise clause>]

<IXSQL table value constructor> ::=
(<table value constructor>) [<reformat clause>] [<normalise clause>]

<IXSQL explicit table>::=
TABLE <table name> [<reformat clause>] [<normalise clause>]

<IXSQL joined table> ::=
(<joined table>) [<reformat clause>] [<normalise clause>]

| <joined table>

<joined table> ::=
<cross join>

| <qualified join>
| <IXSQL overlay>
| (<joined table>)

<cross join> ::=
<table reference> CROSS JOIN

[EXPANDING (<reformat column list >)]
<table reference>

<qualified join> ::=
<table reference> [NATURAL] [<join type>] JOIN

[EXPANDING (<reformat column list >)]
<table reference>
[<join specification>]

<IXSQL overlay> ::=
<table reference> [NATURAL][<overlay type>] OVERLAY [ALL]

 [OF (<reformat column list>)]
 [EXPANDING (<reformat column list >)]
<table reference>

<overlay type> ::=
 INNER
| {LEFT | RIGHT | FULL} [OUTER]

 234

<IXSQL unary query expression> ::=
<unary query expression>

| (<unary query expression>) [<reformat clause>] [<normalise clause>]

<unary query expression> ::=
(<unary query expression>)

| <table reference> { COMPLEMENTATION
 | BOUNDARY
 | ENVELOPE [ALL]}
 OF (<reformat column list>)
 [EXPANDING (<reformat column list >)]

| <table reference> BUFFER [ALL]
OF (<reformat column list>)
WITHIN DISTANCE (<reformat column list>)
[EXPANDING (<reformat column list >)]

<reformat clause> ::=
REFORMAT AS <reformat item>

<reformat item> ::=
 FOLD [ALL] <reformat column list> [<reformat item>]
| UNFOLD [ALL] <reformat column list> [<reformat item>]

<normalise clause> ::=
NORMALISE ON [ALL] <reformat column list>

<reformat column list> ::=
<reformat column> [{, <reformat column>}...]

<reformat column> ::=
<column reference>| <unsigned integer>

Notes
− The keyword EXPANDING has been borrowed from [LD96].

B.3 LITERALS

<IXSQL literal> ::=
 <literal>
| <IXSQL period literal>

<IXSQL period literal> ::=
[<literal>, <literal>]

 235

<literal> ::=
<signed numeric literal>

| <general literal>

<general literal> ::=
<character string literal>

| <national character string literal>
| <bit string literal>
| <hex string literal>
| <datetime literal>
| <interval literal>
| <IXSQL spatial literal>

<IXSQL spatial literal> ::=
<spatial object type> <spatial quanta string>

<spatial object type>::=
POINT

| PLINE
| LINE
| PSURFACE
| SURFACE

<spatial quanta string> ::=
‘<spatial quantum>[{<spatial quantum>}...]’

<spatial quantum> ::=
<spatial quantum type> <unsigned integer>

<spatial quantum type> ::=
P

| H
| V
| S

B.4 SEARCH CONDITIONS

<IXSQL predicate> ::=
 <predicate>
| <IXSQL period predicate>
| <IXSQL spatial predicate>

<IXSQL period predicate> ::=
<IXSQL period binary predicate>

 236

<IXSQL period binary predicate> ::=
<IXSQL period value expression>
<period binary predicate name>
<IXSQL period value expression>

<period binary predicate name> ::=
before

| meets
| loverlaps
| lcovers
| covers
| rcovers
| rcovered
| covered
| lcovered
| roverlaps
| met
| after
| psubinterv
| subinterv
| psupinterv
| supinterv
| overlaps
| cp
| merges
| precedes
| prequals
| follows
| folequals
| adjacent
| disjoint
| surrounds

<IXSQL spatial predicate> ::=
<IXSQL spatial binary predicate>

| <IXSQL spatial n-ary predicate>

<IXSQL spatial binary predicate> ::=
<IXSQL spatial value expression>
<spatial binary predicate name>
<IXSQL spatial value expression>

 237

<spatial binary predicate name> ::=
cp

| disjoint
| surrounds

<IXSQL spatial n-ary predicate> ::=
is_point (<s IXSQL patial value expression>)

| is_pure_line (<IXSQL spatial value expression>)
| is_line (<IXSQL spatial value expression>)
| is_pure_surface (<IXSQL spatial value expression>)
| is_surface (<IXSQL spatial value expression>)
| is_hybrid_surface (<IXSQL spatial value expression>)
| is_simple (<IXSQL spatial value expression>)
| is_circular (<IXSQL spatial value expression>)
| conductive (<IXSQL spatial value expression>,

< IXSQL spatial value expression>,
< IXSQL spatial value expression>,
< IXSQL spatial value expression>)

| has_holes (<IXSQL spatial value expression>)

Notes
− Both <comparison predicate>s (=, <>, <, >, etc.) and <quantified

comparison predicate>s (= SOME, > ANY, etc.) of SQL:1999 can be
applied to pairs of <row value constructor>s containing some <value
expression> of either a period or a spatial type.

− The majority of the <IXSQL period predicate>s have already been
defined in [LM97].

B.5 VALUE EXPRESSIONS

<value expression> ::=
<atomic value expression>

| <IXSQL period value expression>

<atomic value expression> ::=
<numeric value expression>

| <string value expression>
| <datetime value expression>
| <interval value expression>
| <IXSQL spatial value expression>

 238

<IXSQL common primary> ::=
<common primary>
| <IXSQL period common primary>

<IXSQL period common primary > ::=
start(<IXSQL period value expression>)

| end(<IXSQL period value expression>)
| middle(<IXSQL period value expression>)
| topoint(<IXSQL period value expression>)
| succ(<atomic value expression>, <numeric value expression>)

<IXSQL numeric primary> ::=
<numeric primary>
| <IXSQL period numeric primary>
| <IXSQL spatial numeric primary>

<IXSQL period numeric primary> ::=
ord(<atomic value expression>)

| duration (<IXSQL period value expression>)
| span (<atomic value expression>, <atomic value expression>)
| distance (<atomic value expression>, <atomic value expression>)
| windowno (<atomic value expression>,

<numeric value expression>,
<atomic value expression>)

<IXSQL spatial numeric primary> ::=
ord(<IXSQL spatial value expression>)

| h_coord(<IXSQL spatial value expression>)
| v_coord(<IXSQL spatial value expression>)
| distance(<IXSQL spatial value expression>,

<IXSQL spatial value expression>)
| greatest_distance(<IXSQL spatial value expression>,

<IXSQL spatial value expression>)
| length(<IXSQL spatial value expression>)
| area(<IXSQL spatial value expression>)

<IXSQL datetime primary> ::=
<datetime primary>
| <IXSQL period datetime primary>

<IXSQL period datetime primary> ::=
min_date()

| max_date()
| form_instant(<numeric value expression>)

 239

<IXSQL period value expression> ::=
to_interv(<atomic value expression>)

| interv(<atomic value expression>, <atomic value expression>)
| intervsect(<IXSQL period value expression>,

<IXSQL period value expression>)
| merge(<IXSQL period value expression>,

<IXSQL period value expression>)
| window(<atomic value expression>, <numeric value expression>,

<numeric value expression>)

<IXSQL spatial value expression> ::=
form_point (<numeric value expression>, <numeric value expression>)

| to_point (<IXSQL spatial value expression>)
| to_pure_line (<IXSQL spatial value expression>)
| to_line (<IXSQL spatial value expression>)
| to_pure_surface (<IXSQL spatial value expression>)
| to_surface(<IXSQL spatial value expression>)

Notes
− The majority of the functions for the manipulation of periods have been

defined in [LM97].

APPENDIX C

IMPLEMENTATION

C.1 Introduction

In this appendix pseudocode is provided that implements predicate conductive
and the relational algebra operations Unfold and Fold, when applied to spatial
data. The following assumptions are made:

Internally, a spatial object is represented as a list in canonical form (see
Definition 3.13).

It is recalled that In = {i | i ∈ I, 0 ≤ n-1}. Use of this n value is made is the
next section.

Some preliminary functions, used in Section C.2, are the following:

• Function ord(q) returns the ordinal number of a quantum q (Section 3.5).

• For a given integer k, the functions P(k), H(k), V(k), S(k) return,
respectively, the quantum point, pure horizontal quantum line, pure
vertical quantum line and pure quantum surface, whose ordinal number
equals k (see relevant discussion in Section 3.5).

• For a quantum q, type(q) returns
− ‘P’ if q is a point,
− ‘H’ if q is a horizontal quantum line,
− ‘V’ if q is a vertical quantum line,
− ‘S’ if q is a quantum surface.

Finally, the following definition is given.

Definition C.1: Let s be a list of quanta and let qA, qB ∈ s. It is then defined
that

 242

qA qconnected qB ⇔ (∃ q1, q2, .., qn in s)
(qA ∩ q1 ≠ ∅ ∧
qB ∩ qn ≠ ∅ ∧
qi ∩ qi+1 ≠ ∅, i = 1, 2, ..., n-1).

It is said that qA is quantum connected to qB (recall relevant definition is
Section 3.3).

It is easy to show that qconnected is an equivalence relation. The algorithm
that determines the elements of each of the equivalence classes of such a
relation is also well known. Use of it is made in algorithm
connected_equivalence_classes, given in the next section.

C.2 Algorithms

The algorithms that implement predicate conductive and operations Unfold
and Fold are given in a bottom-up fashion.

Function Name: delete_element_from_list
Input: An element e of any data type and an list s. The data type of the

elements in s is the same as the data type of e.
Output: If e is not in s then the result is s, otherwise it is the list obtained by

the elimination of element e from s.
Code: The code for this function is well known, therefore only its signature

is given below.
Function delete_element_from_list (e:any,
 s:list(any)): list(any)

Function Name: add_element_to_ordered_list
Input: An element e of any data type and an ordered list s. The data type of

the elements in s is the same as the data type of e.
Output: A new ordered list resulting from the addition of element e into s, at

the proper place.
Code: The code for this function is well known, therefore only its signature

is given.
Function add_element_to_ordered_list(e:any,
 s:list(any)): list(any)

Function Name: exists_element_in_ordered_list
Input: An element e of any data type and an ordered list s. The data type of

the elements in s is the same as the data type of e.
Output: If the element e is in list s then the result is true, otherwise it is false.
Code: The code for this function is well known, therefore only its signature

is given below.

 243

Function exists_element_in_ordered_list (e:any,
 s:list(any)): boolean

Function Name: add_distinct_element_to_ordered_list
Input: An element e of any data type and an ordered list s. The data type of

the elements in s is the same as the data type of e.
Output: If e is already in s the result is s, otherwise it is a new ordered list,

resulting from the addition of e into s, at the proper place.
Code: The code for this function is well known, therefore only its signature

is given below.
Function add_distinct_element_to_ordered_list(e:any,
 s:list(any)): list(any)

Function Name: delete_element_from_ordered_list
Input: An element e of any data type and an ordered list s. The data type of

the elements in s is the same as the data type of e.
Output: If e is not in s then the result is s, otherwise it is the list obtained by

the elimination of e from s.
Code: The code for this function is well known, therefore only its signature

is given below.
Function delete_element_from_ordered_list (e:any,
 s:list(any)): list(any)

Function Name: add_non_contained_quantum_to_list
Input: A quantum q and an ordered list of quanta s in minimal canonical

form.
Output: If there is a quantum qi in s such that q ⊆ qi then the result is s,

otherwise it is a new ordered list of quanta resulting from the
addition of q into s, at the proper place. Besides, all the quanta qj in s
such that qj ⊂ q, are eliminated from s.

Code:
Function add_non_contained_quantum_to_list (q:quantum,
 s:list(quantum)): list(quantum)

Var
 result: list(quantum)
 k: integer

Begin
 result := s
 k := ord(q)
 Case type(q)
 ‘P’:
 If not(exists_element_in_ordered_list(H(k), result) or
 exists_element_in_ordered_list(H(k-1), result) or
 exists_element_in_ordered_list (V(k), result) or
 exists_element_in_ordered_list (V(k-n), result) or
 exists_element_in_ordered_list (S(k), result) or

 244

 exists_element_in_ordered_list (S(k-1), result) or
 exists_element_in_ordered_list (S(k-n), result) or
 exists_element_in_ordered_list (S(k-n-1), result))
 Then
 result := add_distinct_element_to_ordered_list (q,
 result)
 EndIf
 ‘H’:
 If not(exists_element_in_ordered_list(S(k), result)or
 exists_element_in_ordered_list(S(k-n), result))
 Then
 result := add_distinct_element_to_ordered_list (q,
 result)
 result := delete_element_from_ordered_list(P(k),
 result)
 result := delete_element_from_ordered_list(P(k+1),
 result)
 EndIf
 ‘V’:
 If not(exists_element_in_ordered_list(S(k), result)or
 exists_element_in_ordered_list(S(k-1), result))
 Then
 result := add_distinct_element_to_ordered_list (q,
 result)
 result := delete_element_from_ordered_list(P(k),
 result)
 result := delete_element_from_ordered_list(P(k+n),
 result)
 EndIf
 ‘S’:
 result := add_distinct_element_to_ordered_list (q,
 result)
 result := delete_element_from_ordered_list(P(k),
 result)
 result := delete_element_from_ordered_list(P(k+1),
 result)
 result := delete_element_from_ordered_list(P(k+n),
 result)
 result := delete_element_from_ordered_list(P(k+n+1),
 result)
 result := delete_element_from_ordered_list(H(k),
 result)
 result := delete_element_from_ordered_list(H(k+n),
 result)
 result := delete_element_from_ordered_list(V(k),
 result)
 result := delete_element_from_ordered_list(V(k+1),
 result)
 EndCase
 add_non_contained_quantum_to_list:= result
End

 245

Function Name: maxcform
Input: A spatial object g.
Output: The maximal canonical form of g, maxcform(g), i.e. the ordered list

of all the quanta contained in g.
Code:

Function maxcform(g:surface): list(quantum)

Var
result: list(quantum)
k: integer

Begin
 result := empty list
 For each q in g
 k := ord(q)
 result := add_distinct_element_to_ordered_list(q, result)
 Case type(q)
 ‘H’:
 result := add_distinct_element_to_ordered_list(P(k), result)
 result := add_distinct_element_to_ordered_list(P(k+1), result)
 ‘V’:
 result := add_distinct_element_to_ordered_list(P(k), result)
 result := add_distinct_element_to_ordered_list(P(k+n), result)
 ‘S’:
 result := add_distinct_element_to_ordered_list(P(k), result)
 result := add_distinct_element_to_ordered_list(P(k+1), result)
 result := add_distinct_element_to_ordered_list(P(k+n), result)
 result := add_distinct_element_to_ordered_list(P(k+n+1), result)
 result := add_distinct_element_to_ordered_list(H(k), result)
 result := add_distinct_element_to_ordered_list(H(k+n), result)
 result := add_distinct_element_to_ordered_list(V(k), result)
 result := add_distinct_element_to_ordered_list(V(k+1), result)
 EndCase
 EndFor
 maxcform := result
End

Function Name: adjacent
Input: Two spatial objects g1 and g2 such that g1 ⊂ g2.
Output: An ordered list of quanta <q1, q2, ..., qn> such that for each i = 1, 2,

..., n, qi ⊆ g2 and qi ⊆/ g1 and qi ∩ g1 ≠ ∅.
Code:

Function adjacent (g1: surface, g2: surface): list(quantum)

Var
s: list(quantum)
q: quantum
result: list(quantum)

 246

Begin

 result := empty list
 s := maxcform(g2)
 For each q in s
 If (q ⊆/ g1) and (q ∩ g1 ≠ ∅) Then

 result := add_element_to_ordered_list(q, result)
 EndIf
 EndFor
 adjacent := result
End

Function Name: conductive
Input: Four spatial objects of data type surface, g1, g2, gCONDUCTOR, gINSULATOR
Output: It implements predicate conductive. Therefore, it evaluates to true iff

there is a path contained in gCONDUCTOR, from g1 to g2, which does not
cross gINSULATOR (see Section 3.4).

Code:
Function conductive (g1: surface, g2: surface,

gCONDUCTOR: surface,
gINSULATOR: surface): boolean

Var
s: list(quantum)
q: quantum
g: surface

Begin
 If (g1 ⊆ gINSULATOR) or
 (g2 ⊆ gINSULATOR) or
 (g1 ∩ gCONDUCTOR = ∅)or
 (g2 ∩ gCONDUCTOR = ∅) Then conductive := false
 Else
 If (g1 ∩ g2 ∩ gCONDUCTOR ≠ ∅) and
 (g1 ∩ g2 ∩ gCONDUCTOR ⊆/ gINSULATOR)
 Then conductive := true
 Else
 s := adjacent(g1, gCONDUCTOR)
 g := g1
 For each q in s
 g := add_non_contained_quantum_to_list(q, g)
 EndFor
 conductive := conductive (g, g2, gCONDUCTOR, gINSULATOR)
 EndIf
 EndIf
End

 247

Function Name: add_tuple_to_relation
Input: A tuple t and a relation R. The scheme of tuple t matches the one of

relation R.
Output: If t is already in R then the result is R, otherwise it is a new relation

containing the set of tuples R ∪ {t}.
Code: The code for this function is well known, therefore only its signature

is given below.
Function add_tuple_to_relation(t:tuple, R:relation):relation

Function Name: unfold
Input: A relation R, the list of attributes X in the scheme of R and the name

of an attribute G in the scheme of R.
Output: A new relation resulting from the application of relational operation

Unfold to relation R, on attribute G.
Code:

Function unfold(R: relation, X: list(attribute_name)
 G: attribute_name): relation

Var
U: relation
A: list(attribute_name)
s: list(quantum)
t: tuple
t1: tuple
q: quantum

Begin
 U := empty relation
 A := delete_element_from_list(G, X)
 For each t in R
 For each q in maxcform(t.G)
 t1 := (t.A, add_element_to_ordered_list (q, empty list))
 U := add_tuple_to_relation (t1, U)
 EndFor
 EndFor
 unfold := U
End

Function Name: connected_equivalence_classes
Input: An ordered list of quanta s.
Output: A list of lists of quanta <s1, s2, ..., sn>, where each si is a sub-list of s

consisting of all the quanta in one of the equivalence classes derived
from the equivalence relation qconnected (Definition C.1).

Code: The code for this function is well known, therefore only its signature
is given below.

Function connected_equivalence_classes(s: list(quantum)
): list(list(quantum))

 248

Function Name: select
Input: A relation R and a well formed formula s.
Output: A new relation resulting from the application of relational operation

Select[s](R).
Code: The code for this function is well known, therefore only its signature

is given below.
Function select(s: string, R: relation): relation

Function Name: except
Input: Two relations R and S
Output: A new relation resulting from the application of relational operation

R Except S.
Code: The code for this function is well known, therefore only its signature

is given below.
Function except(R: relation, S: relation): relation

Function Name: fold
Input: A relation R, the list X of attribute names in the scheme of R and the

name of an attribute G in the scheme of R.
Output: A new relation resulting from the application of relational operation

Fold to R on attribute G.
Code:

Function fold(R: relation, X: list(attribute_name)
 G: attribute_name): relation

Var
F: relation
S: relation
R’: relation
A: list(attribute_name)
s1: list(quantum)
s2: list(list(quantum))
t: tuple
t1:tuple
t2:tuple
s3:list(quantum)

Begin
 R’ := R
 F := empty relation
 A := delete_element_from_list(G, X)
 while R’ not empty
 t1 := first tuple in R’
 S := select(“A = t1.A”, R’)
 R’ := except(R’, S)
 s1 := empty list

 249

 For each t in S
 For each q in t.G
 s1 := add_non_contained_quantu_to_list(q, s1)
 EndFor
 EndFor
 s2 := connected_equivalence_classes(s1)
 For each s3 in s2
 t2 := (t1.A, s3)
 F := add_tuple_to_relation(t2, F)
 EndFor
 EndWhile
 fold := F
End

