
Adaptive Transformation Pattern for
Architectural Models

Diego Rodŕıguez-Gracia1, Javier Criado1,
Luis Iribarne1, Nicolás Padilla1, and Cristina Vicente-Chicote2

1 Applied Computing Group, University of Almeŕıa, Spain
{diegorg,javi.criado,luis.iribarne,npadilla}@ual.es
2 Department of Information Communication Technologies

Technical University of Cartagena, Spain
cristina.vicente@upct.es

Abstract. Model-Driven Engineering (MDE) usually concerns with the
production of non-executable models. These models are usually manipu-
lated at design-time by means of fixed model transformations. However,
in some situations, models need to be transformed at runtime. Further-
more, the transformations that manipulate these models may also need
to change dynamically according to the current execution context and
requirements. In this vein, this paper presents a transformation pattern
aimed to adapt architectural models at runtime. The transformations
that produce this model adaptation are not fixed, but dynamically com-
posed at runtime by selecting the most appropriate set of rules from
those available in a repository.

Keywords: Adaptive Transformation, Rule Selection, MDE

1 Introduction

Model Driven Engineering(MDE) is based on the construction of models using
formal modeling languages, which can be either general-purpose (e.g., UML) or
domain-specific. Models are usually static artifacts. In order to allow models
to dynamically evolve, we need to use model transformations. This mechanism
enables automatic model redesign and improves model maintainability. Model
transformations usually show a static behavior. Such a static behavior prevents
models to adapt to requirements not taken into account a priori. Therefore, it is
necessary to provide model transformations with a dynamic behavior that allows
them to vary in time according to new application or user requirements.

The proposal presented in this paper aims to provide model transformations
with such a dynamic behavior. In particular, our proposal addresses the adap-
tation of architectural models by means of transformations that are themselves
adapted at runtime [5]. Our architectural model definition is described in a pre-
vious work [7]. We present a transformation pattern according to which the
transformations that carry out the adaptation are not prepared a priori, but
dynamically composed at runtime from a rule model. At each transformation

step, this rule model evolves by applying a rule selection algorithm. This algo-
rithm selects the most appropriate set of rules (from those available in a rule
repository) according to the current situation. It is worth noting that the goals
of this research emerge from the previous results obtained in [7], [8], and [14].

In order to achieve these goals, we will use both Model-to-Model (M2M) [1]
and Model-to-Text (M2T) [2] transformations. Whenever an adaptation of the
architectural model is required (e.g., when the user or the system trigger an
event), a M2T transformation is invoked. This M2T transformation is an static
artifact (i.e., it does not change in time). It takes the current architectural model
(containing information about the current context) and generates a M2M trans-
formation, specifically composed to carry out the architectural model adaptation.
The input and the output models of this M2M transformation can conform to ei-
ther the same or different metamodels [9]. The generated M2M transformations
contain a set of transformation rules. This transformation rules are divided into
a Left-Hand-Side (LHS) and a Right-Hand-Side (RHS). The LHS and RHS refer
to elements in the source and the target models, respectively. Both LHS and
RHS can be represented through variables, patterns, and logic [9].

We have implemented our M2T transformation using JET [3], while the gen-
erated M2M transformations are defined in ATL [15]. We selected ATL as it
enables the adoption of an hybrid (of declarative and imperative) M2M trans-
formation approach [9]. In fact, in ATL it is possible to define hybrid transfor-
mation rules in which both the source and the target declarative patterns can
be complemented with an imperative block. It is in this imperative logic where
the rule selection algorithm has been implemented. We have also defined a rule
metamodel, aimed to help designers: (1) to define correct transformation rules
(the metamodel establishes the structure of these rules and how they can be
combined), and (2) to store these rules in a repository.

The rest of the article is organized as follows: Section 2 reviews related work.
Section 3 details the proposed approach to achieve model transformation adap-
tation at runtime. In this section, we first describe the transformation pattern
that enables to model the structure and composition of the generic elements
included in our transformation schema; secondly, we present this transformation
schema and describe the processes involved in it; thirdly, we show the transfor-
mation rules stored in the repository and focus on the rule selection algorithm.
We describe the rule selection process in detail and show the result of appying
it in an example repository. To conclude, we describe the process designed to
generate the transformations from the selected rule models. Finally, Section 4
outlines the conclusions and future work.

2 Related Work

Nowadays there are different proposals to achieve adaptive transformations for
architectural models at runtime. To this end, in [11] the authors developed meta-
transformations as transformations which operate over other ones, being their
source or target, that is to say, they are transformations that produce trans-

formations. However, unlike the proposal developed in [11], our approach has
the special feature that new transformations are created to get adaptability
in the architectural models (horizontal transformations) rather than make the
transformation from PIM to PSM models (vertical transformations). In [10], the
architectural models must contain variation and selection criteria so the mid-
dleware can automate the transformation. In contrast, we propose to store the
adaptation logic in a repository of transformation rules.

Other approaches face the problem of achieving model-adaptability at run-
time through high level language implementations. For instance, in [18] the au-
thors used MAte and MUTate modules implemented as Java programs that are
executed inside an OSGi [4] platform. In our case, we achieved the runtime model
adaptation and update through model transformations (M2M and M2T). Such
transformations are made by means of rules implemented in the ATL model
transformation language. One of the features of ATL which made us use this
language to implement rules, is that it enables to use explicit rule calls inter-
nally as a mechanism for rule integration [16]; thus, rules are assembled so that
one rule calls another one.

Different proposals of internal composition techniques for model transforma-
tion languages haven been developed. In [21] the authors present an internal
composition mechanism of model transformation, implemented in a rule-based
model transformation language which uses ATL language as an example. This
mechanism enables to make two or more transformations in just one, splitting
up a model transformation into multiple transformations. To this end, the au-
thors suggest creating transformation modules that can be either called from
other transformation modules or imported from an ATL transformation file. To
our opinion, as ATL is the metamodel of these modules, it would be harder to
manage and interpret them automatically than use the models and rule reposi-
tory of our proposal. Thus, we chose to create ATL rules defined by a DSL and
dynamically build ATL transformation modules.

On the other hand, in [19] the authors suggested the use of model-to-model
transformations to generate as output transformation models in order to adapt
or modify an M2M transformation process. Such models can be later turned
into ATL transformation files that behave in turn as new transformation mod-
ules adapted to the system’s requirements. This composition method for trans-
formation process is quite interesting and guarantees well-built transformation
modules, since we used the ATL metamodel as reference to generate transforma-
tion models; however, these Higher-Order Transformations (HOT) [19] are very
complex to be built when there are significant rule modifications or when we
wish to create an ATL transformation model from a rule model of our system.

In [13] the authors use the term “live transformations” to describe those
transformations that increase or decrease (their rules or facts) to move forward
in their transformation logic tree; that is, a dependence tree that increases or
decreases according to the source model behavior (i.e., a new tree is not built).
Declarative rules are built (increased or decreased) from a rule repository to
allow changes in runtime transformations subject.

The approach developed in [17] has many aspects in common with ours. It
proposes to describe and execute model refactorings based on transformation
rules or checked actions where rules have formal parameters that are matched
with a model subset. The main difference with our proposal is that we used
specific MDD tools, Ecore models [12] instead of UML [6] ones and ATL [15]
language rather than Python [20]. We carried out the selection of transformation
rules through model transformations.

3 Adaptive Model Transformation

As previously advanced, models created at design time from model definition
language are, in principle, static elements. Here we will define design-time ar-
chitectural models and we want them to be changing and adapting to the sys-
tem’s requirements. Once a specific model has been built (conforming to a meta-
model), we can either directly modify its content or use Model Driven Engineer-
ing (MDE) techniques. In order to modify our architectural models, we based
on the MDE methodology so that we can achieve their change and adaptation
by using model-to-model (M2M) transformations.

In an M2M transformation, an output model (conforming to a metamodel)
is generated from an input model that conforms to a metamodel which may or
may not be the same as the output metamodel. Here, we will design an M2M
transformation where both the input and output metamodels are the same, the
architectural metamodel (AMM). Therefore, this process will turn an architec-
tural model AMa into another AMb (Figure 1).

AMM

AMa AMb ModelTransformation
in out

conforms_to conforms_to

Fig. 1. Architectural Model Transformation

This ModelTransformation process enables the evolution and adaptation of
architectural models. Its behaviour is described by the rules of such transforma-
tion. Thus, if our goal is to make the architectural model transformation not be a
predefined process but a process adapted to the system’s needs and requirements,
we must get the transformation rules to change depending on the circumstances.
In order to achieve this goal, we based on the following conditions:

(a) Build a rule repository where all rules that may be applied in an architectural
model transformation are stored.

(b) Design a rule selection process that takes as input the repository and gen-
erates as output a subset of rules.

(c) Ensure that the rule selection process can generate different rule subsets,
depending on the circumstances.

(d) Develop a process that takes as input the selected rule subset and generates
an architectural model transformation.

(e) Ensure that both the described processes and their elements are within the
MDE framework.

According to the proposed conditions for the implementation of our trans-
formation schema, we observed a variety of similarities and analogies between
the elements present here. Such similarities have been generalized and expressed
in the transformation pattern described in Section 3.1.

3.1 Transformation Pattern

Building a transformation pattern allows us to model the structure and com-
position of generic elements that may exist in our transformation schema. Such
elements provide us with some information about the types of modules that can
be included in possible transformation configurations and how they connect with
the rest of the schema elements. Furthermore, this pattern offers us the possibil-
ity of changing such schema by creating a different model from the metamodel
defined in Figure 2, which has been implemented through EMF [12].

A transformation schema (TransformationSchema) is made up of three dif-
ferent types of elements: transformations (Transformation), models (Model)
and metamodels (Metamodel). Metamodel elements describe the model defini-
tions of the transformation schema. Model elements identify and define the sys-
tem models. Transformation elements can be classified into two groups: M2M and
M2T. M2M transformations represent model-to-model transformation processes;
therefore, they will have one or more schema models associated both as input
and output through the source and target references, respectively. On the other

Fig. 2. Transformation Pattern

hand, M2T transformations represent the transformation processes that take as
input one or more system models (through source) and generate as output a
model-to-model transformation (through target).

3.2 Transformation Schema: An instance of Transformation Pattern

In accordance with the transformation pattern in Section 3.1, we developed our
adaptive transformation for architectural models at runtime whose transforma-
tion schema is shown in Figure 3. The behaviour and sequence are as follows:

(a) RuleSelection, is the rule selection process that starts when an attribute
from a defined class in the initial architectural model (AMi) takes a spe-
cific value (i.e., when the user or the system trigger an event). This process,
that is carried out at runtime, is obtained as an instance of the M2M con-
cept. It takes as input the repository model (RRM) and the AMi (see step
#1 in Figure 3), and generates as output (see step #2 in Figure 3) a rule
transformation model (RMi) for architectural models, being RMi ⊆ RRM .

(b) RuleTransformation, is obtained as an instance of the M2T concept. It
takes as input (see step #3 in Figure 3) the rule model (RMi) and gener-
ates as output (see step #4 in Figure 3) a new transformation process for
architectural models at runtime (ModelTransformationi).

(c) ModelTransformation, is obtained as an instance of the M2M concept and
generates as output (see step #6 in Figure 3) a new architectural model at
runtime (AMi+1) starting from the initial architectural model (AMi).

<<model>>

RRM
(repository)

<<metamodel>>
RMM

<<model>>

RMi
<<model>>

RMi+1

<<transformation>>

RuleSelection
(M2M)

<<transformation>>

RuleSelection
(M2M)

<<transformation>>

RuleTransformation
(M2T)

<<transformation>>

RuleTransformation
(M2T)

<<transformation>>

ModelTransformationi
(M2M)

<<transformation>>

ModelTransformationi+1
(M2M)

<<metamodel>>
AMM

<<model>>

AMi
<<model>>

AMi+1

conforms_to conforms_to

conforms_to

conforms_to conforms_to

1: source

2: target
3: source

4: target

5: source 6: target

7: source

7: source

8: target
9: source

10: target

11: source

1: source

state i state i+1

Fig. 3. Transformation Schema

3.3 Transformation Rules: an overview

As previously indicated, our goal is to achieve the adaptability of architectural
model transformations at runtime. To this end, and given a transformation rule
repository for architectural models (RRM), the system generates transformation
rule models (RMi) that adapt to the properties of the system context at runtime.
The transformation rules define the degree of adaptability of our system, as such
adaptability depends on the ability of the transformation rule model (RMi) to
modify itself from external events of the system. That is why we focus on the
description of the transformation rules and the attributes that affect the rule
selection process (RuleSelection) and the rule repository (RRM), where the
transformation rules of the architectural models are stored.

A. Rule metamodel

Both the transformation rule model (RMi) and the rule repository (RRM) are
defined according to the transformation rule metamodel for architectural model
(RMM). In such metamodel, which defines both the transformation rule model
(RMi) and the rule repository (RRM), we will focus on describing the class
(Rule) which is directly involved with the rule selection logic belonging to the
rule model generation process (RuleSelection). The class Rule (Figure 4) has the
following attributes:

— rule name: It is unique and identifies the rule.
— purpose: It is defined a priori and indicates the purpose of the rule. Only

those rules of the rule repository (RRM) whose purpose coincides with the
purpose attribute’s value defined in the architectural model (AMi), will
belong to the transformation rule model (RMi).

— is priority: Boolean. It is established a priori. If its value is true in a spe-
cific rule of the rule repository (RRM!Rule.is priority = true), it indi-
cates that the rule must always be inserted in the transformation rule model
(RMi), provided that it satisfies the condition detailed in purpose.

— weight: It is established a priori. That rule in the rule repository (RRM)
which satisfies the purpose condition, has the attribute is priority =

false and has the biggest weight of all rules satisfying such conditions,
will be inserted in the transformation rule model (RMi).

Fig. 4. A piece of rule metamodel

B. Rule repository

The architectural model transformation rules are stored in the rule repository
(RRM). It is a model defined according to a rule metamodel (RMM) and is
made up of a priori transformation rules. As previously mentioned, those rules
that fulfil a specific metric are chosen through a rule selection process (RuleSe-
lection). Table 1 shows different rules that belong to the rule repository and will
be used as an instance in Section 3.4.

Table 1. Example rule repository (RRM)

Rule Repository Model (RRM)

rule name purpose is priority weight

Insert Component One InsertComponent false 6

Delete Component DeleteComponent true 9

Rename Component RenameComponent false 8

Insert Component Two InsertComponent false 7

Insert Component Three InsertComponent true 2

3.4 Rule Selection

After an overview of the transformation rules described in Section 3.3, we studied
the transformation process known as RuleSelection through which rule models
(RMi) are generated from the rule repository (RRM) to get the transformation
adaptation at runtime. According to our transformation schema, this process is
obtained as an instance of the M2M concept of the transformation pattern (see
Section 3.1). Hence, RuleSelection is a model-to-model transformation process
that takes as input (source) the initial architectural model (AMi) defined in
accordance with an architectural metamodel (AMM), and the rule repository
model (RRM) defined in compliance with the rule metamodel (RMM). As
output (target), RuleSelection generates the transformation rule model (RMi)
also defined according to the rule metamodel (RMM) (see Figure 5).

The sequence of this M2M transformation process is as follows. The process
starts when an attribute of a class defined in the initial architectural model
(AMi) takes a specific value. This class is known as Launcher. The selected rule
model (RMi) is generated starting from the rule repository model (RRM). Both
models are defined in compliance with the rule metamodel (RMM). This new
rule model (RMi) is made up of a subset of rules existing in the rule repository
model(RRM); their purpose attribute will coincide with the purpose attribute
of the class Launcher, defined in the initial architectural model (AMi) and they
must fulfil a selection metric based on specific values of the is priority and
weight attributes. The selection logic is as follows: those rules a priori de-
fined as priority (is priority = true) in the rule repository (RRM) will be
copied in the transformation rule model (RMi) regardless of the weight value

<<model>>

RRM
(repository)

<<metamodel>>
RMM

<<model>>

RMi

<<transformation>>

RuleSelection
(M2M)

<<metamodel>>
AMM

<<model>>

AMi

conforms_to

conforms_to

conforms_to

source

target

source

Fig. 5. RuleSelection schema

assigned at state i, provided that the value of the purpose attribute of the rule
coincides with the value of the purpose attribute of the architectural model
(RRM!Rule.purpose = AMi!Launcher.purpose). Regarding those rules not de-
fined as priority in the rule repository (is priority = false), the process will
copy in the transformation rule model the rule with the biggest weight value
among all assigned to the rules of the rule repository, where the value of the
purpose attribute of the rule coincides with the value of the purpose attribute
of the initial architectural model. This selection logic of the RuleSelection process
is shown in Table 2.

As a practical example, let’s suppose that we take as input the architec-
tural model AMi where AMi!Launcher.purpose = ‘InsertComponent’. Let’s
also suppose that the transformation rule repository model (RRM) is the one
specified in Table 1. If, for external reasons, the state of the running attribute
of the architectural model (AMi) changed into true (AMi!Launcher.running
= true) at the state i, the RuleSelection model-to-model transformation would
start. Then, the selected rule model (RMi) would be generated from the rule
repository model (RRM) by selecting the rules with the attribute purpose =

‘InsertComponent’ which have the biggest weight or which have their attribute
is priority = true, as shown in Table 3.

3.5 Rule Transformation

Starting from the rule model (RMi) of the selection process described in Section
3.4, the next process involved in the adaptive transformation of our system is
known as RuleTransformation. Within our transformation schema, this process

Table 2. Selection Logic

Input: AMi and RRM

Output: RMi

If AMi!Launcher.running = true then

RuleSelection

End If

RuleSelection

If RRM!Rule.purpose = AMi!Launcher.purpose then

If RRM!Rule.is priority = true then

RMi!Rule ← RRM!Rule

Else

For RRM!Rule.purpose = AMi!Launcher.purpose

If RRM!Rulen.weight > RRM!Rulen+1.weight

RMi!Rulen ← RRM!Rulen
EndIf

EndFor

EndIf

EndIf

Table 3. Model of selected rules (RMi)

Rule Model (RMi)

rule name purpose is priority weight

Insert Component Two InsertComponent False 7

Insert Component Three InsertComponent True 2

is obtained as an instance of the M2T concept of the transformation pattern
(see Section 3.1). Therefore, the RuleTransformation process is a model-to-text
transformation process that takes as input (source) the rule model selected by
the RuleSelection process and generates as output (target) a model-to-model
transformation file (see Figure 6).

The main goal here is to generate a M2M transformation that is respon-
sible for changing the system’s architectural models (ModelTransformationi).
As indicated in our transformation pattern, this new transformation is an in-
stance of the M2M concept that takes as input (source) an architectural model
(AMi) and generates as output (target) another architectural model (AMi+1).
Since the rule models of the RuleSelection process will be changing depending
on the system’s requirements, the RuleTransformation process (that takes as
input these models) is responsible for creating a runtime architectural model
transformation that contains new rules considered to be necessary. Hence, this
ModelTransformationi process will achieve the adaptation of the architectural
models at runtime. As an example, Figure 7 shows a fragment of a rule model
generated through the RuleSelection process. Here, the information dealing with
the input and output models is modeled, as well as the metamodel in which such
models are defined.

<<metamodel>>
RMM

<<model>>

RMi

<<transformation>>

RuleTransformation
(M2T)

<<transformation>>

ModelTransformationi
(M2M)

<<metamodel>>
AMM

<<model>>

AMi
<<model>>

AMi+1

conforms_to

conforms_to conforms_to

source

target

source target

Fig. 6. RuleTransformation schema

In Table 4, we can observe the code fragment of the RuleTransformation
process that is responsible for transforming the part of the model shown in the
Figure 7. This part of the model-to-text transformation [2], generates the header
section of the ATL transformation file of the ModelTransformationi process. In
every element of the selected rule model (RMi) there is a part of the M2T trans-
formation of the RuleTransformation process that is in charge of translating the
rules and any other necessary information into the ATL code, which constitutes
the M2M transformation of the ModelTransformationi process.

Fig. 7. Example Rule Model extraction

Despite the RuleTransformation process has been developed in order to turn
rule models into transformation processes applied to architectural models, it is
extendable to generate any type of M2M transformation, which is executed on
a rule model defined in compliance with the rule metamodel.

Table 4. Transformation example of the RuleTransformation process

Portion of transformation M2T

module t1;

create

<c:iterate var="model_ref" select="/RuleSet/model_ref[@model_type =

’OUT’]" delimiter=",">

<c:get select="$model_ref/@model_name"/> :

<c:get select="$model_ref/conforms_to/@metamodel_name"/>

</c:iterate>

from

<c:iterate var="model_ref" select="/RuleSet/model_ref[@model_type =

’IN’]" delimiter=",">

<c:get select="$model_ref/@model_name"/> :

<c:get select="$model_ref/conforms_to/@metamodel_name"/>

</c:iterate>

;

M2M generated

module t1;

create

AMOUT : AMM

from

AMIN : AMM

;

4 Conclusions and future work

Here we presented our proposal of adaptive transformations for architectural
models at runtime. Our scope are architectural models which represent user in-
terfaces made up of UI components [7]. Thus, we developed a transformation
pattern that enables to model the structure and composition of the generic el-
ements that may exist in our transformation schema. With this pattern, it is
also possible to change the transformation schema by creating a different model
starting from the metamodel that defines it. This provides our proposal with
a high degree of flexibility and scalability. We got the transformation rules to
change depending on the possible circumstances. Therefore, the transformation
rules define the degree of adaptability of our system; such adaptability is deter-
mined by the ability of the transformation rule model (RMi) to modify itself
in view of external events of the system, where both the degree and scope of
adaptability are also defined by means of the rule selection logic.

As future work, we intend to achieve a higher degree of adaptability for our
proposal. To this end, we suggest providing the generation process of trans-
formation rule models with a more adaptive behavior. Thus, we will take into
account, in the selection logic, factors that provide new rule selection criteria to

get a higher degree of adaptability in transformations: use frequency of trans-
formation rules, rule weight management policy, etc. We also intend to possibly
carry out, through HOT [19], the process by which at runtime we turn rule
models into transformation processes applied to architectural models. Once the
required adaptability level is reached, and using the scalability degree of our
proposal, we’ll focus on providing our system with a decision-making technique
to be able to manipulate the rule repository so that the system can evolve at
runtime and adapt itself to the interaction with the user. Moreover, another
improvement we wish to include in our system, is the development of an editing
tool for transformation rules. Thus, we would be able to manage both the rule
repository and each rule model generated through a friendly graphical interface
in a similar way to that in [18]. On the other hand, this tool would allow us
to execute the rule selection process to check which rules are selected from the
repository and the context information.

Acknowledgments. This work has been supported by the EU (FEDER) and
the Spanish Ministry MICINN under grant of the TIN2010-15588 and TRA2009-
0309 projects, and also by the JUNTA ANDALUCÍA (proyecto de excelencia)
ref. TIC-6114, http://www.ual.es/acg.

References

1. Eclipse Modeling Project – Model to Model Transformations. http://www.

eclipse.org/modeling/m2m/.

2. Eclipse Modeling Project – Model to Text Transformations. http://www.eclipse.
org/modeling/m2t/.

3. Eclipse Java Emitter Templates (JET). http://www.eclipse.org/modeling/m2t/
?project=jet.

4. OSGi – The Dynamic Module System for Java. http://www.osgi.org/.

5. Blair, G., Bencomo, N., France, R.B.: Models@run.time (Special issue on Models
at Run Time). Computer, 40(10):22–27 (2009)

6. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide.
Addison-Wesley Professional (2005)

7. Criado, J., Vicente-Chicote, C., Iribarne, L., Padilla, N.: A Model-Driven Approach
to Graphical User Interface Runtime Adaptation. Models@Run.Time, CEUR-WS
Vol 641 (2010)

8. Criado, J., Padilla, N., Iribarne, L., Asensio, J.: User Interface Composition with
COTS-UI and Trading Approaches: Application for Web-Based Environmental In-
formation Systems. Knowledge Management, Information Systems, E-Learning,
and Sustainability Research, WSKS’2010, Part I, CCIS 111, pp. 259–266, Springer-
Verlag Berlin (2010)

9. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Con-
text of the Model Driven Architecture, pp. 1–17. Citeseer (2003)

10. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjørven, E.: Using
Architecture Models for Runtime Adaptability. IEEE Software, 23(2):62–70 (2006)

11. Gray, J., Lin, Y., Zhang, J.: Automating change evolution in model-driven engi-
neering. Computer, 39(2):51–58 (2006)

12. Gronback, R.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley Professional (2009)

13. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for
the evolution of model-driven systems. Model Driven Engineering Languages and
Systems, pp. 321–335 (2006)

14. Iribarne, L., Padilla, N., Criado, J., Asensio, J., Ayala, R.: A Model Transforma-
tion Approach for Automatic Composition of COTS User Interfaces in Web-Based
Information Systems. Information Systems Management, 27(3):207–216 (2010)

15. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming, 72(1-2):31–39 (2008)

16. Kurtev, I., van den Berg, K., Jouault, F.: Rule-based modularization in model
transformation languages illustrated with ATL. Science of Computer Program-
ming, 68(3):138–154 (2007)

17. Porres, I.: Rule-based update transformations and their application to model refac-
torings. Software and Systems Modeling, 4(4):368–385 (2005)

18. Serral, E., Valderas, P., Pelechano, V.: Supporting runtime system evolution to
adapt to user behaviour. In: Advanced Information Systems Engineering, pp. 378–
392. Springer (2010)

19. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order
model transformations. In: Model Driven Architecture-Foundations and Applica-
tions, pp. 18–33. Springer (2009)

20. van Rossum, G.: Python language reference manual. Network Theory Ltd. (2003)
21. Wagelaar, D.: Composition techniques for rule-based model transformation lan-

guages. Theory and Practice of Model Transformations, pp. 152–167 (2008)

